# Ngô Quốc Anh

## April 5, 2008

### More integral involving Gamma function

Filed under: Giải Tích 2 — Ngô Quốc Anh @ 14:58

Show that

$\int_0^1\;e^{ - \alpha\,x}\;\ln\,x\;\textbf dx\; = \;\boxed{ - \dfrac{1}{\alpha}\left(\ln\,\alpha + \gamma + \Gamma(0,\alpha)\right)}$

where  represents the incomplete gamma function.

Solution. With  , we have
$\mathcal{I} = \frac {1}{\alpha} \int_0^{\alpha} e^{ - t} \ln t \, dt - \frac {\ln \alpha}{\alpha} \int_0^{\alpha} e^{ - t} \, dt =$
$= \frac {1}{\alpha} \left\{\left( \int_0^{ + \infty} - \int_{\alpha}^{ + \infty} \right) e^{ - t} \ln t dt - (1 - e^{ - \alpha})\ln \alpha \right\}$
$= \frac {1}{\alpha} \left\{ - \gamma - \ln \alpha + e^{ - \alpha} \ln \alpha - \underbrace{\int_{\alpha}^{ + \infty}e^{ - t}\ln t \, dt}_{\mathcal{J}} \right\}$
To compute J we integrate by parts:
$\mathcal{J} = \left[ - e^{ - t} \ln t \right]_{\alpha}^{ + \infty} + \int_{\alpha}^{ + \infty} \frac {e^{ - t}}{t} dt = e^{ - \alpha} \ln \alpha + \underbrace{\int_{ - \infty}^{ - \alpha} \frac {e^{x}}{x} \, dx}_{\mbox{Ei}( - \alpha) = - \Gamma (0, \alpha)}$
And Finally:
$\mathcal{I} = - \frac {1}{\alpha} \left\{\gamma + \ln \alpha + \Gamma (0, \alpha) \right\}$.

Done.

## 1 Comment »

1. bài này thú vị thật nhưng ta có thể tính được tích phân tổng quát sau
$https://anhngq.wordpress.com/2008/04/05/more-integral-involving-gamma-function/$

Comment by vualangbat — December 11, 2008 @ 7:18

This site uses Akismet to reduce spam. Learn how your comment data is processed.