Ngô Quốc Anh

November 26, 2009

R-G: Sectional curvature

Filed under: Riemannian geometry — Ngô Quốc Anh @ 14:40

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds.

Definition. The sectional curvature of the plane spanned by the (linearly independent) tangent vectors X, Y \in T_xM of the Riemannian manifold M is

\displaystyle K\left( {X,Y} \right) = \frac{{\left\langle {R\left( {X,Y} \right)Y,X} \right\rangle }}{{\left\langle {X,X} \right\rangle \left\langle {Y,Y} \right\rangle - {{\left\langle {X,Y} \right\rangle }^2}}}.

In local coordinates, if

\displaystyle X = {X^i}\frac{\partial }{{\partial {x^i}}}, \quad Y = {Y^j}\frac{\partial }{{\partial {x^j}}}

we then have

\displaystyle R\left( {X,Y} \right)Y = {X^i}{Y^j}{Y^k}R\left( {\frac{\partial }{{\partial {x^i}}},\frac{\partial }{{\partial {x^j}}}} \right)\frac{\partial }{{\partial {x^k}}} = {X^i}{Y^j}{Y^k}R_{kij}^l\frac{\partial }{{\partial {x^l}}}

which implies

\displaystyle\begin{gathered} \left\langle {R\left( {X,Y} \right)Y,X} \right\rangle = {X^i}{Y^j}{Y^k}R_{kij}^l\left\langle {\frac{\partial }{{\partial {x^l}}},{X^m}\frac{\partial }{{\partial {x^m}}}} \right\rangle \hfill \\ \qquad= {X^i}{Y^j}{X^m}{Y^k}R_{kij}^l{g_{lm}} \hfill \\ \qquad= {R_{mkij}}{X^i}{Y^j}{X^m}{Y^k} \hfill \\ \qquad = {R_{ijmk}}{X^i}{Y^j}{X^m}{Y^k}. \hfill \\ \end{gathered}


\displaystyle\begin{gathered} \left\langle {X,X} \right\rangle \left\langle {Y,Y} \right\rangle - {\left\langle {X,Y} \right\rangle ^2} = {X^i}{X^m}{g_{im}}{Y^j}{Y^k}{g_{jk}} - {\left( {{X^\alpha }{Y^\beta }{g_{\alpha \beta }}} \right)^2} \hfill \\ \qquad= {X^i}{X^m}{g_{im}}{Y^j}{Y^k}{g_{jk}} - {X^\alpha }{Y^\beta }{g_{\alpha \beta }}{X^\gamma }{Y^\delta }{g_{\gamma \delta }} \hfill \\ \qquad= \left( {{g_{im}}{g_{jk}} - {g_{ij}}{g_{mk}}} \right){X^i}{X^m}{Y^j}{Y^k}. \hfill \\\end{gathered}


\displaystyle K\left( {X,Y} \right) = \frac{{{R_{ijmk}}{X^i}{Y^j}{X^m}{Y^k}}}{{\left( {{g_{im}}{g_{jk}} - {g_{ij}}{g_{mk}}} \right){X^i}{X^m}{Y^j}{Y^k}}}.

To be exact, without using Einstein summation convention, one reads the above identity as following

\displaystyle K\left( {X,Y} \right) = \frac{{\sum\limits_{ijmk} {{R_{ijmk}}{X^i}{Y^j}{X^m}{Y^k}} }}{{\sum\limits_{ijmk} {\left( {{g_{im}}{g_{jk}} - {g_{ij}}{g_{mk}}} \right){X^i}{X^m}{Y^j}{Y^k}} }}.

We refer the reader to this topic for examples. In addition, if we choose

\displaystyle {g_{ij}} = {\left( {\displaystyle\frac{2}{{1 - {{\left| y \right|}^2}}}} \right)^2}{\delta _{ij}}

then the sectional curvature of g is -1.

1 Comment »

  1. […] description is described at curvature of Riemannian manifolds (Riemann curvature tensor, Sectional curvature, Ricci curvature, Scalar curvature, Einstein curvature tensor, Weyl curvature tensor). Để […]

    Pingback by R-G: Curvature « Ngô Quốc Anh — December 10, 2009 @ 15:48

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Create a free website or blog at

%d bloggers like this: