Ngô Quốc Anh

June 9, 2010

Invariance under fractional linear transformations

Filed under: Giải Tích 5, Giải Tích 6 (MA5205) — Tags: — Ngô Quốc Anh @ 5:02

I just read the following result due to Loss-Sloane published in J. Funct. Anal. this year [here]. This is just a lemma in their paper that I found very interesting.

Let f be any function in C_0^\infty(\mathbb R \setminus \{0\}). Consider the inversion x \mapsto \frac{1}{x} and set

\displaystyle g(x) = {\left| x \right|^{\alpha - 1}}f\left( {\frac{1}{x}} \right).

Then g \in C_0^\infty(\mathbb R) and

\displaystyle\iint\limits_{{\mathbb{R}^2}} {\frac{{{{\left| {g(x) - g(y)} \right|}^2}}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}dxdy} = \iint\limits_{{\mathbb{R}^2}} {\frac{{{{\left| {f(x) - f(y)} \right|}^2}}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}dxdy}.

Proof. For fixed \varepsilon consider the regions

\displaystyle {R_1}: = \left\{ {(x,y) \in {\mathbb{R}^2}:\left| {\frac{x}{y}} \right| > 1 + \varepsilon } \right\}

and likewise,

\displaystyle {R_2}: = \left\{ {(x,y) \in {\mathbb{R}^2}:\left|  {\frac{y}{x}} \right| > 1 + \varepsilon } \right\}.

By changing variables x \mapsto \frac{1}{x} and y \mapsto \frac{1}{y} we find that

\displaystyle\begin{gathered} \iint\limits_{{R_1} \cup {R_2}} {\frac{{{{\left| {f(x) - f(y)} \right|}^2}}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}dxdy} \hfill \\ \qquad= \iint\limits_{{R_1} \cup {R_2}} {\frac{{{{\left| {f\left( {\frac{1}{x}} \right) - f\left( {\frac{1}{y}} \right)} \right|}^2}}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}{{\left| x \right|}^{\alpha - 1}}{{\left| y \right|}^{\alpha - 1}}dxdy} \hfill \\ \qquad= \iint\limits_{{R_1} \cup {R_2}} {\frac{{{{\left| {g(x) - g(y)} \right|}^2}}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}dxdy} + \hfill \\\qquad\qquad \iint\limits_{{R_1} \cup {R_2}} {\frac{{{{\left| {f\left( {\frac{1}{x}} \right)} \right|}^2}\left( {{{\left| x \right|}^{\alpha - 1}}{{\left| y \right|}^{\alpha - 1}} - {{\left| x \right|}^{2(\alpha - 1)}}} \right) + {{\left| {f\left( {\frac{1}{y}} \right)} \right|}^2}\left( {{{\left| x \right|}^{\alpha - 1}}{{\left| y \right|}^{\alpha - 1}} - {{\left| y \right|}^{2(\alpha - 1)}}} \right)}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}dxdy} \hfill \\ \end{gathered}

which, by symmetry under exchange of x and y,

\displaystyle = \iint\limits_{{R_1} \cup {R_2}} {\frac{{{{\left| {g(x) - g(y)} \right|}^2}}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}dxdy} + 2\iint\limits_{{R_1} \cup {R_2}} {\frac{{{{\left| {f\left( {\frac{1}{x}} \right)} \right|}^2}\left( {{{\left| x \right|}^{\alpha - 1}}{{\left| y \right|}^{\alpha - 1}} - {{\left| x \right|}^{2(\alpha - 1)}}} \right)}}{{{{\left| {x - y} \right|}^{\alpha + 1}}}}dxdy}.

The second integral can be written as

\displaystyle\int\limits_\mathbb{R} {{{\left| {f\left( {\frac{1}{x}} \right)} \right|}^2}{{\left| x \right|}^{\alpha - 2}}dx} \int\limits_{\left\{ {\left| s \right| > 1 + \varepsilon } \right\} \cup \left\{ {\frac{1}{{\left| s \right|}} > 1 + \varepsilon } \right\}} {\frac{{{{\left| s \right|}^{\alpha - 1}} - 1}}{{{{\left| {1 - s} \right|}^{1 + \alpha }}}}ds}.

We have

\displaystyle\int\limits_{\left\{ {\left| s \right| > 1 + \varepsilon } \right\} \cup \left\{ {\frac{1}{{\left| s \right|}} > 1 + \varepsilon } \right\}} {\frac{{{{\left| s \right|}^{\alpha - 1}} - 1}}{{{{\left| {1 - s} \right|}^{1 + \alpha }}}}ds} = \int\limits_{\left\{ {\left| s \right| > 1 + \varepsilon } \right\}} {\frac{{{{\left| s \right|}^{\alpha - 1}} - 1}}{{{{\left| {1 - s} \right|}^{1 + \alpha }}}}ds} + \int\limits_{\left\{ {\frac{1}{{\left| s \right|}} > 1 + \varepsilon } \right\}} {\frac{{{{\left| s \right|}^{\alpha - 1}} - 1}}{{{{\left| {1 - s} \right|}^{1 + \alpha }}}}ds}

and by changing the variable s \mapsto \frac{1}{s} in the last integral we find that this sum vanishes. Letting \varepsilon \to 0 yields the desired equality.

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: