Ngô Quốc Anh

April 7, 2011

Weak comparison principle: p-Laplacian with Neumann boundary condition

Filed under: PDEs — Tags: — Ngô Quốc Anh @ 20:25

I am going to summarize some known comparison principles. I will start with a weak comparison principle for p-Laplacian with Neumann boundary condition. This is adapted from a recent paper by J. Giacomoni et al. published in Differential Integral Equations [here]. I will keep the numbering for the convenience.

Lemma 3.1. Let u,v \in W^{1,N}(\Omega) be non-negative functions satisfying

\displaystyle -\Delta_N u + u^{N-1} \geqslant -\Delta_N v + v^{N-1}

in \Omega and

\displaystyle {\left| {\nabla u} \right|^{N - 2}}\frac{{\partial u}}{{\partial \nu }} \geqslant {\left| {\nabla v} \right|^{N - 2}}\frac{{\partial v}}{{\partial \nu }}

on the boundary \partial \Omega in the strong sense. Then u\geqslant v in \overline\Omega.

Proof. The trick is that if we want to prove u\geqslant v in \overline\Omega then we just show that

(u-v)^- \equiv 0

in \overline\Omega. To this purpose, we use (u-v)^- as a test function in the equation

\displaystyle - ({\Delta _N}u - {\Delta _N}v) + ({u^{N - 1}} - {v^{N - 1}}) \geqslant 0

and integrate to achive

\displaystyle - \int_\Omega {({\Delta _N}u - {\Delta _N}v){{(u - v)}^ - }} + \int_\Omega {({u^{N - 1}} - {v^{N - 1}}){{(u - v)}^ - }} \leqslant 0

and use the integration by parts to arrive at

\displaystyle\begin{gathered} \int_\Omega {({{\left| {\nabla u} \right|}^{N - 2}}\nabla u - {{\left| {\nabla v} \right|}^{N - 2}}\nabla v) \cdot \nabla {{(u - v)}^ - }} + \int_\Omega {({u^{N - 1}} - {v^{N - 1}}){{(u - v)}^ - }} \hfill \\ \qquad- \int_{\partial \Omega } {\left( {{{\left| {\nabla u} \right|}^{N - 2}}\frac{{\partial u}}{{\partial \nu }} - {{\left| {\nabla v} \right|}^{N - 2}}\frac{{\partial v}}{{\partial \nu }}} \right){{(u - v)}^ - }}\leqslant 0 . \hfill \\ \end{gathered}

Keep in mind that

\displaystyle\begin{gathered} \int_\Omega {({{\left| {\nabla u} \right|}^{N - 2}}\nabla u - {{\left| {\nabla v} \right|}^{N - 2}}\nabla v) \cdot \nabla {{(u - v)}^ - }} \hfill \\ \qquad= \int_{\Omega \cap \left\{ {u \leqslant v} \right\}} {({{\left| {\nabla u} \right|}^{N - 2}}\nabla u - {{\left| {\nabla v} \right|}^{N - 2}}\nabla v) \cdot (\nabla u - \nabla v)} \hfill \\\qquad = \int_{\Omega \cap \left\{ {u \leqslant v} \right\}} {{{\left| {\nabla u} \right|}^{N - 2}}\nabla u \cdot (\nabla u - \nabla v)} - \int_{\Omega \cap \left\{ {u \leqslant v} \right\}} {{{\left| {\nabla v} \right|}^{N - 2}}\nabla v \cdot (\nabla u - \nabla v)} .\hfill \\ \end{gathered}

We now use the following inequality

\displaystyle |{x_2}{|^p} - |{x_1}{|^p} \geqslant p|{x_1}{|^{p - 2}}{x_1} \cdot ({x_2} - {x_1}) + \frac{{|{x_2} - {x_1}{|^p}}}{{{2^{p - 1}} - 1}}

that proof can be found in this topic. To be precise, we get

\displaystyle {\left| {\nabla u} \right|^{N - 2}}\nabla u \cdot (\nabla u - \nabla v) \geqslant \frac{1}{p}\left[ {{{\left| {\nabla u} \right|}^N} - {{\left| {\nabla v} \right|}^N} + \frac{{|\nabla u - \nabla v{|^p}}}{{{2^{p - 1}} - 1}}} \right]

and

\displaystyle - {\left| {\nabla v} \right|^{N - 2}}\nabla v \cdot (\nabla u - \nabla v) \geqslant \frac{1}{p}\left[ {{{\left| {\nabla v} \right|}^N} - {{\left| {\nabla u} \right|}^N} + \frac{{|\nabla u - \nabla v{|^p}}}{{{2^{p - 1}} - 1}}} \right].

Hence,

\displaystyle ({\left| {\nabla u} \right|^{N - 2}}\nabla u - {\left| {\nabla v} \right|^{N - 2}}\nabla v) \cdot (\nabla u - \nabla v) \geqslant \frac{2}{p}\frac{{|\nabla u - \nabla v{|^p}}}{{{2^{p - 1}} - 1}} > 0.

This proves the positivity of the first term. For the second term, it is clear to see that

\displaystyle\int_\Omega {({u^{N - 1}} - {v^{N - 1}}){{(u - v)}^ - }} = \int_{\Omega \cap \left\{ {u \leqslant v} \right\}} {({u^{N - 1}} - {v^{N - 1}})(u - v)} \geqslant 0.

Lastly, we know that the integral on \partial\Omega is non-positive since (u-v)^- \leqslant 0, thus the left hand side is non-negative. This gives the fact that (u-v)^- \equiv 0.

4 Comments »

  1. […] Quốc Anh: Weak comparison principle: p-Laplacian with Neumann boundary condition, Several interesting limits from a paper by Chang-Qing-Yang, The (original) Picone […]

    Pingback by Third Xamuel.com Linkfest — April 10, 2011 @ 23:57

  2. Hi there,

    thanks for the many interesting articles in your website. Nevertheless, I am slightly confused: in my terminology the negative part of a function, is a nonnegative function, What is the definition of $(u-v)^{-}$ in your context? I ask, since I have no access to the article itself.

    Thanks in advance,

    ZNS

    Comment by ZNS — September 28, 2015 @ 23:07

    • Thanks for your interest in my post.

      I prefer to the following definition: u^- = \min \{ u, 0\} \leqslant 0.

      Comment by Ngô Quốc Anh — September 28, 2015 @ 23:13

      • Thanks for that. I thought about incorporating a minus sign in front of the usual definition, but wasn’t sure at all. In any case, thanks again, keep up the good work.

        Comment by ZNS — September 28, 2015 @ 23:18


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: