Ngô Quốc Anh

May 22, 2011

Conformal changes of Christoffel symbols

Filed under: Riemannian geometry — Ngô Quốc Anh @ 18:10

In this short note, we try to calculate conformal changes of Christoffel symbols that we have touched in the previous note [here]. Let us pick two Riemannian metrics g and \widetilde g on a manifold M sitting in the same conformal class, that is,

\displaystyle \widetilde g=e^{2f}g

where f is a smooth function on M.

Let us recall that Christoffel symbols are determined by

\displaystyle \Gamma _{ij}^k = \frac{1}{2}{g^{kl}}\left( {{g_{il,j}} + {g_{jl,i}} - {g_{ij,l}}} \right)

where

\displaystyle {g_{,m}} = \frac{{\partial g}}{{\partial {x^m}}}.

A standard computation shows that

\displaystyle\begin{gathered} \widetilde \Gamma _{ij}^k = \frac{1}{2}{\widetilde g^{kl}}\left( {{{\widetilde g}_{il,j}} + {{\widetilde g}_{jl,i}} - {{\widetilde g}_{ij,l}}} \right) \hfill \\ \qquad= \frac{1}{2}{e^{ - 2f}}{g^{kl}}\left( {\frac{\partial }{{\partial {x^j}}}({e^{2f}}{g_{il}}) + \frac{\partial }{{\partial {x^i}}}({e^{2f}}{g_{jl}}){g_{jl,i}} - \frac{\partial }{{\partial {x^l}}}({e^{2f}}{g_{ij}})} \right) \hfill \\ \qquad= \frac{1}{2}{e^{ - 2f}}{g^{kl}}\left( {2{e^{2f}}\frac{{\partial f}}{{\partial {x^j}}}{g_{il}} + {e^{2f}}{g_{il,j}} + 2{e^{2f}}\frac{{\partial f}}{{\partial {x^i}}}{g_{jl}} + {e^{2f}}{g_{jl,i}} - 2{e^{2f}}\frac{{\partial f}}{{\partial {x^l}}}{g_{ij}} - {e^{2f}}{g_{ij,l}}} \right) \hfill \\ \qquad= \Gamma _{ij}^k + {g^{kl}}\left( {\frac{{\partial f}}{{\partial {x^j}}}{g_{il}} + \frac{{\partial f}}{{\partial {x^i}}}{g_{jl}} - \frac{{\partial f}}{{\partial {x^l}}}{g_{ij}}} \right) \hfill \\ \qquad= \Gamma _{ij}^k + \left( {\delta _i^k\frac{{\partial f}}{{\partial {x^j}}} + \delta _j^k\frac{{\partial f}}{{\partial {x^i}}} - {g_{ij}}{g^{kl}}\frac{{\partial f}}{{\partial {x^l}}}} \right). \hfill \\ \end{gathered}

Thus,

\displaystyle\widetilde \Gamma _{ij}^k = \Gamma _{ij}^k + \left( {\delta _i^k\frac{{\partial f}}{{\partial {x^j}}} + \delta _j^k\frac{{\partial f}}{{\partial {x^i}}} - {g_{ij}}{g^{kl}}\frac{{\partial f}}{{\partial {x^l}}}} \right).

If we use the following conformal change \varphi^\frac{4}{n-2} instead of e^{2f}, we then see that

\displaystyle {e^f}{\partial _i}f = \frac{2}{{n - 2}}{\varphi ^{ - \frac{{n - 4}}{{n - 2}}}}{\partial _i}\varphi

that is

\displaystyle {\partial _i}f = \frac{2}{{n - 2}}{\varphi ^{ - \frac{{n - 4}}{{n - 2}}}}{\varphi ^{ - \frac{2}{{n - 2}}}}{\partial _i}\varphi = \frac{2}{{n - 2}}{\varphi ^{ - 1}}{\partial _i}\varphi .

In other words,

\displaystyle\widetilde \Gamma _{ij}^k = \Gamma _{ij}^k + \frac{2}{{n - 2}}{\varphi ^{ - 1}}\left( {\delta _i^k{\partial _j}\varphi + \delta _j^k{\partial _i}\varphi - {g_{ij}}{g^{kl}}{\partial _l}\varphi } \right).

1 Comment »

  1. ..Christoffel published papers on function theory including conformal mappings geometry and tensor analysis Riemanns o-function the theory of invariants orthogonal polynomials and continued fractions differential equations and potential theory light and shock waves. ..Some of Christoffels early work was on conformal mappings of a simply connected region bounded by polygons onto a circle.

    Comment by Panama corporation — May 28, 2011 @ 6:32


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: