# Ngô Quốc Anh

## December 5, 2012

### Why do the Einsteins equations describe the propagation of wavelike phenomena?

Filed under: PDEs, Riemannian geometry — Tags: — Ngô Quốc Anh @ 6:20

In order to formulate the initial value problem for the Einstein equations as nonlinear wave equations, we express the Einstein equations in terms of a partial di erential equation along with a gauge condition.

We suppose that $(V,\overline g)$ is a Lorentzian manifold of the dimension $n+1$. The dummy indices will be from $0$ up to $n$. In a coordinate system that will be fixed from now on, we have $\displaystyle\overline \Gamma _{ij}^k = \frac{1}{2}{\overline g ^{km}}({\overline g _{im,j}} + {\overline g _{jm,i}} - {\overline g _{ij,m}})$

as Christoffel symbols for the metric $\overline g$.

By lower order terms we mean terms consisting of either no derivative or first order derivative of the metric $\overline g$. As such, terms consisting of derivatives of order higher than two will be called high order terms.

Let us now introduce the following notation $\displaystyle {\lambda ^\alpha } = {\square _{\overline g }}{x^\alpha } = {\overline g ^{ij}}x_{.ij}^\alpha = {\overline g ^{ij}}( - \overline \Gamma _{ij}^kx_{.k}^\alpha ) = - {\overline g ^{ij}}\overline \Gamma _{ij}^\alpha .$

It is obvious to see that $\displaystyle - ({\overline g _{\alpha i}}\lambda _{,j}^\alpha + {\overline g _{\alpha j}}\lambda _{,i}^\alpha ) = {\overline g _{\alpha i}}{\overline g ^{km}}\overline \Gamma _{km,j}^\alpha + {\overline g _{\alpha j}}{\overline g ^{km}}\overline \Gamma _{km,i}^\alpha .$

Since $\displaystyle\overline \Gamma _{km,j}^\alpha = \frac{1}{2}{\overline g ^{\alpha p}}({\overline g _{kp,mj}} + {\overline g _{mp,kj}} - {\overline g _{km,pj}}) + \text{lower order terms}$

and $\displaystyle\overline \Gamma _{km,i}^\alpha = \frac{1}{2}{\overline g ^{\alpha q}}({\overline g _{kq,mi}} + {\overline g _{mq,ki}} - {\overline g _{km,qi}}) + \text{lower order terms},$