Ngô Quốc Anh

January 17, 2014

Short form of the Yamabe invariant on compact manifolds with boundary

Filed under: Uncategorized — Tags: — Ngô Quốc Anh @ 7:10

Suppose that (M,g) is a compact Riemannian manifold with boundary \partial M. Let N be an outer unit normal vector field to the boundary \partial M.

Using notation introduced in a previous note, the unnormalized mean curvature H_g computed using the trace of the associated second fundamental form \mathrm{I\!I} obeys the following conformal change rule

\displaystyle {H_{\widehat g}} = {\phi ^{ - 2/(n - 2)}} \bigg( {H_g} + \frac{{2(n - 1)}}{{n - 2}}\frac{{{\nabla _N}\phi }}{\phi } \bigg).

where the conformal metric \widehat g in terms of the background metric g is defined to be \widehat g =\phi^{4/(n-2)}g.

TangentSpace

Following the same strategy for the closed case, Escobar found the following invariant, still named Yamabe invariant, as follows

\displaystyle \mathcal Y(g,\partial M) = \mathop {\inf }\limits_{\phi \in {C^\infty }(M)\backslash \{ 0\} } \frac{{\int_M {\left( {\frac{{4(n - 1)}}{{n - 2}}|\nabla \phi {|^2} + \text{Scal}_g{\phi ^2}} \right)d{v_g}} + 2\int_{\partial M} {{H_g}{\phi ^2}d{s_g}} }}{{{{\left( {\int_M {|\phi {|^{2n/(n - 2)}}d{v_g}} } \right)}^{1 - 2/n}}}}.

The original Yamabe invariant for the closed manifolds is simply the following

\displaystyle \mathcal Y(g) = \mathop {\inf }\limits_{\phi \in {C^\infty }(M)\backslash \{ 0\} } \frac{{\int_M {\left( {\frac{{4(n - 1)}}{{n - 2}}|\nabla \phi {|^2} + \text{Scal}_g{\phi ^2}} \right)d{v_g}} }}{{{{\left( {\int_M {|\phi {|^{2n/(n - 2)}}d{v_g}} } \right)}^{1 - 2/n}}}}

which can be rewritten in terms of the conformal metric \widehat g=\phi^{4/(n-2)}g as follows

\displaystyle \mathcal Y(g) = \mathop {\inf }\limits_{\widehat g}\frac{{\int_M {\text{Scal}_{\widehat g} dv_{\widehat g}} }}{{\text{vol}{{(M,\widehat g)}^{1 - 2/n}}}}.

The purpose of this note is to obtain a short form for \mathcal Y(g,\partial M) in terms of \widehat g instead of the conformal factor \phi. To do so, let us recall that \text{Scal}_{\widehat g} obeys the following rule

\displaystyle\text{Scal}_{\widehat g}=\phi^{-\frac{n+2}{n-2}} \left( -\frac{4(n-1)}{n-2}\Delta_g \phi+\text{Scal}_g \phi\right).

Thanks to

\displaystyle d{v_{\widehat g}} = {\phi ^{\frac{{2n}}{{n - 2}}}}d{v_g}, \quad d{s_{\widehat g}} = {\phi ^{\frac{{2(n - 1)}}{{n - 2}}}}d{s_g},

we can write

\begin{array}{lcl} \displaystyle\int_M {\text{Scal}_{\widehat g}d{v_{\widehat g}}} &=& \displaystyle\int_M {\phi \left( { - \frac{{4(n - 1)}}{{n - 2}}{\Delta _g}\phi + {\text{Sca}}{{\text{l}}_g}\phi } \right)d{v_g}} \hfill \\ &=& \displaystyle\int_M {\left( {\frac{{4(n - 1)}}{{n - 2}}|\nabla \phi {|^2} + {\text{Sca}}{{\text{l}}_g}{\phi ^2}} \right)d{v_g}} - \frac{{4(n - 1)}}{{n - 2}}\int_{\partial M} {\phi {\nabla _N}\phi d{s_g}} .\end{array}

Therefore, the numerator of \mathcal Y(g,\partial M) is nothing but

\displaystyle\int_M {\text{Scal}_{\widehat g}d{v_{\widehat g}}} + 2\left(\frac{{2(n - 1)}}{{n - 2}}\int_{\partial M} {\phi {\nabla _N}\phi d{\sigma _g}} + \int_{\partial M} {{H_g}{\phi ^2}d{s_g}} \right).

Thanks to the conformal change rule for the mean curvature, we can further write the numerator of \mathcal Y(g,\partial M) as below

\displaystyle\int_M {\text{Scal}_{\widehat g}d{v_{\widehat g}}}+ 2\int_{\partial M} {{H_{\widehat g}}{\phi ^{\frac{{2n - 2}}{{n - 2}}}}d{s_g}},

which is equal to

\displaystyle\int_M {\text{Scal}_{\widehat g}d{v_{\widehat g}}}+ 2\int_{\partial M} {{H_{\widehat g}} d{s_{\widehat g}}}.

Thus, the short form we obtain is the following

\displaystyle \mathcal Y(g, \partial M) = \mathop {\inf }\limits_{\widehat g}\frac{{\int_M {\text{Scal}_{\widehat g} dv_{\widehat g}} + 2\int_{\partial M} {{H_{\widehat g}} d{s_{\widehat g}}}}}{{\text{vol}{{(M,\widehat g)}^{1 - 2/n}}}}.

To the best of my knowledge, I have not seen this type of presentation before.

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: