Generalization of a Well-known Inequality

YanYan Li and Louis Nirenberg

Dedicated to Djairo De Figueiredo on his seventieth birthday

Section 1.

The well-known inequality refers to a nonnegative C^{2} function u defined on an interval $(-R, R)$. The inequality is in:

Proposition 1. Assume

$$
|\ddot{u}| \leq M .
$$

Then,

$$
\begin{array}{cc}
|\dot{u}(0)| \leq \sqrt{2 u(0) M} & \text { if } M \geq \frac{2 u(0)}{R^{2}} \\
|\dot{u}(0)| \leq \frac{u(0)}{R}+\frac{R}{2} M & \text { if } M<\frac{2 u(0)}{R^{2}} \tag{2}
\end{array}
$$

This is sometimes called Glaeser's inequality, see [2]; there it is attributed to Malgrange. It was used by Nirenberg and Treves in [3], where it is said that the inequality was probably known to Cauchy.

Here is the simple
Proof. For x in $(-R, R)$,

$$
u(x)=u(0)+x \dot{u}(0)+\int_{0}^{x}(x-y) \ddot{u}(y) d y .
$$

So

$$
\begin{equation*}
|\dot{u}(0)| \leq \frac{u(0)}{|x|}+\frac{|x|}{2} M \tag{3}
\end{equation*}
$$

If $R \geq \sqrt{\frac{2 u(0)}{M}}$, minimize the right hand side of (3) for $|x|$ on $(0, R)$. This yields (1). If $R<\sqrt{\frac{2 u(0)}{M}}$, simply take $|x|=R$ - to get (2).

The function $u=(x+R)^{2}$ shows that the constant $\sqrt{2}$ in (1) cannot be improved. We present here several generalizations to higher dimensions. Our first
generalization is for C^{2}, nonnegative function u defined on a ball $B_{R}=\{|x| \leq R\}$ in \mathbb{R}^{n}.

Proposition 2. Assume

$$
\max |\Delta u|=M
$$

Then there is a constant C depending only on n such that

$$
\begin{gather*}
|\nabla u(x)| \leq C \sqrt{u(0) M} \quad \text { if } R \geq \sqrt{\frac{u(0)}{M}} \geq 2|x| \tag{4}\\
|\nabla u(x)| \leq C\left(\frac{u(0)}{R}+R M\right) \quad \text { if } 2|x| \leq R<\sqrt{\frac{u(0)}{M}} . \tag{5}
\end{gather*}
$$

Question 1. What is the best constant C in (4) for $x=0$?
Proof of Proposition 2. For $0<r<R$, let v be the function which is harmonic in $|x| \leq r$, with

$$
v=u \quad \text { on }|x|=r
$$

Then $w=u-v$ satisfies

$$
\begin{aligned}
|\Delta w|=|\Delta u| & \leq M \quad \text { in } B_{r} \\
w & =0 \quad \text { on } \partial B_{r} .
\end{aligned}
$$

A standard inequality is

$$
\begin{equation*}
r|\nabla w(x)|+|w(x)| \leq C M r^{2}, \quad \forall|x| \leq \frac{r}{2} \tag{6}
\end{equation*}
$$

Here, and from now on in this proof, C represents different positive constants depending only on n. Now, by the gradient estimates and the Harnack inequality,

$$
\begin{equation*}
r|\nabla v(x)| \leq C \sup _{B_{\frac{3 r}{4}}} v \leq C v(0), \quad \forall|x| \leq \frac{r}{2} \tag{7}
\end{equation*}
$$

Combining (6) and (7) we find

$$
r|\nabla u(x)| \leq C\left(M r^{2}+v(0)\right) \leq C\left(M r^{2}+u(0)+C M r^{2}\right), \quad \forall|x| \leq \frac{r}{2}
$$

Thus

$$
|\nabla u(x)| \leq C\left(\frac{u(0)}{r}+M r\right), \quad \forall|x| \leq \frac{r}{2}
$$

If $R \geq \sqrt{\frac{u(0)}{M}}$, we take $r=\sqrt{\frac{u(0)}{M}}$, and we obtain (4). If $R<\sqrt{\frac{u(0)}{M}}$, we take $r=R$, and we obtain (5).

Section 2.

Here is another simple generalization for $u \geq 0$ in B_{R}.
Proposition 3. Suppose

$$
\|\Delta u\|_{L^{p}\left(B_{R}\right)}=M \quad \text { for some } p>n
$$

Then

$$
\begin{array}{ll}
|\nabla u(x)| \leq C u(0)^{\frac{p-n}{2 p-n}} M^{\frac{p}{2 p-n}} & \text { if } R \geq\left(1-\frac{n}{p}\right)^{\frac{p}{n-2 p}}\left(\frac{u(0)}{M}\right)^{\frac{p}{2 p-n}} \geq 2|x| \\
|\nabla u(x)| \leq C\left(\frac{u(0)}{R}+M R^{1-\frac{n}{p}}\right) & \text { if } 2|x| \leq R<\left(1-\frac{n}{p}\right)^{\frac{p}{n-2 p}}\left(\frac{u(0)}{M}\right)^{\frac{p}{2 p-n}} \tag{9}
\end{array}
$$

Here C is a constant depending only on n and p.
Proof. For $0<r<R$, let v and w be defined in B_{r} as in the preceding proof. First we have

$$
r|\nabla v(x)| \leq C \sup _{B_{\frac{3}{4} r}} v \leq C v(0), \quad \forall|x| \leq \frac{r}{2}
$$

Next, by standard estimates, for $p>n$,

$$
\begin{equation*}
r|\nabla w(x)|+|w(x)| \leq C M r^{2-\frac{n}{p}}, \quad \forall|x| \leq \frac{r}{2} \tag{10}
\end{equation*}
$$

Here $C=C(n, p)$. Hence

$$
r|\nabla u(x)| \leq C M r^{2-\frac{n}{p}}+C v(0) \leq C M r^{2-\frac{n}{p}}+C u(0), \quad \forall|x| \leq \frac{r}{2}
$$

i.e.

$$
\begin{equation*}
|\nabla u(x)| \leq C\left(\frac{u(0)}{r}+M r^{1-\frac{n}{p}}\right), \quad \forall|x| \leq \frac{r}{2} \tag{11}
\end{equation*}
$$

The minimum of the right hand side of (11), with respect to r, is achieved when

$$
-\frac{u(0)}{r^{2}}+\left(1-\frac{n}{p}\right) M r^{-\frac{n}{p}}=0
$$

i.e. when

$$
r=\left(1-\frac{n}{p}\right)^{\frac{p}{n-2 p}}\left(\frac{u(0)}{M}\right)^{\frac{p}{2 p-n}}
$$

Arguing then as before, we obtain (8) and (9).

Section 3.

What can we say if $u \geq 0$ and

$$
\begin{equation*}
M=\|\Delta u\|_{L^{p}\left(B_{R}\right)} \quad \text { for some } p \leq n ? \tag{12}
\end{equation*}
$$

If $p \in\left(\frac{n}{2}, n\right)$ we can obtain a Hölder continuity result with exponent

$$
\begin{equation*}
\alpha=2-\frac{n}{p} \tag{13}
\end{equation*}
$$

in a form like (9). Namely we have

Proposition 4. Suppose $u \geq 0$ in B_{R} and (12) holds with some $p \in\left(\frac{n}{2}, n\right)$. Then, for $x, y \in B_{R / 2}, x \neq y$, and $\alpha=2-\frac{n}{p}$,

$$
\begin{equation*}
\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C\left(\frac{u(0)}{R^{\alpha}}+M R^{2-\frac{n}{p}-\alpha}\right) \tag{14}
\end{equation*}
$$

where C depends on n and p.
Proof. Let v and w be defined as before, but in the entire ball B_{R}. By standard elliptic estimates and the Harnack inequality, since $\frac{n}{2}<p<n$, we have, for $x \neq y$ in $B_{R / 2}$,

$$
R^{\alpha} \frac{|v(x)-v(y)|}{|x-y|^{\alpha}} \leq C \sup _{B_{\frac{3 R}{4}}} v \leq C v(0)
$$

Also

$$
\begin{equation*}
|w(0)|+R^{\alpha} \frac{|w(x)-w(y)|}{|x-y|^{\alpha}} \leq C M R^{2-\frac{n}{p}} . \tag{15}
\end{equation*}
$$

Combining these, we find, as before,

$$
R^{\alpha} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C M R^{2-\frac{n}{p}}+C u(0)
$$

namely, (14).
Remark 1. More generally, suppose $p>\frac{n}{2}$. Let $0<\alpha<1$ be such that $p>\frac{n}{2-\alpha}$. Then the inequality (15) still holds, with $C=C(n, p, \alpha)$. Thus we find that for $u \geq 0$ in B_{R} and

$$
\|\Delta u\|_{L^{p}\left(B_{R}\right)}=M, \quad p>\frac{n}{2}
$$

then, in B_{R},

$$
\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C\left(\frac{u(0)}{R^{\alpha}}+M R^{2-\frac{n}{p}-\alpha}\right)
$$

where $C=C(n, p, \alpha)$.

Section 4.

We extend Proposition 2 from Δ to second order elliptic operators with continuous coefficients. Consider

$$
L=a_{i j}(x) \partial_{i j}+b_{i}(x) \partial_{i}+c(x),
$$

where $a_{i j}, b_{i}, c$ are continuous functions in the unit ball B_{1} of $\mathbb{R}^{n}, c(x) \leq 0$ for all $|x|<1$, and, for some constants $0<\lambda \leq \Lambda<\infty$,

$$
\lambda|\xi|^{2} \leq a_{i j}(x) \xi^{i} \xi^{j} \leq \Lambda|\xi|^{2}, \quad \forall|x|<1, \forall \xi \in \mathbb{R}^{n}
$$

The extension of Proposition 2 concerns some $W^{2, p}, p>1$, nonnegative function u defined on $B_{R} \subset \mathbb{R}^{n}$ for some $R \leq \frac{1}{2}$.

Proposition 5. Assume the above and

$$
\max |L u|=M
$$

Then there is a constant C depending only on $n, \lambda, \Lambda,\left\|b_{i}\right\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)},\|c\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)}$, and the modulus of continuity of $a_{i j}(x)$ in $B_{\frac{3}{4}}$ such that (4) and (5) hold.

Proof. For $0<r \leq R$, let v be the solution of

$$
L v=0 \text { in } B_{r}, \quad v=u \text { on } \partial B_{r}
$$

Then $w=v-u$ satisfies

$$
|L w| \leq M \text { in } B_{r}, \quad w=0 \text { on } \partial B_{r}
$$

By the $W^{2, p}$ estimates, (6) holds, where, and from now on in the proof, C denotes various positive constants depending only on $n, \lambda, \Lambda,\left\|b_{i}\right\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)},\|c\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)}$, and the modulus of continuity of $a_{i j}(x)$ in $B_{\frac{3}{4}}$. Estimate (7) follows from the Harnack inequality of Krylov and Safonov, see [1]. The rest of the proof is identical to the corresponding part of the proof of Proposition 2.

Section 5.

We extend Proposition 4 from Δ to operators L in Section 4. We assume $u \geq 0$ and

$$
\begin{equation*}
M=\|L u\|_{L^{p}\left(B_{R}\right)} \tag{16}
\end{equation*}
$$

Proposition 6. Let L be the operator in Section 4, we suppose $u \geq 0$ in B_{R} for some $R \leq \frac{1}{2}$ and (16) holds with some $p \in\left(\frac{n}{2}, n\right)$. Then for $x, y \in B_{\frac{R}{2}}, x \neq y$, and $\alpha=2-\frac{n}{p}$,

$$
\begin{equation*}
\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C\left(\frac{u(0)}{R^{\alpha}}+M R^{2-\frac{n}{p}-\alpha}\right) \tag{17}
\end{equation*}
$$

where C depends on $n, p, \lambda, \Lambda,\left\|b_{i}\right\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)},\|c\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)}$, and the modulus of continuity of $a_{i j}(x)$ in $B_{\frac{3}{4}}$.

Proof. It is similar to that of Proposition 4, with the help of $W^{2, p}$ estimates for L and the Harnack inequality of Krylov and Safonov.

Remark 2. If we take $p=n$ in Proposition 6, then by using the Hölder continuity estimate of Krylov and Safonov instead of the $W^{2, p}$ estimates in the proof of Proposition 6, inequality (17) holds for some positive constants α and C which depend on n, p, $\lambda, \Lambda,\left\|b_{i}\right\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)}$, and $\|c\|_{L^{\infty}\left(B_{\frac{3}{4}}\right)}$, but independent of the modulus of continuity of $a_{i j}$.

References

[1] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
[2] G. Glaeser, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier 13 (1963), 203-207.
[3] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331-351.

YanYan Li^{1}
Department of Mathematics
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854
USA
Louis Nirenberg
Courant Institute
251 Mercer Street
New York, NY 10012
USA

[^0]
[^0]: ${ }^{1}$ Partially supported by NSF grant DMS-0401118.

