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Generalization of a Well-known Inequality
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Dedicated to Djairo De Figueiredo on his seventieth birthday

Section 1.
The well-known inequality refers to a nonnegative C? function v defined on an
interval (—R, R). The inequality is in:

Proposition 1. Assume

| < M.
Then,
(0] < Vau)r if > 2 1)
1a(0)| < “g) + ];M if M < 22(20). 2)

This is sometimes called Glaeser’s inequality, see [2]; there it is attributed to
Malgrange. It was used by Nirenberg and Treves in [3], where it is said that the
inequality was probably known to Cauchy.

Here is the simple

Proof. For z in (—R, R),

So

M. (3)
If R > \/ 240) " minimize the right hand side of (3) for || on (0, R). This yields
(1).IfR < f@‘\g‘”, simply take |z| = R — to get (2). O

The function v = (z + R)? shows that the constant v/2 in (1) cannot be
improved. We present here several generalizations to higher dimensions. Our first
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generalization is for C2, nonnegative function u defined on a ball B = {|z| < R}
in R™.
Proposition 2. Assume
max |Au| =

Then there is a constant C depending only on n such that

Vu(@) < CVuO)M  if R > \/ O > opa, 4)
Vu(z)| < C(“g) +RM)  if2lz|<R< \/UJS) (5)

Question 1. What is the best constant C in (4) for x =072

Proof of Proposition 2. For 0 < r < R, let v be the function which is harmonic in
|z| < r, with

v=wu onlz|]=r.
Then w = u — v satisfies

|Aw| =|Au] < M in B,
w = 0 ondB,.

A standard inequality is
r|Vw(z)| + |w(z)| < CMr?, Vx| < ; (6)

Here, and from now on in this proof, C' represents different positive constants
depending only on n. Now, by the gradient estimates and the Harnack inequality,

r|Vou(z)] < Csupv < Cv(0), Vx| < ; (7)

Ba
Combining (6) and (7) we find
r|Vu(z)| < C(Mr? 4+ v(0)) < C(Mr? + u(0) + CMr?), Vx| < ;
Thus

Vu(z)| < C(Uio) M), Ya| < ;

IfR> \/”]E/?), we take r = \/“](\2), and we obtain (4). If R < \/”(0) we take
r = R, and we obtain (5).
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Section 2.
Here is another simple generalization for v > 0 in Bp.

Proposition 3. Suppose

|Aul|Le(pry = M for some p > n.

Then
Vu(z)| < Cu(0)-n M= if R>(1- Z)w’zp(“ﬁ)m > 2|,  (8)
[Vu(z)| < C(ug) +MR™»)  if2z|<R<(1- Z)n-”zp(“](\g))gp-n 9)

Here C is a constant depending only on n and p.

Proof. For 0 < r < R, let v and w be defined in B, as in the preceding proof.
First we have ,
r|Vou(z)] < Csupv < Cv(0), Vx| < o

B3
4

Next, by standard estimates, for p > n,

r

7| Vw(z)| + |w(z)] < OMr*~ 7, Vx| < ; (10)
Here C' = C(n,p). Hence
r|Vau(z)| < CMr* % + Co(0) < CMr2~ 5 4+ Cu(0), ¥ |z < ;
ie.
U(O) 1—n r
Vute) <o+ MR, i< (11)
The minimum of the right hand side of (11), with respect to 7, is achieved when
U(O) n _n
2 +(1—p)M7’ » =0
i.e. when )
n P U(O P
=(1— n—2p 2p—n |
r= (=) ()
Arguing then as before, we obtain (8) and (9). O
Section 3.
What can we say if u > 0 and
M = ||Aul|Lr(B,) for some p < n? (12)

If p € (,n) we can obtain a Holder continuity result with exponent

az?—p (13)

in a form like (9). Namely we have
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Proposition 4. Suppose u > 0 in Bg and (12) holds with some p € (% ,n). Then,
for x,y € Brja, v #y, and o =2 — Z,

u(@) — u(y)| u(0) 2" a
<C + MR » 14
o <o ) (14
where C depends on n and p.

Proof. Let v and w be defined as before, but in the entire ball Br. By standard
elliptic estimates and the Harnack inequality, since 3 < p < n, we have, for z # y
in BR/27

R* [v(@) = v(y)] < C sup v < Cv(0).
|;L‘ - y|a Bzf
Also
(o) + re V@) =W opppe-y (15)

‘ a

Combining these, we find, as before,

namely, (14). O

Remark 1. More generally, suppose p > 7. Let 0 < o < 1 be such that p > ," .
Then the inequality (15) still holds, with C = C(n,p,a). Thus we find that for
u >0 in Br and

n
HAUHLP(BR) = Ma p> 2

then, in Bg,

u(z) = u(y)] u(0) 2-"_a
iz — o < O Ro + MR ),

where C = C(n,p, a).

Section 4.
We extend Proposition 2 from A to second order elliptic operators with continuous
coefficients. Consider

L = a;j(x)0;; + bi(x)0; + c(z),

where a;;, b;, ¢ are continuous functions in the unit ball B; of R™, ¢(z) < 0 for all
|z] < 1, and, for some constants 0 < A < A < oo,

NEP? < ag(2)€°¢7 < A€, Y|z <1,V ¢ € R™

The extension of Proposition 2 concerns some W?2P?, p > 1, nonnegative function
u defined on Br C R"™ for some R < é
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Proposition 5. Assume the above and
max |Lu| = M.

Then there is a constant C depending only on n, X\, A, ||bil| (B4, |lc|lL=(B,), and
4 4
the modulus of continuity of aij(x) in Bs such that (4) and (5) hold.

Proof. For 0 < r < R, let v be the solution of
Lv=0 in B,, v =wu on 0B,.
Then w = v — u satisfies
|Lw| < M in By, w =0 on 0B,.

By the W?2? estimates, (6) holds, where, and from now on in the proof, C' denotes

various positive constants depending only on n, A, A, [|b]| L= (B, ), ¢l L (B4), and
4 4

the modulus of continuity of a;;(z) in Bs. Estimate (7) follows from the Harnack

inequality of Krylov and Safonov, see [1]. The rest of the proof is identical to the
corresponding part of the proof of Proposition 2. O

Section 5.
We extend Proposition 4 from A to operators L in Section 4. We assume u > 0
and

M = || Lul|Lr(By)- (16)

Proposition 6. Let L be the operator in Section 4, we suppose u > 0 in Bg for

some R < ; and (16) holds with some p € (%, n). Then for x,y € Bz;, T # vy, and
a=2-",
P

u(z) —u(y)] _ C(U(O)

MR* »—® 17

where C depends on n, p, \, A, ||bil| 1 (B4), |cllL~(B4), and the modulus of conti-
4 4

nuity of aij(x) in Bs.

Proof. Tt is similar to that of Proposition 4, with the help of W?2P estimates for L
and the Harnack inequality of Krylov and Safonov. O

Remark 2. If we take p = n in Proposition 6, then by using the Holder continu-

ity estimate of Krylov and Safonov instead of the WP estimates in the proof of

Proposition 6, inequality (17) holds for some positive constants o and C which

depend on n, p, \, A, ||bil| L~ (B4), and ||c||p~(B,), but independent of the modulus
4 4

of continuity of ai;.
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