Progress in Nonlinear Differential Equations and Their Applications, Vol. 66, 365–370 © 2005 Birkhäuser Verlag Basel/Switzerland

Generalization of a Well-known Inequality

YanYan Li and Louis Nirenberg

Dedicated to Djairo De Figueiredo on his seventieth birthday

Section 1.

The well-known inequality refers to a nonnegative C^2 function u defined on an interval (-R, R). The inequality is in:

 $|\ddot{u}| < M.$

Proposition 1. Assume

Then,

$$|\dot{u}(0)| \le \sqrt{2u(0)M} \qquad \text{if } M \ge \frac{2u(0)}{R^2}$$
 (1)

$$|\dot{u}(0)| \le \frac{u(0)}{R} + \frac{R}{2}M \qquad if \ M < \frac{2u(0)}{R^2}.$$
 (2)

This is sometimes called Glaeser's inequality, see [2]; there it is attributed to Malgrange. It was used by Nirenberg and Treves in [3], where it is said that the inequality was probably known to Cauchy.

Here is the simple

Proof. For x in (-R, R),

$$u(x) = u(0) + x\dot{u}(0) + \int_0^x (x - y)\ddot{u}(y)dy$$

So

$$|\dot{u}(0)| \le \frac{u(0)}{|x|} + \frac{|x|}{2}M.$$
(3)

If $R \ge \sqrt{\frac{2u(0)}{M}}$, minimize the right hand side of (3) for |x| on (0, R). This yields (1). If $R < \sqrt{\frac{2u(0)}{M}}$, simply take |x| = R — to get (2).

The function $u = (x + R)^2$ shows that the constant $\sqrt{2}$ in (1) cannot be improved. We present here several generalizations to higher dimensions. Our first generalization is for C^2 , nonnegative function u defined on a ball $B_R = \{|x| \le R\}$ in \mathbb{R}^n .

Proposition 2. Assume

$$\max |\Delta u| = M.$$

Then there is a constant C depending only on n such that

$$|\nabla u(x)| \le C\sqrt{u(0)M} \qquad \text{if } R \ge \sqrt{\frac{u(0)}{M}} \ge 2|x|, \tag{4}$$

$$|\nabla u(x)| \le C(\frac{u(0)}{R} + RM)$$
 if $2|x| \le R < \sqrt{\frac{u(0)}{M}}$. (5)

Question 1. What is the best constant C in (4) for x = 0?

Proof of Proposition 2. For 0 < r < R, let v be the function which is harmonic in $|x| \le r$, with

$$v = u$$
 on $|x| = r$.

Then w = u - v satisfies

$$\begin{aligned} \Delta w| &= |\Delta u| &\leq M \quad \text{in } B_r \\ w &= 0 \quad \text{on } \partial B_r. \end{aligned}$$

A standard inequality is

$$r|\nabla w(x)| + |w(x)| \le CMr^2, \qquad \forall \ |x| \le \frac{r}{2}.$$
(6)

Here, and from now on in this proof, C represents different positive constants depending only on n. Now, by the gradient estimates and the Harnack inequality,

$$r|\nabla v(x)| \le C \sup_{B_{\frac{3r}{4}}} v \le Cv(0), \qquad \forall \ |x| \le \frac{r}{2}.$$
(7)

Combining (6) and (7) we find

$$r|\nabla u(x)| \le C(Mr^2 + v(0)) \le C(Mr^2 + u(0) + CMr^2), \quad \forall |x| \le \frac{r}{2}$$

Thus

$$|\nabla u(x)| \le C(\frac{u(0)}{r} + Mr), \quad \forall |x| \le \frac{r}{2}.$$

If $R \ge \sqrt{\frac{u(0)}{M}}$, we take $r = \sqrt{\frac{u(0)}{M}}$, and we obtain (4). If $R < \sqrt{\frac{u(0)}{M}}$, we take r = R, and we obtain (5).

Section 2.

Here is another simple generalization for $u \ge 0$ in B_R .

Proposition 3. Suppose

$$\|\Delta u\|_{L^p(B_R)} = M \quad for \ some \ p > n.$$

Then

$$|\nabla u(x)| \le Cu(0)^{\frac{p-n}{2p-n}} M^{\frac{p}{2p-n}} \qquad \text{if } R \ge (1-\frac{n}{p})^{\frac{p}{n-2p}} (\frac{u(0)}{M})^{\frac{p}{2p-n}} \ge 2|x|, \qquad (8)$$

$$|\nabla u(x)| \le C(\frac{u(0)}{R} + MR^{1-\frac{n}{p}}) \qquad \text{if } 2|x| \le R < (1-\frac{n}{p})^{\frac{p}{n-2p}} (\frac{u(0)}{M})^{\frac{p}{2p-n}}.$$
 (9)

Here C is a constant depending only on n and p.

Proof. For 0 < r < R, let v and w be defined in B_r as in the preceding proof. First we have

$$r|\nabla v(x)| \le C \sup_{B_{\frac{3}{4}r}} v \le Cv(0), \qquad \forall \ |x| \le \frac{r}{2}.$$

Next, by standard estimates, for p > n,

$$r|\nabla w(x)| + |w(x)| \le CMr^{2-\frac{n}{p}}, \qquad \forall \ |x| \le \frac{r}{2}.$$
(10)

Here C = C(n, p). Hence

$$r|\nabla u(x)| \le CMr^{2-\frac{n}{p}} + Cv(0) \le CMr^{2-\frac{n}{p}} + Cu(0), \quad \forall \ |x| \le \frac{r}{2}$$

i.e.

$$|\nabla u(x)| \le C(\frac{u(0)}{r} + Mr^{1-\frac{n}{p}}), \qquad \forall \ |x| \le \frac{r}{2}.$$
 (11)

The minimum of the right hand side of (11), with respect to r, is achieved when

$$-\frac{u(0)}{r^2} + (1 - \frac{n}{p})Mr^{-\frac{n}{p}} = 0$$

i.e. when

$$r = (1 - \frac{n}{p})^{\frac{p}{n-2p}} (\frac{u(0)}{M})^{\frac{p}{2p-n}}.$$

Arguing then as before, we obtain (8) and (9).

Section 3.

What can we say if $u \ge 0$ and

$$M = \|\Delta u\|_{L^p(B_R)} \quad \text{for some } p \le n?$$
(12)

If $p \in (\frac{n}{2}, n)$ we can obtain a Hölder continuity result with exponent

$$\alpha = 2 - \frac{n}{p} \tag{13}$$

in a form like (9). Namely we have

367

Proposition 4. Suppose $u \ge 0$ in B_R and (12) holds with some $p \in (\frac{n}{2}, n)$. Then, for $x, y \in B_{R/2}, x \ne y$, and $\alpha = 2 - \frac{n}{p}$,

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(\frac{u(0)}{R^{\alpha}} + MR^{2 - \frac{n}{p} - \alpha})$$
(14)

where C depends on n and p.

Proof. Let v and w be defined as before, but in the entire ball B_R . By standard elliptic estimates and the Harnack inequality, since $\frac{n}{2} , we have, for <math>x \neq y$ in $B_{R/2}$,

$$R^{\alpha} \frac{|v(x) - v(y)|}{|x - y|^{\alpha}} \le C \sup_{B_{\frac{3R}{4}}} v \le Cv(0)$$

Also

$$|w(0)| + R^{\alpha} \frac{|w(x) - w(y)|}{|x - y|^{\alpha}} \le CMR^{2 - \frac{n}{p}}.$$
(15)

Combining these, we find, as before,

$$R^{\alpha} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le CMR^{2 - \frac{n}{p}} + Cu(0),$$

namely, (14).

Remark 1. More generally, suppose $p > \frac{n}{2}$. Let $0 < \alpha < 1$ be such that $p > \frac{n}{2-\alpha}$. Then the inequality (15) still holds, with $C = C(n, p, \alpha)$. Thus we find that for $u \ge 0$ in B_R and

$$\|\Delta u\|_{L^p(B_R)} = M, \qquad p > \frac{n}{2}$$

then, in B_R ,

$$\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \le C(\frac{u(0)}{R^{\alpha}} + MR^{2-\frac{n}{p}-\alpha}),$$

where $C = C(n, p, \alpha)$.

Section 4.

We extend Proposition 2 from Δ to second order elliptic operators with continuous coefficients. Consider

$$L = a_{ij}(x)\partial_{ij} + b_i(x)\partial_i + c(x),$$

where a_{ij}, b_i, c are continuous functions in the unit ball B_1 of $\mathbb{R}^n, c(x) \leq 0$ for all |x| < 1, and, for some constants $0 < \lambda \leq \Lambda < \infty$,

$$\lambda |\xi|^2 \le a_{ij}(x) \xi^i \xi^j \le \Lambda |\xi|^2, \qquad \forall \ |x| < 1, \forall \ \xi \in \mathbb{R}^n.$$

The extension of Proposition 2 concerns some $W^{2,p}$, p > 1, nonnegative function u defined on $B_R \subset \mathbb{R}^n$ for some $R \leq \frac{1}{2}$.

Proposition 5. Assume the above and

$$\max |Lu| = M.$$

Then there is a constant C depending only on $n, \lambda, \Lambda, \|b_i\|_{L^{\infty}(B_{\frac{3}{4}})}, \|c\|_{L^{\infty}(B_{\frac{3}{4}})}, and$ the modulus of continuity of $a_{ij}(x)$ in $B_{\frac{3}{4}}$ such that (4) and (5) hold.

Proof. For $0 < r \leq R$, let v be the solution of

$$Lv = 0$$
 in B_r , $v = u$ on ∂B_r .

Then w = v - u satisfies

$$|Lw| \le M$$
 in B_r , $w = 0$ on ∂B_r .

By the $W^{2,p}$ estimates, (6) holds, where, and from now on in the proof, C denotes various positive constants depending only on $n, \lambda, \Lambda, \|b_i\|_{L^{\infty}(B_{\frac{3}{4}})}, \|c\|_{L^{\infty}(B_{\frac{3}{4}})}$, and the modulus of continuity of $a_{ij}(x)$ in $B_{\frac{3}{4}}$. Estimate (7) follows from the Harnack inequality of Krylov and Safonov, see [1]. The rest of the proof is identical to the corresponding part of the proof of Proposition 2.

Section 5.

We extend Proposition 4 from Δ to operators L in Section 4. We assume $u \ge 0$ and

$$M = \|Lu\|_{L^p(B_R)}.$$
 (16)

Proposition 6. Let L be the operator in Section 4, we suppose $u \ge 0$ in B_R for some $R \le \frac{1}{2}$ and (16) holds with some $p \in (\frac{n}{2}, n)$. Then for $x, y \in B_{\frac{R}{2}}, x \ne y$, and $\alpha = 2 - \frac{n}{p}$,

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(\frac{u(0)}{R^{\alpha}} + MR^{2 - \frac{n}{p} - \alpha})$$
(17)

where C depends on n, p, $\lambda, \Lambda, \|b_i\|_{L^{\infty}(B_{\frac{3}{4}})}, \|c\|_{L^{\infty}(B_{\frac{3}{4}})}, and the modulus of continuity of <math>a_{ij}(x)$ in $B_{\frac{3}{4}}$.

Proof. It is similar to that of Proposition 4, with the help of $W^{2,p}$ estimates for L and the Harnack inequality of Krylov and Safonov.

Remark 2. If we take p = n in Proposition 6, then by using the Hölder continuity estimate of Krylov and Safonov instead of the $W^{2,p}$ estimates in the proof of Proposition 6, inequality (17) holds for some positive constants α and C which depend on $n, p, \lambda, \Lambda, \|b_i\|_{L^{\infty}(B_{\frac{3}{4}})}$, and $\|c\|_{L^{\infty}(B_{\frac{3}{4}})}$, but independent of the modulus of continuity of a_{ij} .

References

- [1] D. Gilbarg and N.S. Trudinger, *Elliptic partial differential equations of second order*, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
- [2] G. Glaeser, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier 13 (1963), 203-207.
- [3] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, *Comm. Pure Appl. Math.* **16** (1963), 331-351.

Yan Yan Li¹ Department of Mathematics Rutgers University 110 Frelinghuysen Road Piscataway, NJ 08854 USA

Louis Nirenberg Courant Institute 251 Mercer Street New York, NY 10012 USA

¹Partially supported by NSF grant DMS-0401118.