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Generalization of a Well-known Inequality

YanYan Li and Louis Nirenberg

Dedicated to Djairo De Figueiredo on his seventieth birthday

Section 1.
The well-known inequality refers to a nonnegative C2 function u defined on an
interval (−R, R). The inequality is in:

Proposition 1. Assume
|ü| ≤M.

Then,

|u̇(0)| ≤
√

2u(0)M if M ≥ 2u(0)
R2

(1)

|u̇(0)| ≤ u(0)
R

+
R

2
M if M <

2u(0)
R2

. (2)

This is sometimes called Glaeser′s inequality, see [2]; there it is attributed to
Malgrange. It was used by Nirenberg and Treves in [3], where it is said that the
inequality was probably known to Cauchy.

Here is the simple

Proof. For x in (−R, R),

u(x) = u(0) + xu̇(0) +
∫ x

0

(x− y)ü(y)dy.

So

|u̇(0)| ≤ u(0)
|x| +

|x|
2

M. (3)

If R ≥
√

2u(0)
M , minimize the right hand side of (3) for |x| on (0, R). This yields

(1). If R <
√

2u(0)
M , simply take |x| = R — to get (2). �

The function u = (x + R)2 shows that the constant
√

2 in (1) cannot be
improved. We present here several generalizations to higher dimensions. Our first



366 Y.Y. Li and L. Nirenberg

generalization is for C2, nonnegative function u defined on a ball BR = {|x| ≤ R}
in Rn.

Proposition 2. Assume

max |Δu| = M.

Then there is a constant C depending only on n such that

|∇u(x)| ≤ C
√

u(0)M if R ≥
√

u(0)
M
≥ 2|x|, (4)

|∇u(x)| ≤ C(
u(0)
R

+ RM) if 2|x| ≤ R <

√
u(0)
M

. (5)

Question 1. What is the best constant C in (4) for x = 0?

Proof of Proposition 2. For 0 < r < R, let v be the function which is harmonic in
|x| ≤ r, with

v = u on |x| = r.

Then w = u− v satisfies

|Δw| = |Δu| ≤ M in Br

w = 0 on ∂Br.

A standard inequality is

r|∇w(x)| + |w(x)| ≤ CMr2, ∀ |x| ≤ r

2
. (6)

Here, and from now on in this proof, C represents different positive constants
depending only on n. Now, by the gradient estimates and the Harnack inequality,

r|∇v(x)| ≤ C sup
B 3r

4

v ≤ Cv(0), ∀ |x| ≤ r

2
. (7)

Combining (6) and (7) we find

r|∇u(x)| ≤ C(Mr2 + v(0)) ≤ C(Mr2 + u(0) + CMr2), ∀ |x| ≤ r

2
.

Thus

|∇u(x)| ≤ C(
u(0)

r
+ Mr), ∀ |x| ≤ r

2
.

If R ≥
√

u(0)
M , we take r =

√
u(0)
M , and we obtain (4). If R <

√
u(0)
M , we take

r = R, and we obtain (5). �
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Section 2.
Here is another simple generalization for u ≥ 0 in BR.

Proposition 3. Suppose

‖Δu‖Lp(BR) = M for some p > n.

Then

|∇u(x)| ≤ Cu(0)
p−n
2p−n M

p
2p−n if R ≥ (1− n

p
)

p
n−2p (

u(0)
M

)
p

2p−n ≥ 2|x|, (8)

|∇u(x)| ≤ C(
u(0)
R

+ MR1−n
p ) if 2|x| ≤ R < (1 − n

p
)

p
n−2p (

u(0)
M

)
p

2p−n . (9)

Here C is a constant depending only on n and p.

Proof. For 0 < r < R, let v and w be defined in Br as in the preceding proof.
First we have

r|∇v(x)| ≤ C sup
B 3

4 r

v ≤ Cv(0), ∀ |x| ≤ r

2
.

Next, by standard estimates, for p > n,

r|∇w(x)| + |w(x)| ≤ CMr2−n
p , ∀ |x| ≤ r

2
. (10)

Here C = C(n, p). Hence

r|∇u(x)| ≤ CMr2− n
p + Cv(0) ≤ CMr2− n

p + Cu(0), ∀ |x| ≤ r

2
i.e.

|∇u(x)| ≤ C(
u(0)

r
+ Mr1−n

p ), ∀ |x| ≤ r

2
. (11)

The minimum of the right hand side of (11), with respect to r, is achieved when

−u(0)
r2

+ (1 − n

p
)Mr−

n
p = 0

i.e. when

r = (1− n

p
)

p
n−2p (

u(0)
M

)
p

2p−n .

Arguing then as before, we obtain (8) and (9). �

Section 3.
What can we say if u ≥ 0 and

M = ‖Δu‖Lp(BR) for some p ≤ n? (12)

If p ∈ (n
2 , n) we can obtain a Hölder continuity result with exponent

α = 2− n

p
(13)

in a form like (9). Namely we have
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Proposition 4. Suppose u ≥ 0 in BR and (12) holds with some p ∈ (n
2 , n). Then,

for x, y ∈ BR/2, x 	= y, and α = 2− n
p ,

|u(x)− u(y)|
|x− y|α ≤ C(

u(0)
Rα

+ MR2−n
p −α) (14)

where C depends on n and p.

Proof. Let v and w be defined as before, but in the entire ball BR. By standard
elliptic estimates and the Harnack inequality, since n

2 < p < n, we have, for x 	= y
in BR/2,

Rα |v(x) − v(y)|
|x− y|α ≤ C sup

B 3R
4

v ≤ Cv(0).

Also

|w(0)|+ Rα |w(x) − w(y)|
|x− y|α ≤ CMR2−n

p . (15)

Combining these, we find, as before,

Rα |u(x)− u(y)|
|x− y|α ≤ CMR2−n

p + Cu(0),

namely, (14). �

Remark 1. More generally, suppose p > n
2 . Let 0 < α < 1 be such that p > n

2−α .
Then the inequality (15) still holds, with C = C(n, p, α). Thus we find that for
u ≥ 0 in BR and

‖Δu‖Lp(BR) = M, p >
n

2
then, in BR,

|u(x)− u(y)|
|x− y|α ≤ C(

u(0)
Rα

+ MR2−n
p −α),

where C = C(n, p, α).

Section 4.
We extend Proposition 2 from Δ to second order elliptic operators with continuous
coefficients. Consider

L = aij(x)∂ij + bi(x)∂i + c(x),

where aij , bi, c are continuous functions in the unit ball B1 of Rn, c(x) ≤ 0 for all
|x| < 1, and, for some constants 0 < λ ≤ Λ <∞,

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, ∀ |x| < 1, ∀ ξ ∈ Rn.

The extension of Proposition 2 concerns some W 2,p, p > 1, nonnegative function
u defined on BR ⊂ Rn for some R ≤ 1

2 .
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Proposition 5. Assume the above and

max |Lu| = M.

Then there is a constant C depending only on n, λ, Λ, ‖bi‖L∞(B 3
4
), ‖c‖L∞(B 3

4
), and

the modulus of continuity of aij(x) in B 3
4

such that (4) and (5) hold.

Proof. For 0 < r ≤ R, let v be the solution of

Lv = 0 in Br, v = u on ∂Br.

Then w = v − u satisfies

|Lw| ≤M in Br, w = 0 on ∂Br.

By the W 2,p estimates, (6) holds, where, and from now on in the proof, C denotes
various positive constants depending only on n, λ, Λ, ‖bi‖L∞(B 3

4
), ‖c‖L∞(B 3

4
), and

the modulus of continuity of aij(x) in B 3
4
. Estimate (7) follows from the Harnack

inequality of Krylov and Safonov, see [1]. The rest of the proof is identical to the
corresponding part of the proof of Proposition 2. �

Section 5.
We extend Proposition 4 from Δ to operators L in Section 4. We assume u ≥ 0
and

M = ‖Lu‖Lp(BR). (16)

Proposition 6. Let L be the operator in Section 4, we suppose u ≥ 0 in BR for
some R ≤ 1

2 and (16) holds with some p ∈ (n
2 , n). Then for x, y ∈ BR

2
, x 	= y, and

α = 2− n
p ,

|u(x)− u(y)|
|x− y|α ≤ C(

u(0)
Rα

+ MR2−n
p −α) (17)

where C depends on n, p, λ, Λ, ‖bi‖L∞(B 3
4
), ‖c‖L∞(B 3

4
), and the modulus of conti-

nuity of aij(x) in B 3
4
.

Proof. It is similar to that of Proposition 4, with the help of W 2,p estimates for L
and the Harnack inequality of Krylov and Safonov. �

Remark 2. If we take p = n in Proposition 6, then by using the Hölder continu-
ity estimate of Krylov and Safonov instead of the W 2,p estimates in the proof of
Proposition 6, inequality (17) holds for some positive constants α and C which
depend on n, p, λ, Λ, ‖bi‖L∞(B 3

4
), and ‖c‖L∞(B 3

4
), but independent of the modulus

of continuity of aij.
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203-207.

[3] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential
equation, Comm. Pure Appl. Math. 16 (1963), 331-351.

YanYan Li1

Department of Mathematics
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854
USA

Louis Nirenberg
Courant Institute
251 Mercer Street
New York, NY 10012
USA

1Partially supported by NSF grant DMS-0401118.


