Graduate Analysis I Final Examination Semester 1, 2008-2009

Department of Mathematics, National University of Singapore

Time allowed: $2\frac{1}{2}$ hours

Question 1. [25 marks]

- (i) Show that if f is ocntinuous over (a, b] except at x = a and if f is Lebesgue integrable over (a, b], then f is improper integrable, i.e., the limit $\lim_{t\to a+} \int_t^b f(x)dx$ exists and is finite.
- (ii) Show that $\frac{1}{x}$ is not Lebesgue integrable over [0, 1].
- (iii) Show that it f(x) is Lebesgue integrable over [0, a], then for any k > 0, f(kx) is integrable over [0, a/k].
- (iv) Show that $f(x) = \frac{1}{x} \cos\left(\frac{2}{x}\right)$ if $x \in (0, 1]$ and f(0) = 0 is not Lebesgue integrable but its improper integral exists.

Question 2. [20 marks]

Define $f(x) = x^2$ if x is a rational number in the interval [0, 1] and $f(x) = x^3$ if x is an irrational number in the same interval.

- (i) Show that for all t > 0, $\ln(1 + e^t) < t + \ln 2$.
- (ii) Use (i) or otherwise to show that

$$\lim_{n \to \infty} \frac{1}{n} \int_0^1 \ln\left(1 + e^{nf(x)}\right) dx = \frac{1}{4}.$$

Question 3. [20 marks]

Show that if $f \in L^p(\mathbb{R}^n)$ and $K \in L^{p'}(\mathbb{R}^n)$ with $1 \leq p \leq \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, then the convolution f * K is bounded and continuous in \mathbb{R}^n .

Question 4. [15 marks]

Suppose $f_k \to f$ in $L^p(E)$, $1 \le p < \infty$, for a measurable set E and $g_k \to g$ point-wise in E, $\|g\|_{L^{\infty}} \le M$ for all k. Show that $f_k g_k \to fg$ in $L^p(E)$.

Question 5. [20 marks]

Show that if $f \in L^1(\mathbb{R}^n)$, then the maximal function $f^* \in L^q(E)$ for any 0 < q < 1and any measurable set E with finite measure.