Graduate Analysis I

Final Examination

Semester 1, 2008-2009

Department of Mathematics, National University of Singapore

Time allowed: $2 \frac{1}{2}$ hours

Question 1. [25 marks]

(i) Show that if f is ocntinuous over $(a, b]$ except at $x=a$ and if f is Lebesgue integrable over $(a, b]$, then f is improper integrable, i.e., the limit $\lim _{t \rightarrow a+} \int_{t}^{b} f(x) d x$ exists and is finite.
(ii) Show that $\frac{1}{x}$ is not Lebesgue integrable over $[0,1]$.
(iii) Show that it $f(x)$ is Lebesgue integrable over $[0, a]$, then for any $k>0, f(k x)$ is integrable over $[0, a / k]$.
(iv) Show that $f(x)=\frac{1}{x} \cos \left(\frac{2}{x}\right)$ if $x \in(0,1]$ and $f(0)=0$ is not Lebesgue integrable but its improper integral exists.

Question 2. [20 marks]

Define $f(x)=x^{2}$ if x is a rational number in the interval [0,1$]$ and $f(x)=x^{3}$ if x is an irrational number in the same interval.
(i) Show that for all $t>0, \ln \left(1+e^{t}\right)<t+\ln 2$.
(ii) Use (i) or otherwise to show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{1} \ln \left(1+e^{n f(x)}\right) d x=\frac{1}{4} .
$$

Question 3. [20 marks]

Show that if $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $K \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ with $1 \leq p<\leq \infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1$, then the convolution $f * K$ is bounded and continuous in \mathbb{R}^{n}.

Question 4. [15 marks]

Suppose $f_{k} \rightarrow f$ in $L^{p}(E), 1 \leq p<\infty$, for a measurable set E and $g_{k} \rightarrow g$ point-wise in $E,\|g\|_{L^{\infty}} \leq M$ for all k. Show that $f_{k} g_{k} \rightarrow f g$ in $L^{p}(E)$.

Question 5. [20 marks]

Show that if $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then the maximal function $f^{\star} \in L^{q}(E)$ for any $0<q<1$ and any measurable set E with finite measure.

