National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 4

- 1. let f be a simple function, taking its distinct values on disjoint sets E_1, E_2, \dots, E_n . Show that f is measurable if and only if E_1, E_2, \dots, E_n are measurable.
- 2. Let f be defined and measurable in \mathbb{R}^n . If T is a nonsingular linear transformation of \mathbb{R}^n , show that f(Tx) is measurable. [If $E_1 = \{x : f(x) > a\}$ and $E_2 = \{x : f(Tx) > a\}$, show that $E_2 = T^{-1}(E_1)$.]
- 3. Give an example to show that $\phi(f(x))$ may not be measurable if ϕ and f are both measurable. [Let F be the Cantor-Lebesgue function and let f be its inverse suitably defined. Let ϕ be the characteristic function of a set of measure zero whose image under F is not measurable.]
- 4. Let f be U.S.C. and less than $+\infty$ on a compact set. Show that f is bounded above on E. Also show that there exists a point $x_0 \in E$ such that $f(x_0) \ge f(x)$ for all $x \in E$.
- 5. If $\{f_k\}$ is a sequence of functions which are U.S.C. at x_0 , show that $\inf_k f_k(x)$ is also U.S.C.
- 6. if f is defined and continuous on E, show that $\{a < f < b\}$ is relatively open and that $\{a \le f \le b\}$ and $\{f = a\}$ are both relatively closed.
- 7. Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set E with $|E| < \infty$. If $|f_k(x)| \le M_x$ for all k and for each $x \in E$, show that given $\epsilon > 0$, there is a closed $F \subset E$ and finite M such that $|E F| < \epsilon$ and $|f_k(x)| \le M$ for all k and all $x \in F$.
- 8. Prove that $f_k \to f$ in measure on E if and only if given $\epsilon > 0$, there exists K > 0 such that $|\{|f_k f| > \epsilon\}| < \epsilon$ if k > K.
- 9. If f is measurable and finite a.e. on [a, b], show that given $\epsilon > 0$, there is a continuous function g on [a, b] such that $|\{x : f(x) \neq g(x)\}| < \epsilon$.