National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 5

1. Let $\left\{f_{k}\right\}$ be a sequence of nonnegative measurable functions on a measurable set E. If $f_{k} \rightarrow f$ and $f_{k} \leq f$ almost everywhere on E, show that $\int_{E} f_{k} \rightarrow \int_{E} f$. Give an example of a sequence $\left\{f_{k}\right\}$ such that $f_{k} \geq 0$ and $f_{k} \rightarrow f$ almost everywhere but $\int_{E} f_{k}$ does not converge to $\int_{E} f$.
2. Let $f \in L([0,1])$, show that $x^{k} f \in L([0,1])$ for all k and $\int_{0}^{1} x^{k} f(x) d x \rightarrow 0$.
3. Let $f(x, y)$ with $0 \leq x, y \leq 1$ satisfy the following conditions: for each $x, f(x, y)$ is an integrable function of y and $(\partial f / \partial x)$ is a bounded function of (x, y). Show that $\partial f / \partial x$ is a measurable function of y for each x and

$$
\frac{d}{d x} \int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{\partial}{\partial x} f(x, y) d y
$$

4. Given a non-Lebesgue integrable function such that its improper Riemann integral exists and is finite.
5. For $p>0$ and $\int_{E}\left|f_{k}-f\right|^{p} \rightarrow 0$ as $k \rightarrow \infty$, show that $f_{k} \rightarrow f$ in measure on E. And further show that there exists a subsequence $f_{k_{i}}$ such that $f_{k_{i}} \rightarrow f$ almost everywhere on E.
6. Given an example of a bounded continuous function f on $(0, \infty)$ such that $\lim _{x \rightarrow \infty} f(x)=0$, but $f \notin L^{p}(0, \infty)$ for any $p>0$.
7. Suppose $f \geq 0$ and $\omega(\alpha) \leq c(1+\alpha)^{-p}$ for all $\alpha>0$, show that $f \in L^{r}$ for $0<r<p$.
8. Suppose $f \geq 0$, show that $f \in L^{p}$ if and only if $\sum_{k=-\infty}^{\infty} 2^{p k} \omega\left(2^{k}\right)<\infty$.
9. If $\int_{A} f=0$ for every measurable subset A of a measurable set E, show that $f=0$ a.e. in E.
10. Let $f(x)$ be an integrable function on $(-\infty, \infty)$. Show that

$$
g(x)=\int_{-\infty}^{\infty} e^{-i x t} f(t) d t
$$

is a continuous function on $(-\infty, \infty)$ where $i=\sqrt{-1}$ and

$$
g(x)=\frac{d}{d x} \int_{-\infty}^{\infty} \frac{e^{-i t x}-1}{i t} f(t) d t .
$$

11. Suppose $f(x), f_{n}(x)$ are integral functions on a measurable set $E, f_{n} \rightarrow f$ a.e. on E and $\int_{E}\left|f_{n}\right| \rightarrow \int_{E}|f|$ as $n \rightarrow \infty$. Show that for every measurable subset $A, \int_{A}\left|f_{n}\right| \rightarrow \int_{A}|f|$ as $n \rightarrow \infty$.
12. Suppose f_{n} are integrable functions on a measurable set E and $f_{n} \rightarrow f$ a.e. on E as $n \rightarrow \infty$. And also assume that there exists a constant $K>0$ such that $\int_{E}\left|f_{n}\right|<K$. Show that f is integrable on E.
13. Let (a, b) be a finite open interval and f an integrable function on (a, b). Show that $\lim _{t \rightarrow \infty} \int_{a}^{b} e^{i t x} f(x) d x=0$.
14. Suppose f is an integrable function on a measurable set E and for every bounded measurable function $\phi(x)$ on E, we have $\int_{E} f(x) \phi(x)=0$. Show that $f=0$ a.e. on E.
15. Suppose f is monotone increasing function on the interval $[a, b]$. Show that $f^{\prime}(x)$ is finite a.e. on E.
16. Suppose f is monotone increasing function on $[a, b]$. Show that $f^{\prime}(x)$ is integrable and

$$
\int_{a}^{b} f^{\prime}(x) \leq f(b)-f(a)
$$

