National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 5

- 1. Let $\{f_k\}$ be a sequence of nonnegative measurable functions on a measurable set E. If $f_k \to f$ and $f_k \leq f$ almost everywhere on E, show that $\int_E f_k \to \int_E f$. Give an example of a sequence $\{f_k\}$ such that $f_k \geq 0$ and $f_k \to f$ almost everywhere but $\int_E f_k$ does not converge to $\int_E f$.
- 2. Let $f \in L([0,1])$, show that $x^k f \in L([0,1])$ for all k and $\int_0^1 x^k f(x) dx \to 0$.
- 3. Let f(x, y) with $0 \le x, y \le 1$ satisfy the following conditions: for each x, f(x, y) is an integrable function of y and $(\partial f/\partial x)$ is a bounded function of (x, y). Show that $\partial f/\partial x$ is a measurable function of y for each x and

$$\frac{d}{dx}\int_0^1 f(x,y)dy = \int_0^1 \frac{\partial}{\partial x} f(x,y)dy.$$

- 4. Given a non-Lebesgue integrable function such that its improper Riemann integral exists and is finite.
- 5. For p > 0 and $\int_E |f_k f|^p \to 0$ as $k \to \infty$, show that $f_k \to f$ in measure on E. And further show that there exists a subsequence f_{k_i} such that $f_{k_i} \to f$ almost everywhere on E.
- 6. Given an example of a bounded continuous function f on $(0, \infty)$ such that $\lim_{x\to\infty} f(x) = 0$, but $f \notin L^p(0, \infty)$ for any p > 0.
- 7. Suppose $f \ge 0$ and $\omega(\alpha) \le c(1+\alpha)^{-p}$ for all $\alpha > 0$, show that $f \in L^r$ for 0 < r < p.
- 8. Suppose $f \ge 0$, show that $f \in L^p$ if and only if $\sum_{k=-\infty}^{\infty} 2^{pk} \omega(2^k) < \infty$.
- 9. If $\int_A f = 0$ for every measurable subset A of a measurable set E, show that f = 0 a.e. in E.
- 10. Let f(x) be an integrable function on $(-\infty, \infty)$. Show that

$$g(x) = \int_{-\infty}^{\infty} e^{-ixt} f(t) dt$$

is a continuous function on $(-\infty, \infty)$ where $i = \sqrt{-1}$ and

$$g(x) = \frac{d}{dx} \int_{-\infty}^{\infty} \frac{e^{-itx} - 1}{it} f(t) dt.$$

- 11. Suppose $f(x), f_n(x)$ are integral functions on a measurable set $E, f_n \to f$ a.e. on E and $\int_E |f_n| \to \int_E |f|$ as $n \to \infty$. Show that for every measurable subset $A, \int_A |f_n| \to \int_A |f|$ as $n \to \infty$.
- 12. Suppose f_n are integrable functions on a measurable set E and $f_n \to f$ a.e. on E as $n \to \infty$. And also assume that there exists a constant K > 0 such that $\int_E |f_n| < K$. Show that f is integrable on E.
- 13. Let (a, b) be a finite open interval and f an integrable function on (a, b). Show that $\lim_{t\to\infty} \int_a^b e^{itx} f(x) dx = 0$.
- 14. Suppose f is an integrable function on a measurable set E and for every bounded measurable function $\phi(x)$ on E, we have $\int_E f(x)\phi(x) = 0$. Show that f = 0 a.e. on E.
- 15. Suppose f is monotone increasing function on the interval [a, b]. Show that f'(x) is finite a.e. on E.
- 16. Suppose f is monotone increasing function on [a, b]. Show that f'(x) is integrable and

$$\int_{a}^{b} f'(x) \le f(b) - f(a).$$