National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 7

1. Let f be measurable in \mathbb{R}^{n} and different from zero in some set of positive measure. Show that there is a positive constant c such that $f^{*}(x) \geq c|x|^{-n}$.
2. Let $\phi(x), x \in \mathbb{R}^{n}$, be a bounded measurable function such that $\phi(x)=0$ for $|x| \geq 1$ and $\int \phi=1$. For any $\epsilon>0$, let $\phi_{\epsilon}(x)=\epsilon^{-n} \phi(x / \epsilon)$. If $f \in L\left(\mathbb{R}^{n}\right)$, show that $\lim _{\epsilon \rightarrow 0}\left(f * \phi_{\epsilon}\right)(x)=f(x)$ in the Lebesgue set of f. [Note that $\int \phi_{\epsilon}=1$ for any $\epsilon>0$, so that $f * \phi_{\epsilon}(x)-f(x)=\int[f(x-y)-f(x)] \phi_{\epsilon}(y) d y$. Use the corollary of Hardy-Littlewood theorem.]
3. If E_{1} and E_{2} are measurable subsets of \mathbb{R}^{1} with $\left|E_{1}\right|>0$ and $\left|E_{2}\right|>0$. Show that the set $\left\{x \in \mathbb{R}^{1}: x=x_{1}-x_{2}, x_{1} \in E_{1}, x_{2} \in E_{2}\right\}$ contains an open interval with positive length.
4. Let f be of bounded variation on $[a, b]$. If $f=g+h$ where g is absolutely continuous and h is singular, show that, for any function ϕ, we have

$$
\int_{a}^{b} \phi d f=\int_{a}^{b} \phi f^{\prime} d x+\int_{a}^{b} \phi d h .
$$

5. Show that if $\alpha>0, x^{\alpha}$ is absolutely continuous on every bounded subinterval of $[0, \infty)$.
6. Show that f is absolutely continuous on $[a, b]$ if and only if given $\epsilon>0$, there exists $\delta>0$ such that $\left|\sum\left[f\left(b_{k}\right)-f\left(a_{k}\right)\right]\right|<\epsilon$ for any finite collection $\left\{\left[a_{k}, b_{k}\right]\right\}$ of non-overlapping subintervals of $[a, b]$ with $\sum\left(b_{k}-a_{k}\right)<\delta$.
7. Show that if f is of bounded variation on $[a, b]$ and if the function $V(x)=$ $V(f, a, x)$ is absolutely continuous, then f is absolutely continuous on $[a, b]$.
8. Show that if f is of bounded variation on $[a, b]$, then $\int_{a}^{b}\left|f^{\prime}\right| \leq V(f, a, b)$. And also show that if the equality holds, then f is absolutely continuous on $[a, b]$.
9. Show that an absolutely continuous function maps a measure zero set into a measure zero set.
10. Let $g(t)$ be monotone increasing and absolutely continuous on $[\alpha, \beta]$ and let f be bounded and measurable on $[a, b]$ with $a=g(\alpha)$ and $b=g(\beta)$. Show that $f(g(t)) g^{\prime}(t)$ is a measurable function on $[\alpha, \beta]$ and $\int_{a}^{b} f(x) d x=\int_{\alpha}^{\beta} f(g(t)) g^{\prime}(t) d t$.
11. Show that if ϕ is convex if and only if it is continuous and $\phi\left(\frac{x_{1}+x_{2}}{2}\right) \leq \frac{\phi\left(x_{1}\right)+\phi\left(x_{2}\right)}{2}$, for all $x_{1}, x_{2} \in(a, b)$.
12. Show that if $\phi(x)=\int_{a}^{x} f(t) d t+\phi(a)$ in (a, b) and f is monotone increasing, then ϕ is convex in (a, b).
