National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 8

1. Prove the converse of Hölder inequality for $1 \leq p \leq \infty$ (namely Theorem 6 in lecture notes). Show also that for real valued $f \notin L^{p}(E)$, there exists a function $g \in L^{p^{\prime}}(E), 1 / p+1 / p^{\prime}=1$, such that $f g \notin L^{1}(E)$.
2. Prove Minkowski's inequality in both L^{p} and l^{p} with $p \geq 1$. And show that for l^{p} space, this inequality does not hold if $0<p<1$.
3. Let $f, f_{k} \in L^{p}$. Show that if $\left\|f-f_{k}\right\|_{L^{p}} \rightarrow 0$ as $k \rightarrow \infty$, then $\left\|f_{k}\right\|_{L^{p}} \rightarrow\|f\|_{L^{p}}$. And conversely if $f_{k} \rightarrow f$ a.e. and $\left\|f_{k}\right\|_{L^{p}} \rightarrow\|f\|_{L^{p}}$ as $k \rightarrow \infty$, show that $\left\|f-f_{k}\right\|_{L^{p}} \rightarrow 0$ provided $1 \leq p<\infty$.
4. If $f_{k} \rightarrow f$ in $L^{p}(E)$ as $k \rightarrow \infty$ and $1 \leq p<\infty, g_{k} \rightarrow g$ point-wise and $\left\|g_{k}\right\|_{L^{\infty}} \leq M$ is bounded for all k, show that $f_{k} g_{k} \rightarrow f g$ in L^{p}.
5. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $0<p<\infty$, show that

$$
\lim _{Q \searrow x} \frac{1}{|Q|} \int_{Q}|f(y)-f(x)| d y=0 \text { a.e.. }
$$

6. Show that for $0<p<1$, the unit open ball with center at 0 is not convex.
7. Assume $p \geq 1$. A sequence $\left\{f_{k}\right\} \in L^{p}$ is said to weakly converge to f in L^{p} if for any function $g \in L^{p^{\prime}}, 1 / p+1 / p^{\prime}=1, \int_{E} f_{k} g \rightarrow \int_{E} f g$. Show that if $f_{k} \rightarrow f$ in measure and $\left\|f_{k}\right\|_{L^{p}} \leq M$ for some constant M, then $f_{k} \rightarrow f$ weakly.
8. Suppose $f \in L^{p}(E)$ and $A \subset E$ is a measurable subset of E. Show that

$$
\left\{\int_{E}|f|^{p}\right\}^{1 / p} \leq\left\{\int_{A}|f|^{p}\right\}^{1 / p}+\left\{\int_{E \backslash A}|f|^{p}\right\}^{1 / p} .
$$

9. Let p, q, r be three positive numbers such that $1 / p+1 / q+1 / r=1$. Suppose $f \in L^{p}(E), g \in L^{q}(E)$ and $h \in L^{r}(E)$ for a measurable set E. Show that

$$
\left|\int_{E} f g h\right| \leq\|f\|_{L^{p}}\|g\|_{L^{q}}\|h\|_{L^{r}} .
$$

