National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 8

- 1. Prove the converse of Hölder inequality for $1 \le p \le \infty$ (namely Theorem 6 in lecture notes). Show also that for real valued $f \notin L^p(E)$, there exists a function $g \in L^{p'}(E), 1/p + 1/p' = 1$, such that $fg \notin L^1(E)$.
- 2. Prove Minkowski's inequality in both L^p and l^p with $p \ge 1$. And show that for l^p space, this inequality does not hold if 0 .
- 3. Let $f, f_k \in L^p$. Show that if $||f f_k||_{L^p} \to 0$ as $k \to \infty$, then $||f_k||_{L^p} \to ||f||_{L^p}$. And conversely if $f_k \to f$ a.e. and $||f_k||_{L^p} \to ||f||_{L^p}$ as $k \to \infty$, show that $||f - f_k||_{L^p} \to 0$ provided $1 \le p < \infty$.
- 4. If $f_k \to f$ in $L^p(E)$ as $k \to \infty$ and $1 \le p < \infty$, $g_k \to g$ point-wise and $\|g_k\|_{L^{\infty}} \le M$ is bounded for all k, show that $f_k g_k \to fg$ in L^p .
- 5. If $f \in L^p(\mathbb{R}^n)$ and 0 , show that

$$\lim_{Q \searrow x} \frac{1}{|Q|} \int_Q |f(y) - f(x)| dy = 0 \quad a.e..$$

- 6. Show that for 0 , the unit open ball with center at 0 is not convex.
- 7. Assume $p \ge 1$. A sequence $\{f_k\} \in L^p$ is said to weakly converge to f in L^p if for any function $g \in L^{p'}, 1/p + 1/p' = 1$, $\int_E f_k g \to \int_E fg$. Show that if $f_k \to f$ in measure and $\|f_k\|_{L^p} \le M$ for some constant M, then $f_k \to f$ weakly.
- 8. Suppose $f \in L^p(E)$ and $A \subset E$ is a measurable subset of E. Show that

$$\{\int_E |f|^p\}^{1/p} \le \{\int_A |f|^p\}^{1/p} + \{\int_{E \setminus A} |f|^p\}^{1/p}$$

9. Let p, q, r be three positive numbers such that 1/p + 1/q + 1/r = 1. Suppose $f \in L^p(E), g \in L^q(E)$ and $h \in L^r(E)$ for a measurable set E. Show that

$$|\int_{E} fgh| \le ||f||_{L^{p}} ||g||_{L^{q}} ||h||_{L^{r}}$$