National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 9

1. (a) Show that the function h defined by $h(x)=e^{-1 / x^{2}}$ for $x>0$ and $h(x)=0$ for $x \leq 0$ is in $C^{\infty}\left(\mathbb{R}^{1}\right)$.
(b) Show that the function $g(x)=h(x-a) h(b-x), a<b$ is C^{∞} with support $[a, b]$.
(c) Construct a function in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ whose support is a ball or an interval.
2. Let G and G_{1} be bounded open subsets of \mathbb{R}^{n} such that $\bar{G}_{1} \subset G$. Construct a function $h \in C_{0}^{\infty}$ such that $h=1$ in G_{1} and $h=0$ outside G.
3. Let $f \in L^{p}(-\infty,+\infty)$ with $1 \leq p \leq \infty$. Show that the Poisson integral of f is harmonic in the upper half-plane $y>0$.
4. For $s, t \geq 0$, let $K(s, t)$ satisfy $K \geq 0$ and $K(\lambda s, \lambda t)=\lambda^{-1} K(s, t)$ for all $\lambda>0$, and suppose that $\int_{0}^{\infty} t^{-1 / p} K(1, t) d t=\gamma<\infty$ for some p with $1 \leq p \leq \infty$. Show that if

$$
(T f)(s):=\int_{0}^{\infty} f(t) K(s, t) d t \quad(f \geq 0)
$$

then $\|T f\|_{L^{p}} \leq \gamma\|f\|_{L^{p}}$.
5. The maximal function is defined as $f^{*}(x)=\sup |Q|^{-1} \int_{Q}|f|$, where the supremum is taken over cubes with center x. Let $f^{* *}$ be defined similarly, but with the supremum taken over all Q containing x. Thus $f^{*} \leq f^{* *}$. Show that there is a positive constant c depending only on the dimension such that $f^{* *}(x) \leq c f^{*}(x)$.
6. Let $f_{\epsilon}=f * K_{\epsilon}$ where $K \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\int_{\mathbb{R}^{n}} K=\gamma$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $1 \leq p<\infty$, show that $\left\|f_{\epsilon}-\gamma f\right\|_{L^{p}} \rightarrow 0$ as $\epsilon \rightarrow 0$.
7. Let $f \in L^{p}(0,1), 1 \leq p<\infty$, and for each $k=1,2, \cdots$, define a function f_{k} on $(0,1)$ by letting $I_{k, j}=\left\{x:(j-1) 2^{-k} \leq x<j 2^{-k}\right\}, \quad j=1,2,3, \cdots, 2^{k}$, and setting $f_{k}(x)=\left|I_{k, j}\right|^{-1} \int_{I_{k, j}} f$ for $x \in I_{k, j}$. Show that $f_{k} \rightarrow f$ in $L^{p}(0,1)$.
8. Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right) \cap L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)$ with $f \geq 0$. Define

$$
S f(x)=\int_{\mathbb{R}^{n}}\left[\ln \frac{|y|}{|x-y|}\right] f(y) d y
$$

Show that $S f(x)$ is finite for all $x \in \mathbb{R}^{n}$ and $S f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$.

