National University of Singapore

Department of Mathematics

08/09 Semester I MA5205 Graduate Analysis I Assignment 9

- 1. (a) Show that the function h defined by $h(x) = e^{-1/x^2}$ for x > 0 and h(x) = 0 for $x \le 0$ is in $C^{\infty}(\mathbb{R}^1)$.
 - (b) Show that the function g(x) = h(x-a)h(b-x), a < b is C^{∞} with support [a, b].
 - (c) Construct a function in $C_0^{\infty}(\mathbb{R}^n)$ whose support is a ball or an interval.
- 2. Let G and G_1 be bounded open subsets of \mathbb{R}^n such that $\overline{G}_1 \subset G$. Construct a function $h \in C_0^\infty$ such that h = 1 in G_1 and h = 0 outside G.
- 3. Let $f \in L^p(-\infty, +\infty)$ with $1 \le p \le \infty$. Show that the Poisson integral of f is harmonic in the upper half-plane y > 0.
- 4. For $s, t \ge 0$, let K(s, t) satisfy $K \ge 0$ and $K(\lambda s, \lambda t) = \lambda^{-1}K(s, t)$ for all $\lambda > 0$, and suppose that $\int_0^\infty t^{-1/p}K(1, t)dt = \gamma < \infty$ for some p with $1 \le p \le \infty$. Show that if

$$(Tf)(s) := \int_0^\infty f(t)K(s,t)dt \quad (f \ge 0),$$

then $||Tf||_{L^p} \leq \gamma ||f||_{L^p}$.

- 5. The maximal function is defined as $f^*(x) = \sup |Q|^{-1} \int_Q |f|$, where the supremum is taken over cubes with center x. Let f^{**} be defined similarly, but with the supremum taken over all Q containing x. Thus $f^* \leq f^{**}$. Show that there is a positive constant c depending only on the dimension such that $f^{**}(x) \leq cf^*(x)$.
- 6. Let $f_{\epsilon} = f * K_{\epsilon}$ where $K \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} K = \gamma$. If $f \in L^p(\mathbb{R}^n)$ with $1 \leq p < \infty$, show that $\|f_{\epsilon} \gamma f\|_{L^p} \to 0$ as $\epsilon \to 0$.
- 7. Let $f \in L^p(0,1), 1 \leq p < \infty$, and for each $k = 1, 2, \cdots$, define a function f_k on (0,1) by letting $I_{k,j} = \{x : (j-1)2^{-k} \leq x < j2^{-k}\}, j = 1, 2, 3, \cdots, 2^k$, and setting $f_k(x) = |I_{k,j}|^{-1} \int_{I_{k,j}} f$ for $x \in I_{k,j}$. Show that $f_k \to f$ in $L^p(0,1)$.
- 8. Suppose $f \in L^1(\mathbb{R}^n) \cap L^{\infty}_{loc}(\mathbb{R}^n)$ with $f \geq 0$. Define

$$Sf(x) = \int_{\mathrm{I\!R}^n} [\ln \frac{|y|}{|x-y|}] f(y) dy.$$

Show that Sf(x) is finite for all $x \in \mathbb{R}^n$ and $Sf \in L^1_{\text{loc}}(\mathbb{R}^n)$.