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AN APPLICATION OF THE LYAPUNOV-SCHMIDT METHOD
TO SEMILINEAR ELLIPTIC PROBLEMS

QUO C ANH NGO

ABSTRACT. In this paper we consider the existence of nonzero solutions for
the undecoupling elliptic system

—Au = A+ v + f(u,v),
—Av = 0u + yv + g(u,v),

on a bounded domain of R™, with zero Dirichlet boundary conditions. We use
the Lyapunov-Schmidt method and the fixed-point principle.

1. INTRODUCTION

In this present paper we consider the Dirichlet problem
—Au = Au+ v+ f(u,v) in Q,
—Av = 0u+yv + g(u,v) in Q, (1.1)
u=v =0 on 0f,
where @ C R" (n > 3) is a bounded domain with smooth boundary and subject
to Dirichlet boundary conditions; A = (2 g) is a matrix of real entries; f,g :

Q x R — R are globally Lipschitz functions for u, v; i.e.
[ (u,v) = f(@,0)] < ki (Ju—af + v —20]),
lg(u,v) = g(, 0)] < k(v — af + v — 7)),
for all u,w,v,v € R.

Our goal is finding non-trivial solutions to the system under the above hy-
pothesis, and other suitable conditions on the first two eigenvalues of the Laplacian
and on the parameter.

Note that the problem Dirichlet for system have been studied by many
authors. In [I7], under more restrictive conditions, Hoang has considered the system
in which € is an unbounded domain. In [29], the author has considered the
case of positivity of solutions in a bounded domain and in [I§], the positivity of
solutions have been mentioned for an unbounded domain.

Equation represents a steady state case of reaction-diffusion systems of
interest in biology. Reaction-diffusion systems have been intensively studied during
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recent years, see [35] where many references can be found. There exists a decoupling
technique, which consists of reducing the system to a single nonlinear equation
containing an integral and a differential term. This technique was introduced by
Rothe [33], Lazer & McKenna [23] and Brown [4] and has been used thereafter by
many authors. For the resonant case many known techniques used to solve the
scalar case can be applied to find solutions and positive solutions. See for example
Ahmad, Lazer & Paul [I], Ambrosetti & Mancini [2], Anane [3], Bartolo, Benci
& Fortunato [6], Berestycki & De Figueiredo [5], Capozzi, Lupo & Solimini [7],
Cesari & Kannan [§], Costa & Magalhaes [11], De Figueiredo & Gossez [13], Gossez
[15], Innacci & Nkashama [19, 20], Landesman & Lazer [22], Lupo & Solimini [24],
Omari & Zanolin [31I], Rabinowitz [32], Schechter [34], Solimini [36], Vargas &
Zuluaga [37, B8], Zuluaga [39], 40] and the references therein.

The decoupling technique has some obvious shortcomings, for example, it is very
difficult to apply to systems with three or more equations. Even, in the case of two
equations is too restrictive to give conditions to solve the second equation of
for v in terms of u.

It is known, see [I1I], using the eigenvalues of the matrix A, we will be able to
give a precise description of kernel of operator —A — A, and easy to see that this
kernel is nonzero if and only if A — A;I is singular for some eigenvalue A; of the
operator —A.

Zuluaga [41] showed results of existence and nonexistence of solutions for
under the condition Ay, the first eigenvalue of —A, is also a eigenvalue of matrix A.
In this paper, we will extend these results obtained in [4I] under the conditions in
which A is not a eigenvalue of A.

Our paper is organized as follows. Section 2 provides some preliminaries and
notation including the Lyapunov-Schmidt method. In Section 3, we consider the
problem under some special case where some parameters and both Lipschitz
constants are equal, problem . Our main result for such problem is the Theorem
By the similar arguments, in Section 4, we state our main result of this paper

for the problem ([1.1)).

2. PRELIMINARIES AND NOTATION

In E = L?(2) x L?(Q2) we use the norm

||UH2L2(Q)xL2(Q) = ||“||2Lz(9) + HU||2L2(Q)a

where U = (u,v). To simplify notation, we use || - || to denote the norm in L?(£2)
or in L2(Q) x L2(9).

Solutions of (I.I). We say that U € H}(Q) x Hj(f) is a solution of if
U= (-A)"' AU + G(U)), (2.1)

where G(U) = (f(u,v),g(u,v)). It is clear that (—=A)™1 : B — H}(Q) x H ()
is a linear, self-adjoint, continuous and bijective operator. Also, the embedding
H}(Q) x HY(Q) — E is compact, thus (—A)~! : E — E is compact, self-adjoint
and injective as well. Hence, the operator defined by the right hand side of is
compact.

Throughout this paper we shall denote by A1, Ao the first two eigenvalues of
—A and @1, @2 are the eigenfunctions associated with the eigenvalue A; and Ag,
respectively.
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The Lyapunov-Schmidt method. We will denote by X the subspace of H} ()
spanned by 1, that is to say X = {tp; : t € R}. We shall also denote ¥ = X+ =
{p1)*. So, we have the identity

HiQ)=XaY.
Then all U = (u,v) € E can be written as
u=1ug+ z,ug € X,z €Y,
v=vy+w,vg € X,w €Y,
where u,v € H}(Q). Let us denote by P and @Q the projection on X and Y,

respectively. Applying P and @ to both sides of (2.1)) we obtain a decomposition

of it in two systems as follows
ug = P(=A) "\ (ug + 2) + 6(vo +w) + flug + z,v0 + w)], (2.9)
vg = P(=A)"HO(uo + 2) +v(vo + w) + g(uo + 2,v0 + w)], )

and
z= Q(—A)_l[)\(uo +2) + 6(vo + w) + f(uo + 2z,v0 + w)],
w=Q(—=A) " [O(ug + 2) + y(vo + w) + g(ug + z,vo + w)].

For each (ug,vp) € X x X fixed, we solve (2.3) and have a solution (zg,wp) € Y XY
which will be plugged into (2.2)) to get the solution (ug,vg) of (2.2). Thus, the
solutions of ([1.1)) will be of the form (ug + 29, v + wp)-

(2.3)

3. A SPECIAL CASE OF PROBLEM (1.1))

Before stating our main result, in this Section, we consider problem (1.1 in
which vy = A=A, ki = ks =k and § =60 > 0, i.e. we shall deal with the existence
of non-trivial solutions of the problem

—Au =M u+ v+ f(u,v) in Q,
—Av =d0u+ M\v+g(u,v) in Q, (3.1)
u=v=0 on J,

where A is the first eigenvalue of —A. Applying the Lyapunov-Schmidt method

we obtain a decomposition of it in two systems as follows
ug = P(=A) " A (ug + 2) + 6(vo +w) + flug + 2,00 + w)], (3.2)
vo = P(=A)"Hé(uo + 2) + A (vo + w) + g(ug + 2, vo + w)], .

and
2= Q(=A)" A1 (uo + 2) + 6(vo +w) + f(uo + 2, v0 +w)],

w = Q(=A)" [6(uo + 2) + A1 (vo + w) + g(uo + 2, v + w)].
Fixing (uo,v0) € X x X, we shall consider (3.3). Letting

(3.3)

Fo(z,w) = (Fg)(zm)), g)(z,w)),
where
(—=A) " A (ug + 2) 4+ (v + w) + f(u,v)],
F (z,w) = Q(=A) T [6(uo + 2) + A (vo + w) + g(u, v)].

St
0
£
i
)
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Lemma 3.1. If
)\2
(M +E)?+ (5 +k)? < 72 (3.4)
then Fg is a contraction in Y X Y.
Proof. Let z,z,w,w € Y, by the definition of Fg)(z,w), we find
FQ (zw) = FG (20) =Q(=A) " (A= = 2) + 6(w — @)
+ fluo + 2,00 +w) = fuo + 2, vo + 0)).
Therefore, from the characterization of A\, we get
1 1)~ ~ 1 ~ ~
17" (2 w) = FQ) Z. @) <5l = 2] + 8w — @
+[1f (uo + 2,00 +w) — f(uo +Z,v0 + D)]]).
By using the Minkowski’s inequality and our Lipschitzian assumptions, we obtain
1f (uo + 2,00 + w) = f(uo + 2,00 + w)|| < k(||z = 2] + [[w — w]).
So
(1) W5 =~ 1 ~ ~
1Fy (z,w) = Foy (Z,w)]| < E((Al +R)lz =2l + (6 + k) lw — wl]).
Therefore,
1 1)/~ ~ 2 ~ -
155 (2 w) = FQ) )P < 55 (A + )z = 2] + (6 + k) [lw — @l])-
2
Similarly, we claim that
2

2 2) f~ ~
175" (2 w) = FP E DI < 55

(6 + 121z = 21 + O + k) — @),
Now we obtain

2
X

Hence, the assertion follows. ([l

1Fa(zw) = Fo(Z®)|12 < =5 (M +8)2 + 3+ 8)2) (112 = 21 + w - @]?).

By using fixed-point principle, we conclude that (3.3]) has a unique solution
(20 (w0, vo), wo(up, vo)) for each (ug,vp) € X x X fixed. The assertion of the above
Lemma let us to define

F: X xX—->Y XY,
(ug,vo) — F(ug,vo) := (20, wp),
be the function such that (zg,wo) is the only fixed point of Fg.
Lemma 3.2. If
(M +E)?+ (5 +k)? < AZ% (3.5)
then
| (o, vo) — F (T, v )||*
< 8k2 (
A3 —4((M + k)2 + (6 +k)?)

for every (ug,vo) and (Ug, V) in X x X.

o — vol? + [0 — ol|?).
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Proof. Suppose that F(ug,vg) = (20, wo) and F (g, vo) = (Z0,Wp). By the defini-
tion of F', we have

20 = Q(—A) A1 (uo + 20) + 8(vo + wo) + f(uo + 20,v0 + wo)],
wp = Q(—A) " d(uo + 20) + M (vo + wo) + g(uo + 20, v0 + wo)],
and

Zo = Q(—A) A1 (To + Zo) + 0(To + Wo) + f(Uo + Zo, Vo + Wo)],

Wy = Q(—A) " (o + Z0) + M1 (Vo + Wo) + g(o + Zo, Vo + Wo)]-

Because

we have

- 1 - -
120 — Zo| <% (MHZO — Zo|| + 6[[wo — wo|
2

11 a0 + 20,0 + wa) — £ ({0 + Zo. o + o)
1 ~ ~

<3 (Qut Rllzo = 2ol + 6+ Rl — |
+ K(lluo — ol + o — Toll) )

Thus

4

20 = Z0l1* <55 (1 + )220 = 20|12 + (6 + k)? wo — ol ?
2

+ K (lluo — oll? + llvo — Toll?) )

Similarly, we find

4
X
+ K (|luo — o> + fluo — Toll?) )

[|wo — wol* < ((5 + k)?||lz0 — Zol1* + (A1 + k)?|lwo — wo|?

Hence
~ ~ 4 ~ ~
20 = Zol12 + llwo — @oll® <5 (6 + k)% + O + B2 (120 = %12 + 1w — o)
A
2
+ 282([lug — o> + oo — o))

Therefore

120 — 2ol + [lwo — wol|?
8k2

< _ 2 To — 0 112).
=B a0n 1 kPt 0+ ke~ ol o = ol
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Now, we consider the system (3.2). First, the fact that F' is a contraction map-

ping yields

U = P(*A)flp\l(uo + 20) + 6(vo + wo) + f(uo + 20, vo + wo)],
vo = P(=A) " 0 (uo + 20) + M (vo + wo) + g(ug + 20, v0 + wo)]-

Because
P(=A)""(20) = P(=A) "} (wp) = 0,
P(—A)il(/\luO) = ug, P(—A)il(/\ﬂ}o) = g,

we deduce that
0= P(—A)_l[(SU() + f(’LL() + 20, V0 + ’LU())}7
0= P(—A) " [duo + g(uo + 20, v0 + wo)].
On the other hand, from the definition of subspace X,

) 1)
P(—A)_l((S’U,O) = YUO, P(—A)_l(évo) = /\71}0-
1 1
This yields
)
0= /\*1110 + P(—=A) [ f(uo + 20, v0 + wo)],
)
0= )\TUO + P(=A) " Hg(ug + 20, v0 + wo)]-
Now, (3.9) is equivalent to
A
up = —%P(—A)_l[g(uo + 20, vo + wo)],
_ M -1
Vg = —XP(—A) [f(uo + 20, Vo + U)())]
Letting
P _ £
P(uo,v0) = (Fp’ (ug,v0), Fp’ (uo,v0)),
where
A
Flgl)(uomo) = —KIP(—A)_l[Q(Uo + 20, Vo + wo)),
A
F;,,Q)(’LL(),U(]) = —%P(—A)_l[f(ll/o =+ 20, Vo + 'w(])].
Lemma 3.3. If (A + k)% + (6 + k)2 < \3/4 and
8k? 8k?
— (1 1
7 (U i e ) <

then Fp is a contraction in X x X.

(3.7)

(3.9)

(3.10)

(3.11)

Proof. Letting (o, 7o) in X x X. Corresponding to (tg, o), from Lemma [3.1] we

have (Zp,wp) in Y x Y. From the definition of Fl(gl)(uo, vp) we find

F& (ug,v0) — FS (i, To)
A1

= — = P(=A)"g(uo + 20,v0 + wo) — g(Uo + Z0, Vo + Wp)].

]
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Using our Lipschitzian assumptions we obtain

IS (o, vo) — FS (@, W)
A1

FTHQ(UO + 20, v0 + wo) — (%o + Zo, Vo + Wo)||
1

IN

IN

k . - - .
g(||u0 — Ul + [[vo — Vol + [[20 — Zol| + [[wo — wol|).
By (3.6, we have

IFS (uo, vo) — F (@, To) |2

4k2 - . - ~
< 67(\\“0 — Toll* + [lvo — Tol|* + [|20 — Zol|* + [Jwo — wo\|2>
AR ~ ~
< =5 (o = @l + oo — o?)
4k 8k° ~ 112 ~ 112
+ = —To||* + [Jvo —
52 )\% _ 4(()\1 ¥ k)2 T (5 T k)g) (HUO UOH HUO 'UOH )
4k? 8k?
< (1 o~ 2 — ).
=52 ( + /\5—4(()\1+k)2+(6+k)2))(”u0 Uol|” + [lvo — o)

Similarly, we have

[FS (g, v0) — FS (10, 00|

4k? 8k?2
< —1 2 AP
< +A§—MM1+M2+®+kVQHWO Goll” + ffvo = o[
Thus
| Fp(ug,vo) — Fp (o, vo)|?
8k? 8k?
< —1 o~ 2 AP
= 42 ( + A%—4(()\1 +k)2+(6—|—k;)2))(”u0 UOH + HUO UOH )
So, the proof is complete. O

The main result in this section is the following theorem, whose proof follows the
arguments above.

Theorem 3.4. If (A + k)% + (0 + k)? < \3/4, and

8k (1 T 8k* ) <1
62 A3 —4((6+ k)2 + (M1 +k)?) ’

then has a solution. Furthermore, this solution is unique.

4. MAIN RESULTS

In this Section, we establish existence result for the cases in which A — A1 is
regular. Letting

o= (A4 E1)? + (18] + k1) + (10] + k2)® + (|9] + k2)*.

Our main result is as follows.
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Theorem 4.1. Suppose that \; is not a eigenvalue of matriz A, I < \2/2, and
463+ k3) (A1 = A2 + (A — )2+ 62 + 6%) <1 4(k3 + kg)) )
(A1 = A) (A =) — 66)? A3 -2 '
Then, (L.1)) has a unique solution (u,v) in L?(Q) x L%(Q).

For the proof of the above theorem we need some lemmas.

Lemma 4.2. For each (ug,vo) € X x X fized, if | < \3 then has a unique
solution (zo,wo) €Y x Y.

As in Lemma [3.1] it is easy to verify the statement of the above lemma. This
result let us to define

T: X xX —>Y XY,
(ug,vo) — T'(ug,v0) := (20, wo),
where (29, wg) is the unique solution of .
Lemma 4.3. Ifl < \3/2 then
4(k3 + k3)

~ o~ 2
||T(U0,’U0) — T(UOaUO)H < )\% — 91

(||U0*UOH2Jr ||?70*50||2)- (4.1)

It is easy to check the statement of the above lemma.

Lemma 4.4. Ifl < \2/2 and

AT + B3 (M = N2 + (M =) + 6%+ 62) (1 A(k? + k%)) 1 (42
(A = A) (A1 — ) — 60)? A3 — 21
then has a unique solution in X x X.
Proof. By Lemma we obtain
ug = P(=A) " A (uo + 20) + 6(vo + wo) + f(uo + 20,v0 + wo)], (4.3)
vo = P(—=A) "1 [0(uo + 20) + ¥ (vo + wo) + g(uo + 20, v0 + wo)]- .
It follows from the properties of P that
ug = P(=A) " Aug + dvo + f(uo + 20, v0 + wo)], (4.4)
vo = P(=A)"HOug + yvo + g(uo + 20,v0 + wo)], ’
which implies
A ) .
ug = A—lu(ﬁ- )\Tvo—&—P(—A) [f (ug + 20,00 + wo)], ws)

0 _
vo = 5o + )\llvo + P(=A)"Mg(uo + 20, v0 + wo)].

By solving the system , we have
o MOs = )P A+ MIP(-A) ]
o (1 =N —7) =6
A(A\ — )\)P(fA)fl[g] + )\19P(7A)71[ﬂ
(M = A) (A1 =) — 05

= FI(;,I)(’LL(), ”Uo),

Vo = =: F1(32)(UO,’U0).
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Hence, we obtain

F (ug, vo) — F5 (0, T0)

)\1()\1_'7) -1 ~ -~ .
= P(-A ug + 20, V9 + wg) — f(ug + Zg, Vg + W
()\1_A)()\1_'Y)_06 ( ) [f( 0 0, V0 0) f( 0 0, V0 0)]
A0 _ o~
+ P(—=A)"g(ug + 20, vo + wo) — g(To + 2o, Vo + Wo)].
A =N —) — 05 (=A) " [g(uo 0, V0 0) — g(to 05 Vo 0)]
Thus
I8 (w0, v0) = Fp (@0, %)
A1 = o
< Uy + 20,9 + wo) — f(ug + 20,00 + W
|(}\17>\)()\177)795|||f( 0 + 20, v0 +wo) — f (o + Zo, Vo + Wo)||
9 L
+ 19(uo + 20, vo + wo) — g(To + Z0, Vo + wo) |-

(A1 = A) (AL — ) — 09
Similarly, we have
1EE (w0, vo) — FE (1o, o) |
< A1 = Al
T = A (A =) = 66]
19|

+ ug + 29, Vo + wo) — g(up + 2o, Vo + Wo)||-
|()\1—)\)()\1—’7)—96|||g( 0 0, Y0 0) g( 0 0, Y0 O)”

||f(uo + 20, v0 + w()) — f(ﬂo + 20,00 + ﬁo)”

Thus
| Fp (o, v0) — Fp(tio, Vo)
c =P+ =N 482 467
T (M =N =) = 06)?
+ 19 (uo + 20,v0 + wo) — g(iio + Zo, To +f50)u2),

I

(I (o + 20, v0 + wo) — f (i + Zo, T + o) |

where
Fp(uo,v0) = (FS (ug, v0), FY (ug, v0)).-
Using our Lipschitzian assumptions,
|1Fp (uo, v0) — Fp(to, o) |1
M=)+ M= A+ +6° (1 A(kT + k%))
(A1 =AM — ) — 65)? A3 -2

x ([luo — ol + [lvo — Tol1?)

< 4(k? +k§)<

which completes the proof. (Il

The proof of Theorem is similar to the proof of Theorem [3.4} therefore, we
omit it.
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