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ABSTRACT. In this paper, some integral inequalities are presented by analytic approach. An
open question will be proposed later on.
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1. INTRODUCTION

Let f(x) be a continuous function df, 1] satisfying

2 )
Firstly, we consider an integral inequality below.
Lemma 1.1. If (L.T) holds then we have

@2 [vwras [wrwe.

The aim of this paper is to generalize (1.2) in order to obtain some new integral inequalities.
In the first part of this paper, we will prove Lemrpa]l.1 and present some preliminary results.
Our main results are Theor¢ém .1, Theofem 2.2 which will be proved in Sé¢tion 2 and Theorem
[3.9, Theorem 3]3 which will be proved in Sectjdn 3. Finally, an open question is proposed. And
now, we begin with a proof of Lemnja ].1.

(1.1) /lf(t)dtzl_xQ vz €[0,1].
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Proof of Lemma 1]1lt is known that

1 1 1 1
0 — ) dx = 2(z)dx — 2 d 2dz,
<[ u@-ari= [ Paa-2 [ or@is [ a
which yields

1 1
/ f?(x)dx > 2/ xf (z)dx — 1
0 0 3
Let A := f01 (f; @) dt). By using our assumption we have

A:/D1 (/:f(t)dt) 2/011_2x2dx:é.

On the other hand, integrating by parts, we also get

= (['r0)

1 1 1
=z | f(t)dt —I—/ zf (x)dx
T 0
. 0
:/ xf (z)dx
0
Thus
! 1
/ of (z)dr > =,
0 3
which gives the conclusion. O

Remark 1.2. Condition [1.1) can be rewritten as

(1.3) /1f(t)dt2/1tdt, vz € [0,1].

Throughout this paper, we always assume that funcfisatisfies[(1]1), moreover, we also
assume that

(1.4) flz) =0
for everyzx € [0, 1].
Lemma 1.3. fol e f (x)de > A= forall n € N.

Proof. We have

[ ([ rmm)ar- b | (] o)

1 +1 ! -
= " t)dt
n+1x /xf()

N 1
n+1

/le”“f(x)da::(n—l—l)/ola:” (/;f(t)dt> da.
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=0

/ e () do,
0

which yields


http://jipam.vu.edu.au/

NOTES ON ANINTEGRAL INEQUALITY

On the other hand

L 1f(t)dt > [ o g
[ ([roa)ars [t

1 1 1_1,2 1
/Ox”+1f(x)dx2(n+l)/o z" 5 dx:n+3.

Therefore

The proof is completed.

2. THE CASE OF NATURAL NUMBERS

Theorem 2.1. Assume thaf (1] 1) anfl (1.4) hold. Then

/1 Y (z) dx > /1a:"f(x)d:1:
for everyn € N. 0 0
Proof. By using the Cauchy inequality, we obtain

fH (@) + ™t > (1) 2" f (2).
Thus . ) .
/ " (2) do + n/ 2" dr > (n+ 1)/ 2" f (x)dx.

Moreover, by usin(g); Lemnja 1.3, we g;et "

(n—l—l)/olx”f(a:)dx—n/le"f(x)dx—i—/le"f(x)dx

n
>
T n+2

1
+/0 " f (z)dx,

that is

1
n

> m d
— 5 2+/Oxf(x) x,

1
/ () do +
0
which completes this proof.
Theorem 2.2. Assume thaf (1] 1) anfi (1.4) hold. Then

1 1
/ " (2) de > / zf" (x)dr
0 0
for everyn € N.
Proof. It is known that
(f"(x) —a™) (f () —x) =20, Vzel01],
that is
(@) + 2" > f () Faf" (x), Vzelo,1].
By integrating with some simple calculation we conclude that

/Olfnﬂ(a;)d“L>/01x"f(x)dx+/olen(x)dm.

n+2 -
Once again, by Lemmnja 1.3, we obtain
1 1 1 1
n+1 d > n d
| r@ars =5 [ar@e

which gives the conclusion.
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Remark 2.3. By the same argument, we see that the result of Lemna 1.3 also holdswigien
a positive real number. That is

(2.1) /1 vt f (2) dx >

, Va>0.
0 Oé"_?)

3. THE CASE OF REAL NUMBERS

In order to generalize our results, the case of positive real numbers, we recall another version
of the Cauchy inequality as follows.

Theorem 3.1(General Cauchy inequalitylet « and 3 be positive real numbers satisfying
a + = 1. Then for every positive real numberandy, we always have

ax + By > 2%y
Theorem 3.2. Assume thaf (1] 1) anfl (1.4) hold. Then

1 1
/ for(z)de > / xf (x) dx
0 0
for every positive real number > 0.

Proof. Using Theorem 3|1 we get

1
a—_'_lfa+1 (l’)+—$a+l Z lL‘af (IL‘),

a+1
which gives
! /lfa“(:c)da:—i- “ /1xa“dx>/1xaf(:c)d:c
a+1J, a+1/, ~—Jo '
By the same argument together with (2.1) we obtain
1 ! «Q
a+1 d
a+1/0 F @t e T
1 ! « !
@ d @ d
1 1 «
@ d .
= a+1/0 @) det e T
Hence
1 ! a+1 dr > 1 ! « d
04—0—1/0 J @) $_oz+1/0 v (@) do.
The present proof is completed. O

Theorem 3.3. Assume thaf (1]1) and (1.4) hold. Then

/Olfo‘+1 () dx > /lefa(m)dx

for every positive real number > 0.

The proof of Theorern 3|3 is similar to the proof of Theofen} 2.2 therefore, we omit it.
Lastly, we propose the following open problem.

Open Problem. Let f(x) be a continuous function dn, 1] satisfying

/lf(t)dtz/ltdt, vz € [0,1].
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Under what conditions does the inequality

/O 1 o (x) dx > / 1 t f° () da.

0
hold fora and 5?
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