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ABSTRACT. In this paper, an integral inequality is studied. An answer to an open problem
proposed by Feng Qi and Yin Chen and John Kimball is given.
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1. INTRODUCTION
In [6], Qi studied an interesting integral inequality and proved the following result

Theorem 1.1(Proposition 1.1,[[6]) Let f(z) be continuous offu, b], differentiable on(a, b)
andf(a) = 0. If f’'(z) > 1forz € (a,b), then

(1.1) /abf3(x)dxz </abf(x)dx)2.

If 0 < f'(z) < 1, then the inequality (1]1) reverses.
Qi extended this result to a more general case [6], and obtained the following inedquality (1.2).

Theorem 1.2(Proposition 1.3,[6]) Letn be a positive integer. Suppogér) has continuous
derivative of then-th order on the intervala, b] such thatf?(a) > 0, where0 < i < n — 1,
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and £ (x) > n!, then

(1.2) /ab 2 () do > (/abf (z) dx) nH.

Qi then proposed an open problem (Theorem L6, [BRder what condition is the inequality
(I.2)still true if n is replaced by any positive real numbet

Some new results on this subject can be foundin [1], [2], [3] and [4].[In [2], Chen and
Kimball proposed a theorem

Theorem 1.3(Theorem 5,[[2]) Supposef(x) has derivative of the-th order on the interval

[a,0] such thatf)(a) = 0 fori = 0,1,2,....n — 1. If fV(2) > =5 and f) () is in-

creasing, then the inequaliif.2) holds. 1f0 < f™(z) < (nﬂf)bﬁ and £ (z) is decreasing,
then the inequalityT.Z) reverses.

After proving the theorem, Chen and Kimball proposed a conjecture. The conjecture is that
the above monotony assumption of Theofen 1.3 could be dropped. In this paper, we will prove
that this conjecture holds. We use the same technique which was introduced by Qi in [6].

2. MAIN RESULTS

At the beginning of this section, we consider the case 2 as the first step in the process.

Lemma 2.1. Supposef(x) has continuous a derivative of tiend order on the intervala, b]
such thatf@(a) = 0, wherei = 0,1, and f®)(z) > £, then

(2.1) /abf4(x)dx2 (/abf(x)dx)g.

Proof. It follows from f?)(z) > % > ( that f’ is (strictly) increasing ifa, b]. Sincef’(a) = 0
thenf'(x) > f'(a) = 0 for everya < = < b. Thereforef is also increasing ifu, b]. Let

H(x):/;f%;)dx— (/;f(x)dx)s, z € [a,b].

Direct calculation produces

1 (z) = <f3 (w)—3(/:f(x)drc)2> F @) = (2) f (),

which yields
W, () = <f @ -2 sw dx) F (@) = 3hs (2) f (2).
Then
Wy () = (' (2))° + £ (2) " () — 2/ ()
and

By () = (f (@) + f (2) f" (x) = 2f ()
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Thus
() =21 (@) 1" (2) — 5 (0)
2270 (10 - 2)

> 0.

Thereforehs(z), ho(x) and hy(z) are increasing and theA (z) is also increasing. Hence
H(b) > H(a) = 0 which completes this proof. O

Now we state our main result.

Theorem 2.2. Letn be a positive integer. Suppogér) has a continuous derivative of theth

order on the intervala, b] such thatf® (a) = 0, where0 < i <n—1,andf™ (z) > (nﬂ’)‘%
then

(2.2) /ab F12 (2) do > (/abf (z) d:zc) " .

Proof of Theorem 2|2Letting

gy = "Dy,

n!

one can easily see that” (z) > 1 for all z.
The problem now is to show that the inequality below is true

/abg"H(x)dIZ%(/abg(x)dx)

G (2) :/:g"”(t)dt—w (/:g(t)dt>n+1.

One can find that

¢l (g - </ g(1) d’f)n)

=9(2) g1 ().
We will prove g;(z) > 0 by induction. According to Lemmpa 2.1, the case= 2 is proved.

Denote ( 1)
n+1 n -+ v
() = g% (@) - L [ g

It is easy to see that the functidiiz) := ¢'(x) satisfies the following conditions
a) h™ (a) =0forallk <n—2,and
b) A= (z) > 1.
Therefore, by induction

n+1

Let

or equivalently

J. Inequal. Pure and Appl. Math8(2) (2007), Art. 41, 4 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 QuécANH NGO AND PHAM HUY TUNG

n+1 1 n+1 nn—1

" / > n .
ot )9 (@) 2 T e (o)
n+1 n+1 n"fl z
n > e
o @)= i s [

Then, the conclusiom, (z) > 0 follows from the fact that

Hence,

Thus,

n+1 | n* b n+1

n (n—1!  nl’
which yieldsg; () > 0. ThenG (z) > 0. Our proof is completed. O
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