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NEW GENERALIZATIONS OF AN
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Abstract

In this short paper an integral inequality posed in the 11*" Inter-
national Mathematical Competition for University Students is further
generalized.

1 Introduction.

Problem 2 of the 11*" International Mathematical Competition for University
Students, Skopje, Macedonia, 25-26 July 2004 (see [1]) reads as follows:

Proposition 1. Let f, g : [a,b] — [0, 00) be two continuous and non-decreasing
functions such that

/ V@ < / BNZOEY (1)

for x € [a,b] and

b b
| Vidai= [ Vawa. (2)
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Then
/b\/1+f(t)dt>/b\/l—kg(t)dt.

Considering (2), it is clear that (1) can be rewritten as ff VI)de >
ff v/ g(t)dt. By replacing f(z) with v/ f(z) and g(x) with y/g(x), Proposi-

tion 1 can be simplified into the following Proposition 2.

Proposition 2. Let f,g : [a,b] — [0,00) be two continuous, non-decreasing
functions such that

b b
/f@M;/WMt (3)

for x € [a,b] and

lMthww. (4)

Then
/b\/1+f2(t)dt> /b\/l—i—g?(t)dt. (5)

Let F(z) = [7 f(t)dt and G(z) = [’ g(t)dt. Then F(z) < G(z) for
x € [a,b] and G(z) is a convex function on [a,b]. On the other hand, since
F(a) = G(a) and F(b) = G(b), then inequality (5) is apparently valid because
the length of the curve y = F(z) is not less than that of the curve y = G(x).
This explains the geometric meaning of Proposition 2 and gives a solution to
Proposition 1.

In [3], Proposition 1 and Proposition 2 were generalized as follows:

Theorem A. Let f : [a,b] — [0,00) be a continuous function and g : [a,b] —
[0,00) a continuous, non-decreasing function satisfying (3) and (4). Then

/MWWQ/MWMt (6)

for every convex function h on [0, 00).

Theorem B. Let f : [a,b] — [0,00) be a continuous function and g : [a,b] —
[0,00) a continuous, non-increasing function satisfying the reversed inequali-
ties of (3) and (4). Then inequality (6) holds true for every convex function
h on [0,00).
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The main aim of this paper is to further generalize Proposition 1 and
Proposition 2. Our main results are included in the two theorems below.

Theorem 1. Let f : [a,b] — [0,00) be a continuous function and g : [a,b] —
[0,00) a continuous, non-decreasing function satisfying (3). Then inequality
(6) is valid for every convex function h such that b’ > 0 and h' is integrable
on [0,00).

Corollary 1. Let f : [a,b] — [0,00) be a continuous function and g [a,b] —
[0 oo) a continuous, non-decreasing function satisfying (3). Then f fe@)de >
f g% (t) dt for every a > 1.

Theorem 2. Let f : [a,b] — [0,00) be a continuous function and g : [a,b] —
[0,00) a continuous, non-increasing function satisfying the reversed inequality
of (3). Then inequality (6) holds true for every convex function h such that
h' <0 and h' is integrable on [0,00).

2 Proofs of Theorem 1 and Theorem 2.

In order to prove our theorems, the well known second mean value theorem
for integrals will be available.

Lemma 1 ([2, p. 35]). Let f(z) be bounded and monotonic and let g(x) be
integrable on [a,b]. Then there exists some & € [a,b] such that

b ¢ b
/a f(@)g(x) dz = f(a) / o(e)dz + (D) /f o(x) da.

PROOF OF THEOREM 1. Let ¢(z) = — ff dt and ¢(x —f gt

Since h is convex, h(t) > h(s) —l— (t — s)h/(s) for a < st Szb. Therefore
h(¢'(t)) = h(¢' () + [¢'(t) — ¢ (1)]n'(¢(¢)), which gives

b b
/ W@ (1)) dt > / B (1)) dt + / [6'(t) — & (IR (S (1)) dt.

Now it is sufficient to prove that f; [@'(t) — &' (1)]W (' (t)) dt > 0. Since h(t) is
convex, the function h’'(t) is non-decreasing. Since ¢(¢) is non-decreasing, the
function ¢'(t) is also non-decreasing. Thus the composite function h'(¢’(t)) is
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non-decreasing with respect to ¢. Using Lemma 1 for some £ € [a, b] yields

since (&) < ¢(§) and 0 < h'(g(a)) < h'(g(b)). The proof of Theorem 1 is
complete. O

PrROOF OF THEOREM 2. Considering the proof of Theorem 1, it suffices to
prove f:[gb’(t) — @' (W][-h (¢ (t))]dt < 0. Since h is convex, —h' is non-
increasing. Since g is non-increasing, ¢’ is also non-increasing. Consequently,

the composite function —h'(¢’(¢)) is non-increasing with respect to ¢t. Utilizing
Lemma 1 for some ¢ € [a, b] leads to

b
/ 6(t) — o (D1 (' (1)) dt

3 b
— 1(¢/(a)) / [6(t) — (D] At + (1) /5 6(t) — ()] dt

= h'(¢"(a))(8(€) — d(a) — p(§) + p(a)) + 1'(¢'(6))($(b) — #(§) — @(b) + (&)
> [6(§) = (&I (g(a)) = 1'(g(b))] = 0,
since ¢(&) > (&) and 0 > h/(g(a)) > h'(g(b). The proof is complete. O
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