Quốc-Anh Ngô, Department of Mathematics, College of Science, Việt Nam National University, Hà Nội, Việt Nam. email: bookworm_vn@yahoo.com Feng Qi, Research Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China. email: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com Ninh Van Thu, Department of Mathematics, College of Science, Việt Nam National University, Hà Nội, Việt Nam. email: thunv@vnu.edu.vn

NEW GENERALIZATIONS OF AN INTEGRAL INEQUALITY

Abstract

In this short paper an integral inequality posed in the $11^{\text {th }}$ International Mathematical Competition for University Students is further generalized.

1 Introduction.

Problem 2 of the $11^{\text {th }}$ International Mathematical Competition for University Students, Skopje, Macedonia, 25-26 July 2004 (see [1]) reads as follows:

Proposition 1. Let $f, g:[a, b] \rightarrow[0, \infty)$ be two continuous and non-decreasing functions such that

$$
\begin{equation*}
\int_{a}^{x} \sqrt{f(t)} \mathrm{d} t \leq \int_{a}^{x} \sqrt{g(t)} \mathrm{d} t \tag{1}
\end{equation*}
$$

for $x \in[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b} \sqrt{f(t)} \mathrm{d} t=\int_{a}^{b} \sqrt{g(t)} \mathrm{d} t \tag{2}
\end{equation*}
$$

Key Words: integral inequality, generalization, the second mean value theorem for integrals

Mathematical Reviews subject classification: 26D15
Received by the editors October 27, 2007
Communicated by: Alexander Olevskii

Then

$$
\int_{a}^{b} \sqrt{1+f(t)} \mathrm{d} t \geq \int_{a}^{b} \sqrt{1+g(t)} \mathrm{d} t
$$

Considering (2), it is clear that (1) can be rewritten as $\int_{x}^{b} \sqrt{f(t)} \mathrm{d} t \geq$ $\int_{x}^{b} \sqrt{g(t)} \mathrm{d} t$. By replacing $f(x)$ with $\sqrt{f(x)}$ and $g(x)$ with $\sqrt{g(x)}$, Proposition 1 can be simplified into the following Proposition 2.

Proposition 2. Let $f, g:[a, b] \rightarrow[0, \infty)$ be two continuous, non-decreasing functions such that

$$
\begin{equation*}
\int_{x}^{b} f(t) \mathrm{d} t \geq \int_{x}^{b} g(t) \mathrm{d} t \tag{3}
\end{equation*}
$$

for $x \in[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} g(t) \mathrm{d} t \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{a}^{b} \sqrt{1+f^{2}(t)} \mathrm{d} t \geq \int_{a}^{b} \sqrt{1+g^{2}(t)} \mathrm{d} t \tag{5}
\end{equation*}
$$

Let $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$ and $G(x)=\int_{a}^{x} g(t) \mathrm{d} t$. Then $F(x) \leq G(x)$ for $x \in[a, b]$ and $G(x)$ is a convex function on $[a, b]$. On the other hand, since $F(a)=G(a)$ and $F(b)=G(b)$, then inequality (5) is apparently valid because the length of the curve $y=F(x)$ is not less than that of the curve $y=G(x)$. This explains the geometric meaning of Proposition 2 and gives a solution to Proposition 1.

In [3], Proposition 1 and Proposition 2 were generalized as follows:
Theorem A. Let $f:[a, b] \rightarrow[0, \infty)$ be a continuous function and $g:[a, b] \rightarrow$ $[0, \infty)$ a continuous, non-decreasing function satisfying (3) and (4). Then

$$
\begin{equation*}
\int_{x}^{b} h(f(t)) \mathrm{d} t \geq \int_{x}^{b} h(g(t)) \mathrm{d} t \tag{6}
\end{equation*}
$$

for every convex function h on $[0, \infty)$.
Theorem B. Let $f:[a, b] \rightarrow[0, \infty)$ be a continuous function and $g:[a, b] \rightarrow$ $[0, \infty)$ a continuous, non-increasing function satisfying the reversed inequalities of (3) and (4). Then inequality (6) holds true for every convex function h on $[0, \infty)$.

The main aim of this paper is to further generalize Proposition 1 and Proposition 2. Our main results are included in the two theorems below.

Theorem 1. Let $f:[a, b] \rightarrow[0, \infty)$ be a continuous function and $g:[a, b] \rightarrow$ $[0, \infty)$ a continuous, non-decreasing function satisfying (3). Then inequality (6) is valid for every convex function h such that $h^{\prime} \geq 0$ and h^{\prime} is integrable on $[0, \infty)$.

Corollary 1. Let $f:[a, b] \rightarrow[0, \infty)$ be a continuous function and $g:[a, b] \rightarrow$ $[0, \infty)$ a continuous, non-decreasing function satisfying (3). Then $\int_{a}^{b} f^{\alpha}(t) \mathrm{d} t \geq$ $\int_{a}^{b} g^{\alpha}(t) \mathrm{d} t$ for every $\alpha>1$.

Theorem 2. Let $f:[a, b] \rightarrow[0, \infty)$ be a continuous function and $g:[a, b] \rightarrow$ $[0, \infty)$ a continuous, non-increasing function satisfying the reversed inequality of (3). Then inequality (6) holds true for every convex function h such that $h^{\prime} \leq 0$ and h^{\prime} is integrable on $[0, \infty)$.

2 Proofs of Theorem 1 and Theorem 2.

In order to prove our theorems, the well known second mean value theorem for integrals will be available.

Lemma 1 ([2, p. 35]). Let $f(x)$ be bounded and monotonic and let $g(x)$ be integrable on $[a, b]$. Then there exists some $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(a) \int_{a}^{\xi} g(x) \mathrm{d} x+f(b) \int_{\xi}^{b} g(x) \mathrm{d} x .
$$

Proof of Theorem 1. Let $\phi(x)=-\int_{x}^{b} f(t) \mathrm{d} t$ and $\varphi(x)=-\int_{x}^{b} g(t) \mathrm{d} t$. Since h is convex, $h(t) \geq h(s)+(t-s) h^{\prime}(s)$ for $a \leq s, t \leq b$. Therefore $h\left(\phi^{\prime}(t)\right) \geq h\left(\varphi^{\prime}(t)\right)+\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] h^{\prime}\left(\varphi^{\prime}(t)\right)$, which gives

$$
\int_{a}^{b} h\left(\phi^{\prime}(t)\right) \mathrm{d} t \geq \int_{a}^{b} h\left(\varphi^{\prime}(t)\right) \mathrm{d} t+\int_{a}^{b}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] h^{\prime}\left(\varphi^{\prime}(t)\right) \mathrm{d} t .
$$

Now it is sufficient to prove that $\int_{a}^{b}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] h^{\prime}\left(\varphi^{\prime}(t)\right) \mathrm{d} t \geq 0$. Since $h(t)$ is convex, the function $h^{\prime}(t)$ is non-decreasing. Since $g(t)$ is non-decreasing, the function $\varphi^{\prime}(t)$ is also non-decreasing. Thus the composite function $h^{\prime}\left(\varphi^{\prime}(t)\right)$ is
non-decreasing with respect to t. Using Lemma 1 for some $\xi \in[a, b]$ yields

$$
\begin{aligned}
& \int_{a}^{b}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] h^{\prime}\left(\varphi^{\prime}(t)\right) \mathrm{d} t \\
& =h^{\prime}\left(\varphi^{\prime}(a)\right) \int_{a}^{\xi}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] \mathrm{d} t+h^{\prime}\left(\varphi^{\prime}(b)\right) \int_{\xi}^{b}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] \mathrm{d} t \\
& =h^{\prime}(g(a))[\phi(\xi)-\phi(a)-\varphi(\xi)+\varphi(a)]+h^{\prime}(g(b))[\phi(b)-\phi(\xi)-\varphi(b)+\varphi(\xi)] \\
& \geq h^{\prime}(g(a))[\phi(\xi)-\varphi(\xi)]+h^{\prime}(g(b))[\phi(b)-\phi(\xi)-\varphi(b)+\varphi(\xi)] \\
& =[\phi(\xi)-\varphi(\xi)]\left[h^{\prime}(g(a))-h^{\prime}(g(b))\right] \geq 0
\end{aligned}
$$

since $\phi(\xi) \leq \varphi(\xi)$ and $0 \leq h^{\prime}(g(a)) \leq h^{\prime}(g(b))$. The proof of Theorem 1 is complete.

Proof of Theorem 2. Considering the proof of Theorem 1, it suffices to prove $\int_{a}^{b}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right]\left[-h^{\prime}\left(\varphi^{\prime}(t)\right)\right] \mathrm{d} t \leq 0$. Since h is convex, $-h^{\prime}$ is nonincreasing. Since g is non-increasing, φ^{\prime} is also non-increasing. Consequently, the composite function $-h^{\prime}\left(\varphi^{\prime}(t)\right)$ is non-increasing with respect to t. Utilizing Lemma 1 for some $\xi \in[a, b]$ leads to

$$
\begin{aligned}
& \int_{a}^{b}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] h^{\prime}\left(\varphi^{\prime}(t)\right) \mathrm{d} t \\
& =h^{\prime}\left(\varphi^{\prime}(a)\right) \int_{a}^{\xi}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] \mathrm{d} t+h^{\prime}\left(\varphi^{\prime}(b)\right) \int_{\xi}^{b}\left[\phi^{\prime}(t)-\varphi^{\prime}(t)\right] \mathrm{d} t \\
& =h^{\prime}\left(\varphi^{\prime}(a)\right)(\phi(\xi)-\phi(a)-\varphi(\xi)+\varphi(a))+h^{\prime}\left(\varphi^{\prime}(b)\right)(\phi(b)-\phi(\xi)-\varphi(b)+\varphi(\xi)) \\
& \geq[\phi(\xi)-\varphi(\xi)]\left[h^{\prime}(g(a))-h^{\prime}(g(b))\right] \geq 0
\end{aligned}
$$

since $\phi(\xi) \geq \varphi(\xi)$ and $0 \geq h^{\prime}(g(a)) \geq h^{\prime}(g(b)$. The proof is complete.

References

[1] The $11^{\text {th }}$ International Mathematical Competition for University Students, Skopje, Macedonia, 25-26 July 2004, Solutions for problems on Day 2, Available online at http://www.imc-math.org.uk/index.php?year= 2004 or http://www.imc-math.org.uk/imc2004/day2_solutions.pdf.
[2] M. J. Cloud \& B. C. Drachman, Inequalities with Applications to Engineering, Springer, 1998.
[3] Q.-A. Ngô \& F. Qi, Generalizations of an integral inequality, preprint.

