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Existence of non-negative Solutions for cooperative
elliptic Systems involving Schrödinger Operators in the
whole Space

ABSTRACT. In this paper, we obtain some new results on the existence of non-negative
solutions for systems of the form

(−∆ + qi)ui = µimiui +
n∑

j=1;j 6=i

aijuj + fi(x, u1, ..., un) in RN , i = 1, ..., n,

where each of the qi are positive potentials satisfying lim|x|→+∞ qi(x) = +∞, each of the
mi are bounded positive weights, each of the aij, i 6= j, are bounded non-negative weights
and each of the µi are real parameters. Depending upon the hypotheses on fi, we obtain
some new results by using sub- and super-solution methods and the Schauder Fixed Point
Theorem.

1 Introduction

In this paper, we are interested in the existence of non-negative solutions of the following
cooperative elliptic system

(−∆ + qi)ui = µimiui +
n∑

j=1;j 6=i

aijuj + fi(x, u1, . . . , un), in RN , i = 1, ..., n. (1.1)

We consider the following hypotheses for each i = 1, . . . , n and j = 1, . . . , n

(h1) qi ∈ L2
loc(RN)∩Lploc(RN) (p > N

2
) such that lim|x|→+∞ qi(x) = +∞ and qi ≥ const > 0.

(h2) aij ∈ L∞(RN) and aij ≥ 0 if i 6= j.

(h3) mi ∈ L∞(RN) and there exists αi > 0 such that mi(x) ≥ αi > 0 for all x ∈ RN .
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Note that our system is cooperative since aij ≥ 0 if i 6= j. We will specify later the hypotheses
on each fi and we denote by µi real parameters for i = 1, . . . , n.

The variational space is denoted by Vq1(RN)× · · ·×Vqn(RN) where for i = 1, . . . , n, Vqi(RN)

is the completion of D(RN), the set of C∞ functions with compact support, under the norm

‖u‖qi =

√∫
RN

(
|∇u|2 + qiu2

)
. (1.2)

We recall that each of the embedding Vqi(RN) ↪→ L2(RN) is compact. We denote by

‖u‖mi
=

√∫
Ω

miu2 for all u ∈ L2(Ω).

According to the hypothesis (h3), ‖ · ‖mi
is a norm in L2(RN), equivalent to the usual norm

so the embedding Vqi(RN) ↪→ (L2(RN), ‖ · ‖mi
) is still compact.

We denote by Mi the operator of multiplication by mi in L2(RN). The operator

(−∆ + qi)
−1Mi : (L2(RN), ‖ · ‖mi

)→ (L2(RN), ‖ · ‖mi
)

is positive self-adjoint and compact. So its spectrum is discrete and consists of a positive
sequence tending to 0. We denote by λi the first eigenvalue and by φi the corresponding
eigenfunction which satisfy

(−∆ + qi)φi = λimiφi in RN , λi > 0 (1.3)

and ‖φi‖mi
= 1. We recall that λi is simple and that φi > 0 (see for examples [1, 2, 4, 5, 15,

16]). By the Courant-Fischer formulas, λi is given by

λi = inf

{∫
RN

(
|∇φ|2 + qiφ

2
)∫

RN miφ2
, φ ∈ D(RN)

}
. (1.4)

The aim of this paper is to study the existence of non-negative solutions for the system (1.1).
This extends earlier results obtained for the Laplacian operator in a bounded domain (see
[12, 13]), for an operator of divergence form in a bounded domain (see [9]), for equations or
systems involving Schrödinger operators −∆ + qi in RN (see [3, 6–8, 10, 11]).

Our paper is organized as follows. Section 2 provides some preliminaries and notations before
stating our main result which is given in Section 3. In Section 4, we give some remarks on
our hypotheses for a two-by-two system.



Existence of non-negative Solutions for . . . 65

2 Preliminaries and Notations

2.1 Review of results for the scalar case (i = 1)

We consider here the following equation, in a variational sense,

(−∆ + q)u = λmu+ g in RN . (e)

We assume the following: The potential q satisfies (h1), the weight m satisfies (h3), the
constant λ is a real parameter and finally g ∈ L2(RN). We denote by (λm,q, φm,q) the
eigenpair of eigenvalue and eigenfunction which satisfy

(−∆ + q)φm,q = λm,qmφm,q , λm,q > 0, φm,q > 0.

We recall the following results on the existence of solutions and the Maximum Principle.

Theorem 2.1 (see [11]; Theorems 1.1 and 1.2) Assume that λ < λm,q. Then
there exists a unique solution u ∈ Vq(RN) for the equation (e). Moreover,

(i) the weak Maximum Principle holds: if g ≥ 0, then this solution u satisfies u ≥ 0,

(ii) the strong Maximum Principle holds too: if g ≥ 0, g 6= 0 then u > 0.

2.2 Notations and Hypotheses

We recall that for each i = 1, . . . , n the eigenpair (λi, φi) is defined by (1.3)-(1.4). Let us
denote by Φ the vector defined by

tΦ = (φ1, . . . , φn). (2.1)

We assume that for each i = 1, . . . , n, the nonlinear term fi of the system (1.1) satisfies the
following hypotheses

(h4) For each i = 1, . . . , n

(i) fi(x, k1φ1, . . . , knφn) ∈ L2(RN) for all positive numbers k1, . . . , kn.

(ii) 0 ≤ fi(x, u1, . . . , un) for all u1 ≥ 0, . . . , un ≥ 0.

(iii) For all 0 ≤ u1 ≤ v1, . . . , 0 ≤ un ≤ vn,

0 ≤ fi(x, u1, . . . , un) ≤ fi(x, v1, . . . , vn).
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(iv) For all positive real numbers k1, . . . , kn,

fi(x, ηk1φ1, . . . , ηknφn)

ηφi
→ 0 as η → +∞, uniformly in x.

(v) fi is Lipschitz respect to (u1, . . . , un) uniformly in x.

For instance, the function fi(x, u1, . . . , un) =
√
u1 + · · ·+ un 1K (where 1K denotes the

indicator function on a compact K ⊂ RN) satisfies (h4)(iv).

We denote by L = (lij) the following n× n matrix be defined by

lij :=

(λi − µi)αi if i = j,

−‖aij‖L∞(RN ) if i 6= j,
(2.2)

for all i, j = 1, . . . , n. We also assume that the following hypothesis holds for some β > 0

(h5) (L− βI)Φ ≥ 0

where I is the n×n identity matrix. Here (L−βI)Φ ≥ 0 means that the entries of (L−βI)Φ

are non-negative functions. Note that the hypothesis (h5) forces that the coupling is very
weak, i. e., with small coefficients aij and with eigenfunctions φi which have the same
behaviour at infinity: φi(x)

φj(x)
is bounded for all i, j = 1, . . . , n and all x ∈ RN . We can now

develop our main result in the next section.

3 Existence of solutions

We begin stating our main result, obtained by considering a sub- and a super-solution of the
system (1.1) and using the Schauder Fixed Point Theorem. We recall that (v1, . . . , vn) is a
sub-solution (resp. a super-solution) of the system (1.1) if for each i = 1, . . . , n, we have

(−∆ + qi)vi ≤ µimivi +
n∑

j=1;j 6=i

aijvj + fi(x, v1, . . . , vn) in RN (3.1)

(resp. ≥).

Theorem 3.1 Assume that the hypotheses (h1)-(h5) are satisfied. Then the system (1.1)
has at least one non-negative solution in Vq1(RN)× · · · × Vqn(RN).

Proof: First, note that u0 = (0, . . . , 0) is a sub-solution of the system (1.1). Then, by
hypothesis (h5), we have (L− βI)Φ ≥ 0 and so we get for each i = 1, . . . , n,

(λi − µi)miφi − βφi −
n∑

j=1;j 6=i

aijφj ≥ 0.
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Since, by hypothesis (h4)(iv), we have for η sufficiently large

0 ≤ fi(x, ηφ1, . . . , ηφn)

ηφi
≤ β,

we can write for η sufficiently large

(λi − µi)miηφi −
n∑

j=1;j 6=i

aijηφj ≥ ηβφi ≥ fi(x, ηφ1, . . . , ηφn).

Thus we have

(λi − µi)miηφi −
n∑

j=1;j 6=i

aijηφj ≥ fi(x, ηφ1, . . . , ηφn). (3.2)

Therefore u0 := ηΦ = (ηφ1, . . . , ηφn) is a super-solution of the system (1.1).

Now, we define the set σ = [u0, u
0]. Let α be a positive real such that for all i, µi + α > 0.

Let

T : (L2(RN))n → (L2(RN))n

(u1, . . . , un) = u 7→ v = (v1, . . . , vn)

where for each i = 1, . . . , n

(−∆ + qi + αmi)vi = (µi + α)miui +
n∑

j=1;j 6=i

aijuj + fi(x, u1, . . . , un) in RN . (3.3)

Note that, by the scalar case, T is well defined for all u ∈ σ.

As in [3], we prove now that T (σ) ⊂ σ. Let u = (u1, . . . , un) ∈ σ and T (u) = v = (v1, . . . , vn).

By the weak Maximum Principle for the scalar case, since the system (1.1) is a cooperative
one and α > 0, we get vi ≥ 0 for each i = 1, . . . , n. Moreover, we have

(−∆ + qi + αmi)(ηφi − vi) =(λi + α)ηmiφi − (µi + α)miui

−
n∑

j=1;j 6=i

aijuj − fi(x, u1, . . . , un).

By (3.2), we get

(−∆ + qi + αmi)(ηφi − vi)

≥(µi + α)mi(ηφi − ui) +
n∑

j=1;j 6=i

aij(ηφj − uj)

+ fi(x, ηφ1, . . . , ηφn)− fi(x, u1, . . . , un)

≥0.
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By the weak Maximum Principle for the scalar case, we obtain vi ≤ ηφi for each i = 1, . . . , n.
Therefore T (σ) ⊂ σ.

As in [3], we prove now that T is continuous and that T (σ) is compact. Let (uk)k, where
uk = (u1k, . . . , unk), be a sequence in σ and define T (uk) = vk where vk = (v1k, . . . , vnk).
First, if (uk) converges to u = (u1, . . . , un) for ‖ · ‖(L2(Ω))n , and if T (u) = v = (v1, . . . , vn),
from (3.3) we have for each i = 1, . . . , n and for all k

(−∆ + qi + αmi)(vik − vi) =(µi + α)mi(uik − ui) +
n∑

j=1;j 6=i

aij(ujk − uj)

+ fi(x, u1k, . . . , unk)− fi(x, u1, . . . , un). (3.4)

Multiplying (3.4) by vik − vi and integrating over RN , we get

‖vik − vi‖2
qi+αmi

=(µi + α)

∫
RN

mi(uik − ui)(vik − vi)

+
n∑

j=1,j 6=i

∫
RN

aij(ujk − uj)(vik − vi)

+

∫
RN

(
fi(x, u1k, . . . , unk)− fi(x, u1, . . . , un)

)
(vik − vi).

Using the hypothesis (h4)(v) and the Cauchy-Schwartz inequality, since the coefficients mi

and aij are bounded, we deduce that there exists a constant C1 > 0 such that

‖vik − vi‖qi+αmi
≤ C1

n∑
j=1

‖ujk − uj‖L2(Ω).

Therefore T is continuous. We prove now that T (σ) is compact. Multiplying (3.3) by vik we
have also

‖vik‖2
qi+αmi

= (µi + α)

∫
RN

miuikvik +
n∑

j=1,j 6=i

∫
RN

aijujkvik +

∫
RN

fi(x, u1k, . . . , unk)vik.

Since the coefficients mi and aij are bounded, then by the hypothesis (h4), we see that
fi(x, u1k, . . . , unk) is bounded too and we can deduce the existence of a constant C2 > 0 and
of a constant C3 > 0 such that

‖vik‖qi+αmi
≤ C2 (

n∑
j=1

‖ujk‖L2(RN ) + C3).

But u ∈ σ. Therefore the sequence (vk)k is bounded in Vq1(RN) × · · · × Vqn(RN) and since
each of the embedding Vqi(RN) ↪→ L2(RN) is compact, we can find a subsequence of (vk)k

which is convergent in (L2(RN))n. Therefore T (σ) is compact.



Existence of non-negative Solutions for . . . 69

By the Schauder Fixed Point Theorem, we deduce the existence of u ∈ σ such that T (u) = u.
Clearly u is a non-negative solution of the system (1.1).

As in [14], we can relax the hypotheses on the increasing of each function fi but assuming
stronger hypotheses on the regularity of fi. For the next result, we will suppose that each
function fi of the system (1.1) satisfies the following hypothesis

(h′4) (i) fi(x, u1, . . . , ηφi, . . . , un) ∈ L2(RN) for all η > 0 and all 0 ≤ u1 ≤ ηφ1, . . . , 0 ≤
un ≤ ηφn.

(ii) 0 ≤ fi(x, u1, . . . , un) for all u1 ≥ 0, . . . , un ≥ 0.

(iii) fi is of class C1.

(iv) For all 0 ≤ u1 ≤ ηφ1, . . . , 0 ≤ un ≤ ηφn,

fi(x, u1, . . . , ηφi, . . . , un)

ηφi
→ 0 as η → +∞, uniformly in x.

(v) fi is Lipschitz respect to (u1, . . . , un) uniformly in x.

Following [14], we say that a couple (u01, . . . , u0n)− (u0
1, . . . , u

0
n) is a sub−super-solution of

the system (1.1) (Müller type conditions) if for each i = 1, . . . , n,

u0i ≤ u0
i

and moreover0 ≥ (−∆ + qi)u0i − µimiu0i −
∑n

j=1;j 6=i aijuj − fi(x, u1, . . . , u0i, . . . , un),

0 ≤ (−∆ + qi)u
0
i − µimiu

0
i −

∑n
j=1;j 6=i aijuj − fi(x, u1, . . . , u

0
i , . . . , un),

(3.5)

for any uj ∈ [u0j, u
0
j ].

It is clear that this definition is much more stringent than the natural definition (3.1) where
(3.5) are only satisfied for uj = u0j (for the sub-solution) and for uj = u0

j (for the super-
solution). Note that if fi is increasing, both definitions coincide.

Theorem 3.2 Assume that the hypotheses (h1)-(h3), (h′4) and (h5) are satisfied. Then
the system (1.1) has at least one non-negative solution in Vq1(RN)× · · · × Vqn(RN).

Proof: As in Theorem 3.1, we denote by u0 = (0, . . . , 0), Φ = (φ1, . . . , φn) and by u0 = ηΦ

for η sufficiently large positive real defined later. First, we prove that (u0, u
0) is a couple of

sub-super-solution in the sense of (3.5).
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Indeed, proceeding as for Theorem 3.1, using hypotheses (h′4) and (h5) we have (for η
sufficiently large)

(λi − µi)miηφi ≥
n∑

j=1;j 6=i

aijηφj + fi(x, u1, . . . , ηφi, . . . , un) for any 0 ≤ uj ≤ ηφj

and therefore (since the system (1.1) is cooperative)

(λi − µi)miηφi ≥
n∑

j=1;j 6=i

aijuj + fi(x, u1, . . . , ηφi, . . . , un) for any 0 ≤ uj ≤ ηφj.

We define the set σ = [u0, u
0]. Let α be a positive real such that for all i, µi + α > 0. Let

Tσ : σ → (L2(RN))n

(u1, . . . , un) = u 7→ v = (v1, . . . , vn)

where for each i = 1, . . . , n,

(−∆ + qi + αmi + ρmi)vi = (µi + α)miui +
n∑

j=1;j 6=i

aijuj + fi(x, u1, . . . , un) + ρmiui in RN

and where ρ > 0 is a constant such that fi(x, u1, . . . , un) + ρmiui is increasing in ui. We can
find such ρ by hypotheses (h3) and (h′4) since the function fi is C1. Still by the scalar case,
the operator Tσ is well defined and proceeding as for Theorem 3.1, we can prove that Tσ is
continuous and Tσ(σ) is compact.

Now we prove that Tσ(σ) ⊂ σ. Let u = (u1, . . . , un) ∈ σ and Tσ(u) = v = (v1, . . . , vn). Note
by the scalar case vi ≥ 0 for each i = 1, . . . , n. Moreover we have for each i = 1, . . . , n

(−∆ + qi + αmi + ρmi)(ηφi − vi) ≥(µi + α)mi(ηφi − ui)
+ fi(x, u1, . . . , ηφi, . . . un) + ρmiηφi

− fi(x, u1, . . . , un)− ρmiui

≥0.

Since ui ≤ ηφi and wi 7→ fi(x, u1, . . . , wi, . . . , un) + ρmiwi is increasing, by the scalar case,
we obtain vi ≤ ηφi for each i = 1, . . . , n. Therefore Tσ(σ) ⊂ σ.

By the Schauder Fixed Point Theorem, we deduce the existence of at least one fixed point
of Tσ or equivalently, one weak non-negative solution of the system (1.1).
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4 Study of a two-by-two system (i = 2)

For a 2× 2 cooperative system with constant coefficients a, b, c, d and the same potential q,
if we rewrite the system (1.1) under the following form(−∆ + q)u = au+ bv + f(x, u, v) in RN ,

(−∆ + q)v = cu+ dv + g(x, u, v) in RN ,
(4.1)

the hypothesis (h5), (L− βI)Φ ≥ 0, means that

(λq − a− b− β)φq ≥ 0 and (λq − c− d− β)φq ≥ 0

where λq is the principal eigenvalue associated with the eigenfunction φq for the operator
−∆+ q (q being a potential satisfying the hypothesis (h1)). Since φq > 0, (h5) is equivalent,
in this case, to λq ≥ a + b + β and λq ≥ c + d + β. Therefore the hypothesis (h5) is
stronger than the usual hypothesis in [3], [6–11], [12], [13] which is λq > a, λq > d and
(λq − a)(λq − d) > bc or equivalently(

λq − a −b
−c λq − d

)
(4.2)

is a non-singular M-matrix. However, for the nonlinear terms of the system (1.1), we consider
here in Theorem 3.1 another class of functions fi (denoted by f and g for n = 2) than the
one used in [3] or [6–11] (where in these papers, each function fi satisfies

0 ≤ fi(x, u1, . . . , un) ≤ θi

for all ui ≥ 0 and with θi a fixed function in L2(RN)).

Moreover, for the system (4.1) when the function g depends only of u (g(u, v) := g(u)), using
a decoupling method, we can prove the existence of a non-negative solution assuming that
the nonlinear term f(x, u, v) satisfies (h4) and that the 2 × 2 matrix defined by (4.2) is a
non-singular M-matrix (which is the usual condition and a weaker hypothesis than (h5)).

So we now consider the following cooperative system(−∆ + q)u = au+ bv + f(x, u, v) in RN ,

(−∆ + q)v = cu+ dv + g(x, u) in RN .
(4.3)

Theorem 4.1 Assume that the potential q satisfies the hypothesis (h1), the coefficients
a, b, c, d are real parameters with b ≥ 0 and c ≥ 0, the function f satisfies the hypothesis
(h4) respect to φq the principal eigenfunction associated with λq the first eigenvalue of the
operator −∆ + q. Assume also that the function g satisfies the following hypothesis
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(h6) (i) There exists a constant K > 0 such that 0 ≤ g(u) ≤ Ku for all u ∈ L2(RN),
u ≥ 0.

(ii) g(u1) ≤ g(u2) if 0 ≤ u1 ≤ u2.

(iii) g is Lipschitz respect to u uniformly in x.

Assume that the 2× 2 matrix Λ be defined by

Λ =

(
λq − a −b
−(c+K) λq − d

)

is a non-singular M-matrix. Then the system (4.3) has at least one non-negative solution
(u, v) ∈ (Vq(RN))2.

Proof: We use the decoupling method combined with the sub- and super-solution method.
First, we recall that

(−∆ + q)φq = λqφq in RN (4.4)

with λq > 0 and φq > 0. We proceed as in [1] and we define for u ≥ 0 the continuous and
compact operator

Bu := (−∆ + q − d)−1(cu+ g(u)). (4.5)

Note that the operator B is well defined since d < λq. Therefore (u, v) is a solution of the
system (4.3) if and only if v = Bu and

(−∆ + q − a)u = bBu+ f(x, u,Bu) in RN . (4.6)

We denote by u := 0. By the weak Maximum Principle for the scalar case, since c ≥ 0 and
g(u) ≥ 0, we have Bu ≥ 0 and using the hypothesis (h4), we have also f(x, u,Bu) ≥ 0.
Therefore u is a sub-solution of the equation (4.6).

We construct now a super-solution of the equation (4.6) of the form u = ηφq where η will be
a real positive parameter defined further on. Note that u is a super-solution of the equation
if and only if

(λq − a)ηφq ≥ bBηφq + f(x, ηφq, Bηφq). (4.7)

We have
bBηφq =

bcη

λq − d
φq + b(−∆ + q − d)−1(g(ηφq)).

By the hypothesis upon g, we have 0 ≤ g(ηφq) ≤ Kηφq. Still using the weak Maximum
Principle for the scalar case, we deduce that

(−∆ + q − d)−1(g(ηφq)) ≤ (−∆ + q − d)−1(Kηφq) =
ηK

λq − d
φq.
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So we get

bBηφq ≤
bη(c+K)

λq − d
φq.

Moreover, from the hypothesis which assures that Λ is a non-singular M-matrix, we have

(λq − a)(λq − d)− b(c+K)

λq − d
> 0.

Since
f(x, ηφq, Bηφq) ≤ f(x, ηφq, η

(c+K)

λq − d
φq),

by (h4), we can choose a positive real η sufficiently large such that

0 ≤ f(x, ηφq, Bηφq)

ηφq
<

(λq − a)(λq − d)− b(c+K)

λq − d
.

Therefore for η sufficiently large and now fixed, we have

bBηφq + f(x, ηφq, Bηφq) ≤ η
b(c+K)

λq − d
φq +

(λq − a)(λq − d)− b(c+K)

λq − d
ηφq

and so (4.7) is satisfied or equivalently u = ηφq is a super-solution of the equation (4.6).

Now we define the operator T on σ = [u, u] by

Tu := (−∆ + q − a)−1(bBu+ f(x, u,Bu)). (4.8)

Still again, the operator T is well defined since a < λq, Bu ∈ L2(RN) and f(x, u,Bu) ∈
L2(RN) for all u ∈ σ. We prove that T (σ) ⊂ σ. Let u ∈ σ. Since u ≥ 0 then Bu ≥ 0 and so
f(x, u,Bu) ≥ 0 by the weak Maximum Principle for the scalar case. Therefore Tu ≥ 0. We
have from (4.7) and (4.8)

(−∆ + q − a)(Tu) = bBu+ f(x, u,Bu)

and
(−∆ + q − a)ηφq = (λq − a)ηφq ≥ bBηφq + f(x, ηφq, Bηφq).

So we get

(−∆ + q − a)(ηφq − Tu) ≥ b(Bηφq −Bu) + f(x, ηφq, Bηφq)− f(x, u,Bu) in RN .

Moreover, since g is an increasing function with respect to u, by the weak Maximum Prin-
ciple for the scalar case, we deduce that B is an increasing function with respect to u too.
Therefore, using (h4) for f, we obtain

(−∆ + q − a)(ηφq − Tu) ≥ 0.
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The weak Maximum Principle allows us to conclude that Tu ≤ ηφq since a < λq. As for
Theorem 3.1, we can prove that T is a continuous operator for the L2(RN)-norm and by the
compact embedding Vq(RN) ↪→ L2(RN) we get that T (σ) is compact.

By the Schauder Fixed Point Theorem, we deduce the existence of u0 ∈ Vq(RN) such that

(−∆ + q)u0 = au0 + bBu0 + f(x, u0, Bu0) in RN .

Clearly, (u0, Bu0) is a non-negative solution of the system (4.3).

Note that if we add an hypothesis on the nonlinear term g, then we can construct a sub-
solution of the equation (4.6) of the form u = εφq and consequently, we get the existence of
a positive solution of the system (4.3). This is the following result.

Theorem 4.2 Assume that the potential q satisfies the hypothesis (h1), the coefficients
a, b, c, d are real parameters with b > 0 and c ≥ 0, the function f satisfies the hypothesis
(h4) respect to φq the principal eigenfunction associated with λq the first eigenvalue of the
operator −∆ + q. Assume also that the function g satisfies the hypothesis (h6) and the
following hypothesis

lim
s→0+

g(s)

s
≥ (λq − a)(λq − d)− bc

b
.

Assume that the 2× 2 matrix Λ be defined by

Λ =

(
λq − a −b
−(c+K) λq − d

)

is a non-singular M-matrix. Then the system (4.3) has at least one positive solution (u, v) ∈
(Vq(RN))2.

Proof: We proceed as for Theorem 4.1. We construct a sub-solution of the equation (4.6)
of the form u = εφq such that u ≤ s0 where s0 is a positive real sufficiently small which
satisfies

g(s)

s
≥ (λq − a)(λq − d)− bc

b

for all 0 < s ≤ s0. This is possible due to the boundedness of the function φq.

Indeed, since 0 < εφq ≤ s0, then

g(εφq) ≥
(λq − a)(λq − d)− bc

b
εφq.

Thus, by the Maximum Principle for the scalar case, we have:

(−∆ + q − d)−1g(εφq) ≥
(λq − a)(λq − d)− bc

b(λq − d)
εφq



Existence of non-negative Solutions for . . . 75

and so
bB(εφq) ≥

bcε

λq − d
φq +

(λq − a)(λq − d)− bc
(λq − d)

εφq = (λq − a)εφq.

Since f(x, εφq, Bεφq) ≥ 0, we well deduce that u = εφq is a sub-solution of the equation
(4.6).

We can conclude as for Theorem 4.1 applying the Schauder Fixed Point Theorem for the
operator T defined by (4.8) in the set [εφq, ηφq]. We have just to verify that T ([εφq, ηφq]) ⊂
[εφq, ηφq] i.e. if εφq ≤ u ≤ ηφq, then Tu ≥ εφq. Indeed, from (4.6), since εφq is a sub-solution
of (4.6), we have:

(−∆ + q − a)(Tu− εφq) ≥ b(Bu−B(εφq)) + f(x, u,Bu)− f(x, εφq, Bεφq).

By the Maximum Principle for the scalar case, since a < λq, we get εφq ≤ Tu.

We conclude giving a uniqueness result. As in [3], we add for that the following hypothesis

(h7) There exists a concave function H such that f(x, u, v) = b∂H
∂u

(x, u, v) and g(x, u) =

c∂H
∂v

(x, u, v) for all u, v.

Then, proceeding exactly as in [3], we have the following result.

Theorem 4.3 Assume that the potential q satisfies the hypothesis (h1), the coefficients
a, b, c, d are real parameters with b > 0 and c > 0, the function f satisfies the hypothesis
(h4), the function g satisfies the hypothesis (h6). Assume that the 2× 2 matrix Λ be defined
by

Λ =

(
λq − a −b
−(c+K) λq − d

)
is a non-singular M-matrix and the hypothesis (h7) is satisfied. Then the system (4.3) has
a unique positive solution (u, v) ∈ (Vq(RN))2.
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