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LAURE CARDOULIS!, QuOc ANH NGO, HOANG Quoc TOAN

Existence of non-negative Solutions for cooperative
elliptic Systems involving Schrodinger Operators in the
whole Space

ABSTRACT. In this paper, we obtain some new results on the existence of non-negative

solutions for systems of the form

n
(—A + gi)u; = pmiu; + Z aguj + fi(z,un, onu,) n RY =1, ...n,
J=Lij#i
where each of the ¢; are positive potentials satisfying lim, o ¢i(2) = 400, each of the
m; are bounded positive weights, each of the a;;, 7 # j, are bounded non-negative weights
and each of the u; are real parameters. Depending upon the hypotheses on f;, we obtain
some new results by using sub- and super-solution methods and the Schauder Fixed Point

Theorem.

1 Introduction

In this paper, we are interested in the existence of non-negative solutions of the following

cooperative elliptic system

(—A + qz)ul = U;m;u; + Z QU5 + fl-(:v,ul, . ,un), in RN, 1= 1, ., N (11)
=Lyt

We consider the following hypotheses for each ¢ =1,...,nand j=1,...,n

(RY) (p > &) such that lim|;|— 400 ¢i(z) = +00 and ¢; > const > 0.

(hy) ¢; € L, (RY)N L], D)

loc loc

(hg) Qg5 € LOO<RN) and Q5 Z 0if ¢ 7é j

(hg) m; € L>®(RY) and there exists o; > 0 such that m;(x) > a; > 0 for all z € R".

!Corresponding author
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Note that our system is cooperative since a;; > 0if i # j. We will specify later the hypotheses

on each f; and we denote by u; real parameters for i = 1,... n.

The variational space is denoted by V,, (RY) x --- x V, (RY) where for i = 1,...,n, V,,(R"Y)

is the completion of D(RY), the set of C* functions with compact support, under the norm

G = \//RN (IVul? + gu?). (1.2)

We recall that each of the embedding V,, (RY) — L*(RY) is compact. We denote by

m; = / mu?  for all u € L*(Q).
\ Jo

According to the hypothesis (h3), || - ||, is @ norm in L?*(RY), equivalent to the usual norm
so the embedding V,(RY) — (L*(R"),

[ u

i

|+ ||m;) is still compact.

We denote by M; the operator of multiplication by m; in L?(R"). The operator
(A +q)) " My - (LP2RY), [~ i) = (L2RY), [ I,

is positive self-adjoint and compact. So its spectrum is discrete and consists of a positive
sequence tending to 0. We denote by \; the first eigenvalue and by ¢; the corresponding

eigenfunction which satisfy
(—A+ g)¢i = Nimigy; in R, \; > 0 (1.3)

and ||¢;||m, = 1. We recall that \; is simple and that ¢; > 0 (see for examples |1, 2, 1, 5, 15,
|)- By the Courant-Fischer formulas, \; is given by

. fRN (|V¢|2 + Qi¢2>
A; = inf { fRN i

NORS D(RN)}. (1.4)

The aim of this paper is to study the existence of non-negative solutions for the system (1.1).
This extends earlier results obtained for the Laplacian operator in a bounded domain (see
[12, 13]), for an operator of divergence form in a bounded domain (see [9]), for equations or

systems involving Schrodinger operators —A + ¢; in RY (see [3, 6-5, 10, 11]).

Our paper is organized as follows. Section 2 provides some preliminaries and notations before
stating our main result which is given in Section 3. In Section 4, we give some remarks on

our hypotheses for a two-by-two system.
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2 Preliminaries and Notations
2.1 Review of results for the scalar case (i = 1)
We consider here the following equation, in a variational sense,
(—=A + q)u = dmu + g in R, (e)

We assume the following: The potential ¢ satisfies (hy), the weight m satisfies (hjz), the
constant A is a real parameter and finally ¢ € L*(RY). We denote by (\yq, ¢mq) the

eigenpair of eigenvalue and eigenfunction which satisfy

(_A + Q)¢m,q = Am,qmqu,q ’ )\m,q > 07 ¢m,q > 0.
We recall the following results on the existence of solutions and the Maximum Principle.

Theorem 2.1 (see [11]; Theorems 1.1 and 1.2) Assume that A < A, 4. Then

there exists a unique solution u € V,(RY) for the equation (¢). Moreover,

(i) the weak Maximum Principle holds: if g > 0, then this solution u satisfies u > 0,

(ii) the strong Mazimum Principle holds too: if g > 0, g # 0 then u > 0.

2.2 Notations and Hypotheses

We recall that for each i = 1,...,n the eigenpair (\;, ¢;) is defined by (1.3)-(1.4). Let us
denote by ® the vector defined by

"D = (¢,...,0n). (2.1)

We assume that for each i = 1,...,n, the nonlinear term f; of the system (1.1) satisfies the

following hypotheses

(hy) Foreachi=1,...,n

() fi(z,kid1, ..., knd,) € LA(RYN) for all positive numbers ki, .. ., k.
(i) 0 < fi(x,uq,...,u,) forall uy >0,...,u, > 0.

(iii) For all 0 < uy <wy,...,0 <wu, <o,

0 < filz,ur,... un) < filz,v1,...,0,).
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(iv) For all positive real numbers ky, ..., ky,
i(x, k1o, ... kL dp _ )
filw, nk16x Mhinn) — 0 as n — 400, uniformly in z.
yloy
(v) fi is Lipschitz respect to (uq, ..., u,) uniformly in z.

For instance, the function f;(z,u,...,u,) = ui + -+ u, lx (where 1x denotes the
indicator function on a compact K C RY) satisfies (hy)(iv).

We denote by L = (I;;) the following n x n matrix be defined by
)\i — ;) O le = .,
—llaill L@y if i #

for all i,5 = 1,...,n. We also assume that the following hypothesis holds for some § > 0
(hs) (L—p0)® >0

where [ is the n x n identity matrix. Here (L —(1)® > 0 means that the entries of (L —31)®
are non-negative functions. Note that the hypothesis (hs) forces that the coupling is very

weak, i. e., with small coefficients a;; and with eigenfunctions ¢; which have the same
i ()
b;(x)
develop our main result in the next section.

behaviour at infinity: is bounded for all i,7 = 1,...,n and all z € RY. We can now
3 Existence of solutions

We begin stating our main result, obtained by considering a sub- and a super-solution of the

system (1.1) and using the Schauder Fixed Point Theorem. We recall that (vy,...,v,) is a

sub-solution (resp. a super-solution) of the system (1.1) if for each i = 1,...,n, we have
(—A + qi)vl- < pymuv; + Z a;;V; + fz(«r, V1, - .- ,’Un) in RN (31)
J=Lj#i
(resp. >).

Theorem 3.1 Assume that the hypotheses (hy)-(hs) are satisfied. Then the system (1.1)

has at least one non-negative solution in Vg (RY) x -+ x V, (RY).

Proof: First, note that uy = (0,...,0) is a sub-solution of the system (1.1). Then, by
hypothesis (hs), we have (L — $1)® > 0 and so we get for each i =1,... n,

(i — pa)mai — By — Y ayd; > 0.

J=lii
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Since, by hypothesis (h4)(iv), we have for n sufficiently large

fi(z,nér1, ..., ndy)
nP;

0<

< B,

we can write for n sufficiently large

(Ni — pi)ming; — Z aiine; > nBo; > fi(x,nér, ..., ndn).

=i

Thus we have .

J=Lj#

Therefore u° := n® = (91, ...,ne,) is a super-solution of the system (1.1).

Now, we define the set o = [ug, u°]. Let a be a positive real such that for all 7, p; + o > 0.
Let

T (LARY))" — (L*RY)"

(Uly ey tly) =ur— v = (v1,...,0,)
where for eachi=1,...,n
(—A + q; + Ozm,-)vi = (,Ul + Oz)miui + Z aijuj + fz([l?, Uy - .- ,Un) n RN. (33)
=1y

Note that, by the scalar case, T is well defined for all u € o.

As in [3], we prove now that T'(c) C 0. Let u = (uy,...,u,) € c and T'(u) = v = (vy,...,v,).
By the weak Maximum Principle for the scalar case, since the system (1.1) is a cooperative

one and a > 0, we get v; > 0 for each ¢ = 1,...,n. Moreover, we have

(=A + i + am;)(ngi — vi) =(\i + a)nmds — (pi + a)miu;

n

— Z aijuj—fi(:p,ul,...,un).

j=lyji

By (3.2), we get

(—A+qi + am;)(ndi — v;)

> (i + )mi(ng; — w) + Y ay(ng; — uy)
J=Lj#
+ fi(x7n¢17 s 7n¢n) - fi(xauh s >un)
>0.
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By the weak Maximum Principle for the scalar case, we obtain v; < n¢; foreachi =1,... n.
Therefore T'(0) C o.

As in [3], we prove now that 7' is continuous and that T'(o) is compact. Let (uy)g, where

ur = (Uig, ..., Unk), be a sequence in o and define T'(ug) = vy where vy = (Vig, ..., Vpk)-
First, if (u;) converges to u = (u1,...,uy,) for || - |2, and if T'(u) = v = (v, ..., v,),
from (3.3) we have for each i = 1,...,n and for all k

(—A + q; + ami)(vik — Uz') :(/ubz + a)mz(uzk — UZ) + Z aij(ujk — Uj)
=L

+fi(x,u1k,...,unk)—fi(x,ul,...,un). (34)

Multiplying (3.4) by vy — v; and integrating over RY | we get

[0k = Vill} 4oy =t + ) [ m(ug — i) (Vi — ;)
RN
n
+ > / aij(uje — uj) (Vi — v;)
=tz R

+ /N (filz,win, - wnk) — fil@,ug, o wn)) (v — ;).

Using the hypothesis (hy)(v) and the Cauchy-Schwartz inequality, since the coefficients m;

and a;; are bounded, we deduce that there exists a constant C; > 0 such that
n
vik = Villgeram, < Cv Y gk — usl r2(e).
j=1

Therefore 7" is continuous. We prove now that 7'(¢) is compact. Multiplying (3.3) by v we

have also

n
Vik|lgi+am; — \Hi T & MUk Uik QA UjkVik i\, Ulk; - - -, Unk )Vik-
vl (hi + @) + + [ il )
RN RN

RN j=L#i
Since the coefficients m; and a;; are bounded, then by the hypothesis (hy), we see that
fi(z, uig, . .., uyk) is bounded too and we can deduce the existence of a constant Cy > 0 and
of a constant C3 > 0 such that

j=1

|vik

But u € o. Therefore the sequence (vy); is bounded in V,, (RY) x --- x V, (RY) and since
each of the embedding V,, (RY) — L?(R") is compact, we can find a subsequence of (vy)y

which is convergent in (L?(RY))". Therefore T'(c) is compact.
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By the Schauder Fixed Point Theorem, we deduce the existence of u € o such that T'(u) = w.

Clearly u is a non-negative solution of the system (1.1). O

As in [11], we can relax the hypotheses on the increasing of each function f; but assuming
stronger hypotheses on the regularity of f;. For the next result, we will suppose that each
function f; of the system (1.1) satisfies the following hypothesis

(hy) (i) fi(z,u1,..., 0P, ... u,) € LA2(RY) for all p > 0 and all 0 < uy < néy,...,0 <
Up < 1Pn-
(i) 0 < fi(x,uy,...,uy,) forall uy >0,...,u, > 0.
(iii) f; is of class C*.

(iv) For all 0 < wuy < n¢q,...,0 <wu, < 0oy,

filz,ug, .o ndiy .o uy)

— 0 as 1 — 400, uniformly in x.

noi
(v) fi is Lipschitz respect to (uq, ..., u,) uniformly in z.
Following |14], we say that a couple (uqy, ..., ug,) — (1), ..., u?) is a sub—super-solution of

the system (1.1) (Miiller type conditions) if for each i =1,... n,
ug; < uf

and moreover

0> (=A + gi)uoi — pimitio; — 35y Gigtty — filT,un, ooy Uy - ooy Un), (3.5)
0<

(—A + qz)u? — ulmlug — Z?:l;j;éi aijuj — fi(x,ul, Ce ,U?, e ,un),

for any u; € [ug;, u)).

It is clear that this definition is much more stringent than the natural definition (3.1) where
(3.5) are only satisfied for u; = ug; (for the sub-solution) and for u; = uj (for the super-

solution). Note that if f; is increasing, both definitions coincide.

Theorem 3.2 Assume that the hypotheses (hy)-(hs), (W) and (hs) are satisfied. Then

the system (1.1) has at least one non-negative solution in Vg (RN) x -+ x V, (RY).

Proof: As in Theorem 3.1, we denote by ug = (0,...,0), ® = (¢1,...,,) and by u°® = nd
for n sufficiently large positive real defined later. First, we prove that (ug,u°) is a couple of

sub-super-solution in the sense of (3.5).
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Indeed, proceeding as for Theorem 3.1, using hypotheses (h)) and (hs) we have (for 5
sufficiently large)

(i — pa)mings > > aind; + fi(@,ur, .. ndi, . up) for any 0 < uj < ¢
=L

and therefore (since the system (1.1) is cooperative)

()\@ — ,uz)mmqﬁl Z Z QiU —+ fz(l', Upy ... 777¢i7 ce ,’U,n) for any 0 S Uj S T](ZSJ
J=Lj#i

We define the set o = [ug, u"]. Let a be a positive real such that for all 7, p; + a > 0. Let

T,:0— (L*RM)"

(Ugy .oy tp) = U= 0= (V1,...,0,)

where for each ¢t =1,...,n,

(—A+ ¢; + am; + pm;)v; = (p; + a)myu; + Z a;juj + filx,uy, ..., u,) + pmiu; in RY
=L

and where p > 0 is a constant such that f;(z,us,...,u,)+ pm;u; is increasing in u;. We can
find such p by hypotheses (hs) and (h/) since the function f; is C. Still by the scalar case,
the operator T, is well defined and proceeding as for Theorem 3.1, we can prove that T, is

continuous and 7, (¢) is compact.

Now we prove that T,(c) C . Let u = (uy,...,u,) € 0 and T,(u) = v = (vq,...,v,). Note

by the scalar case v; > 0 for each i = 1,...,n. Moreover we have for each 2 =1,...,n

(A + g + am; + pmi)(ndi — vi) 2 (pi + a)mi(ngi — w)
+ filz, w0y, . un) + prung;
— filx,ug, ... up) — pmyu;

>0.

Since u; < ng; and w; — fi(z,uy,. .., w; ..., u,) + pmyw; is increasing, by the scalar case,

we obtain v; < n¢; for each i = 1,... n. Therefore T,(0) C o.

By the Schauder Fixed Point Theorem, we deduce the existence of at least one fixed point

of T, or equivalently, one weak non-negative solution of the system (1.1). m
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4 Study of a two-by-two system (i = 2)

For a 2 x 2 cooperative system with constant coefficients a, b, ¢, d and the same potential ¢,

if we rewrite the system (1.1) under the following form

(=A+q)u = au+bv + f(x,u,v) in RV, 1)
(=A+q)v = cu+dv+ g(x,u,v) in RY, ‘

the hypothesis (hs), (L — SI)® > 0, means that
AN—a—b—0)p,>0and (\, —c—d—3)p, >0

where A, is the principal eigenvalue associated with the eigenfunction ¢, for the operator
—A +q (g being a potential satisfying the hypothesis (hy)). Since ¢, > 0, (hs) is equivalent,
in this case, to A\, > a+ b+  and A\, > ¢+ d+ 3. Therefore the hypothesis (hs) is
stronger than the usual hypothesis in [3]|, [6-11], [12], [L3] which is A, > a, A, > d and
(A —a)(A\y — d) > bc or equivalently

Agq—a =D
(o) "

is a non-singular M-matrix. However, for the nonlinear terms of the system (1.1), we consider
here in Theorem 3.1 another class of functions f; (denoted by f and g for n = 2) than the

one used in [3] or [6-11] (where in these papers, each function f; satisfies
0 S fi(x>u17 s 7un) S 61

for all u; > 0 and with 6; a fixed function in L?(RY)).

Moreover, for the system (4.1) when the function g depends only of u (g(u,v) := g(u)), using
a decoupling method, we can prove the existence of a non-negative solution assuming that
the nonlinear term f(z,u,v) satisfies (hy) and that the 2 x 2 matrix defined by (4.2) is a

non-singular M-matrix (which is the usual condition and a weaker hypothesis than (hs)).

So we now consider the following cooperative system

(=A+q)u = au+bv + f(z,u,v) in RV, (43)
(—A+q)v = cu+ dv + g(z,u) in RV, ‘

Theorem 4.1 Assume that the potential q satisfies the hypothesis (hy), the coefficients
a,b,c,d are real parameters with b > 0 and ¢ > 0, the function f satisfies the hypothesis

(hy) respect to ¢, the principal eigenfunction associated with A, the first eigenvalue of the

operator —A + q. Assume also that the function g satisfies the following hypothesis
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(hg) (i) There exists a constant K > 0 such that 0 < g(u) < Ku for all u € L*(RY),
u > 0.

(i) g(ur) < g(ug) if 0 < uy < wy.

(iii) g is Lipschitz respect to u uniformly in x.

Assume that the 2 x 2 matriz A be defined by

A= Ay — @ —b
—(c+K) N\ —d
is a non-singular M-matriz. Then the system (4.3) has at least one non-negative solution

(u,v) € (Vo(RY))?.

Proof: We use the decoupling method combined with the sub- and super-solution method.

First, we recall that
(=A+q)pq = AP In RY (4.4)
with A, > 0 and ¢, > 0. We proceed as in [!] and we define for u > 0 the continuous and
compact operator
Bu = (=A+q—d)  cu+ g(u)). (4.5)
Note that the operator B is well defined since d < A,. Therefore (u,v) is a solution of the
system (4.3) if and only if v = Bu and

(=A +q—a)u =bBu+ f(x,u, Bu) in RY. (4.6)

We denote by u := 0. By the weak Maximum Principle for the scalar case, since ¢ > 0 and
g(u) > 0, we have Bu > 0 and using the hypothesis (hy), we have also f(z,u, Bu) > 0.

Therefore u is a sub-solution of the equation (4.6).

We construct now a super-solution of the equation (4.6) of the form w = n¢, where n will be
a real positive parameter defined further on. Note that u is a super-solution of the equation
if and only if

(Aq — a)ngq = bBnog + f(,n9q, Bngy). (4.7)
We have

b
bBg, = by + (At g — ) (g(ng,).

By the hypothesis upon g, we have 0 < g(n¢,) < Kn¢,. Still using the weak Maximum

Principle for the scalar case, we deduce that

(<A tq— &) (gno) < (<A +q— ) (Knby) = 150,
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So we get
bn(c+ K)
A —d

Moreover, from the hypothesis which assures that A is a non-singular M-matrix, we have

bBno, < Pq.-

Ay —a)(A\, —d) —b(c+ K)

> 0.
A —d

Since (c+ K)
f(x7 n¢q7 meq) < f(xu n¢q77lﬁ¢q>7
q

by (hy), we can choose a positive real 7 sufficiently large such that

0 < £@:n%0 Bnde) (A — )y — d) —blet K)

Ndq Ag—d

Therefore for n sufficiently large and now fixed, we have

b(c+ K)
N —d

()‘q_a)O‘q_d) —b(c+ K)
Ay —d

bBndg + f(2, 194, Bndy) <1 Pq + Nq

and so (4.7) is satisfied or equivalently @ = n¢, is a super-solution of the equation (4.6).

Now we define the operator T on o = [u,u] by
Tu:=(—A+q—a) ' (bBu+ f(z,u, Bu)). (4.8)

Still again, the operator T is well defined since a < \,, Bu € L*(R") and f(z,u, Bu) €
L*(RY) for all u € 0. We prove that T'(c) C 0. Let u € 0. Since u > 0 then Bu > 0 and so
f(z,u, Bu) > 0 by the weak Maximum Principle for the scalar case. Therefore Tu > 0. We
have from (4.7) and (4.8)

(A +q—a)(Tu) =bBu+ f(x,u, Bu)

and
(A +q—a)nd, = (A — a)ng, > bBno, + f(x, 19, Bngy).
So we get

(~A+q—a)(y, — Tu) > b(Bno, — Bu) + f(z, 16y, Budy) — f(w,u, Bu) in RY.

Moreover, since ¢ is an increasing function with respect to u, by the weak Maximum Prin-
ciple for the scalar case, we deduce that B is an increasing function with respect to u too.

Therefore, using (hy) for f, we obtain

(—A+q—a)(nd, —Tu) 2 0.
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The weak Maximum Principle allows us to conclude that Tu < n¢, since a < A,. As for
Theorem 3.1, we can prove that T is a continuous operator for the L2(R")-norm and by the
compact embedding V,(RY) < L*(RY) we get that T'(0) is compact.

By the Schauder Fixed Point Theorem, we deduce the existence of ug € V,(RY) such that
(—=A + q)ug = aug + bBug + f(z,ug, Bug) in RY.

Clearly, (ug, Bug) is a non-negative solution of the system (4.3). O

Note that if we add an hypothesis on the nonlinear term ¢, then we can construct a sub-
solution of the equation (4.6) of the form u = e¢, and consequently, we get the existence of

a positive solution of the system (4.3). This is the following result.

Theorem 4.2 Assume that the potential q satisfies the hypothesis (hy), the coefficients
a,b,c,d are real parameters with b > 0 and ¢ > 0, the function f satisfies the hypothesis
(hy) respect to ¢, the principal eigenfunction associated with A\, the first eigenvalue of the
operator —A + q. Assume also that the function g satisfies the hypothesis (hg) and the

following hypothesis

S (A —a)( A\, —d) —be
s—0+t § b ’

Assume that the 2 x 2 matriz A be defined by

A~ Ay — @ —b
—(c+K) N\ —d
is a non-singular M-matriz. Then the system (4.3) has at least one positive solution (u,v) €

(Va(RY))2.

Proof: We proceed as for Theorem 4.1. We construct a sub-solution of the equation (4.6)

of the form u = €¢, such that u < sy where s( is a positive real sufficiently small which

g(s) > (Ag — a)(Ag — d) — bc
s b
for all 0 < s < sq. This is possible due to the boundedness of the function ¢,.

satisfies

Indeed, since 0 < ey < s, then

(A —a)(N; —d) — bc
b

g(egq) > €¢yq-

Thus, by the Maximum Principle for the scalar case, we have:

(A —a)(N\; — d) — bc

(=& +q=d) gleo) 2 SR

€Qq
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and so

bB(coy) > )\bce ()\q_a)()\q_d)_bceqbq:()\q—a)eqbq.

¢
q d ()‘q - d)
Since f(x,ep,, Bed,) > 0, we well deduce that u = e, is a sub-solution of the equation

(4.6).

We can conclude as for Theorem 4.1 applying the Schauder Fixed Point Theorem for the
operator T" defined by (4.8) in the set [edq, n¢,]. We have just to verify that T'([ep,, no,]) C
[€dg, NPg) 1-e. if €py < u < Ny, then Tu > €¢,. Indeed, from (4.6), since eg, is a sub-solution
of (4.6), we have:

(—A+q—a)(Tu — epy) > b(Bu — B(ep,)) + f(x,u, Bu) — f(x, ep,, Bedy).

By the Maximum Principle for the scalar case, since a < \;, we get e, < Tu. [

We conclude giving a uniqueness result. As in [3], we add for that the following hypothesis

(h7) There exists a concave function H such that f(z,u,v) = b2 (z,u,v) and g(z,u) =

c%—f(x, u,v) for all u,v.

Then, proceeding exactly as in [3], we have the following result.

Theorem 4.3 Assume that the potential q satisfies the hypothesis (hy), the coefficients
a,b,c,d are real parameters with b > 0 and ¢ > 0, the function f satisfies the hypothesis
(hy), the function g satisfies the hypothesis (hg). Assume that the 2 X 2 matriz A be defined

by
A~ Ag— @ —b
—(c+K) A\ —d

is a non-singular M-matriz and the hypothesis (hz) is satisfied. Then the system (4.3) has

a unique positive solution (u,v) € (V,(RN))2.
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