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Viê. t Nam National University, Hà Nô. i, Viê. t Nam
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In this paper, we establish the existence of non-trivial weak solutions in W 1,p
0 (Ω), 1 <

p < ∞, to a class of non-uniformly elliptic equations of the form

−div(a(x,∇u)) = λf(u) + µg(u)

in a bounded domain Ω of R
N . Here a satisfies

|a(x, ξ)| � c0(h0(x) + h1(x)|ξ|p−1)

for all ξ ∈ R
N , a.e. x ∈ Ω, h0 ∈ L

p
p−1 (Ω), h1 ∈ L1

loc(Ω), h0(x) � 0, h1(x) � 1 for a.e. x
in Ω.
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1. Introduction

Let Ω be a bounded domain in R
N . Various particular forms of the Dirichlet problem

involving elliptic operators in divergence form

−div(a(x,∇u)) = λf(u) (Pλ)

have been studied in the recent years. Here, a : Ω×R
N → R

N and f : R → R fulfill
certain structural conditions.

Recently, [11] studied problem (Pλ) when the potential a satisfies

|a(x, ξ)| � c(1 + |ξ|p−1), ∀x ∈ Ω, ξ ∈ R
N

185
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for some constant c > 0. In [7], the authors extended the result in [11] to the non-
uniform case in the sense that the functional associated with the problem may be
infinity for some u by assuming the potential a satisfies

|a(x, ξ)| � c(h0(x) + h1(x)|ξ|p−1), ∀x ∈ Ω, ξ ∈ R
N ,

where h1 ∈ L1
loc(Ω), h0 ∈ L

p
p−1 (Ω), h0(x) � 0, h1(x) � 1 for a.e. x in Ω.

In both papers [11, 7], the nonlinear term f verifies the Ambrosetti–Rabinowitz
type condition: defining F (t) =

∫ t

0
f(s)ds, there exists t0 > 0 and θ > p such that

0 < θF (t) � tf(t), ∀t ∈ R, |t| � t0. (1.1)

From that, one can deduce that

|f(t)| � c|t|θ−1, ∀t ∈ R, |t| � t0.

This means that f is (p− 1)-superlinear at infinity. It is worth mentioning that the
inequality (1.1) which generalizes to p-Laplacian condition (p5) in [1], appears for
the first time in [5] (see also in [6]).

Very recently in [9], the authors studied problem (Pλ) when the nonlinear term
f is continuous and (p− 1)-sublinear at infinity, i.e.

(f1) lim|t|→+∞
f(t)
|t|p−1 = 0 ((p− 1)-sublinear at infinity).

They also assume that

(f2) There exists s0 ∈ R such that
∫ s0

0 f(t)dt > 0.

With some more restrictive conditions, the authors obtained the existence of three
weak solutions of problem (Pλ) via an abstract critical point result due to Bonanno
and Ricceri (see [2, 14, 15] for details).

Next, we consider a perturbation of the problem (Pλ) of the form

−div(a(x,∇u)) = λf(u) + µg(u) (Pλ,µ)

where g : R → R is continuous. We introduce the following hypothesis regarding
function g.

(g) lim|t|→+∞
|g(t)|
|t|p−1 = l < +∞ (asymptotically (p− 1)-linear at infinity).

Motivated by the above mentioned papers, in the present paper, by relaxing
some conditions on f stated in [9] (we only assume (f1), (f2) and (g) hold in our
problems), we shall obtain the existence of weak solutions of problem (Pλ) and
(Pλ,µ) in two directions: one is from (p − 1)-superlinear at infinity to (p − 1)-
sublinear at infinity together with the presence of the perturbation g and the other
is into the non-uniform case. Actually, we shall prove that the corresponding energy
functional is coercive and satisfies the usual Palais–Smale condition.

In order to state our main theorem, let us introduce our hypotheses on the
structure of problem (Pλ). Assume that N � 1 and p > 1. Let Ω be a bounded
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domain in R
N having C2 boundary ∂Ω. Consider a : R

N×R
N → R

N , a = a(x, ξ), as
the continuous derivative with respect to ξ of the continuous function A : R

N ×
R

N → R, A = A(x, ξ), that is, a(x, ξ) = ∂A(x,ξ)
∂ξ . Assume that there are a positive

real number c0 and two nonnegative measurable functions h0, h1 on Ω such that
h1 ∈ L1

loc(Ω), h0 ∈ L
p

p−1 (Ω), h1(x) � 1 for a.e. x in Ω.
Suppose that a and A satisfy the hypotheses below:

(A1) |a(x, ξ)| � c0(h0(x) + h1(x)|ξ|p−1) for all ξ ∈ R
N , a.e. x ∈ Ω.

(A2) There exists a constant k1 > 0 such that

A

(
x,
ξ + ψ

2

)
� 1

2
A(x, ξ) +

1
2
A(x, ψ) − k1h1(x)|ξ − ψ|p

for all x, ξ, ψ, that is, A is p-uniformly convex.
(A3) A is p-subhomogeneous, that is,

0 � a(x, ξ)ξ � pA(x, ξ)

for all ξ ∈ R
N , a.e. x ∈ Ω.

(A4) There exists a constant k0 > 0 such that

A(x, ξ) � k0h1(x)|ξ|p

for all ξ ∈ R
N , a.e. x ∈ Ω.

(A5) A(x, 0) = 0 for all x ∈ Ω.

We refer the reader to [7,10,11,16] for various examples. Let W 1,p(Ω) be the usual
Sobolev space. Next, we define X := W 1,p

0 (Ω) as the closure of C∞
0 (Ω) under the

norm ‖u‖ = (
∫
Ω
|∇u|p dx)

1
p . We now consider the following subspace of W 1,p

0 (Ω)

E =
{
u ∈W 1,p

0 (Ω) :
∫

Ω

h1(x)|∇u|p dx < +∞
}
. (1.2)

The space E can be endowed with the norm

‖u‖E =
(∫

Ω

h1(x)|∇u|p dx
) 1

p

. (1.3)

As in [7, Lemma 2.7], it is known that E is an infinite dimensional Banach space.
We say that u ∈ E is a weak solution for problem (Pλ) if∫

Ω

a(x,∇u)∇φdx − λ

∫
Ω

f(u)φdx = 0

for all φ ∈ E. Let

Λ(u) =
∫

Ω

A(x,∇u) dx, F (t) =
∫ t

0

f(s)ds, G(t) =
∫ t

0

g(s)ds,

Jλ,µ(u) = λ

∫
Ω

F (u)dx+ µ

∫
Ω

G(u)dx,
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and

Iλ,µ(u) = Λ(u) − Jλ,µ(u)

for all u ∈ E. The following remark plays an important role in our arguments.

Remark 1.1. (i) ‖u‖ � ‖u‖E for all u ∈ E since h1(x) � 1.
(ii) By (A1), A verifies the growth condition

|A(x, ξ)| � c0(h0(x)|ξ| + h1(x)|ξ|p)
for all ξ ∈ R

N , a.e. x ∈ Ω.
(iii) By (ii) above and (A4), it is easy to see that

E = {u ∈W 1,p
0 (Ω) : Λ(u) < +∞} = {u ∈ W 1,p

0 (Ω) : Iλ,µ(u) < +∞}.
(iv) C∞

0 (Ω) ⊂ E since |∇u| is in Cc(Ω) for any u ∈ C∞
0 (Ω) and h1 ∈ L1

loc(Ω).

Now we describe our main result.

Theorem 1.2. Assume conditions (A1)–(A5) and (f1) are fulfilled. Then problem
(Pλ) has at least a weak solution u in E for every λ. If we assume further that (f2)
and f(0) �= 0 hold true, then u is nontrivial provided λ is large enough.

Theorem 1.3. Assume conditions (A1)–(A5), (f1) and (g) are fulfilled. Then for
each λ ∈ R, there exists µ > 0 such that problem (Pλ,µ) has at least a weak solution
u in E for every µ ∈ (0, µ). If we assume further that (f2) and g(0) �= 0 hold true,
then u is non-trivial provided λ is large enough.

2. Auxiliary Results

Usually, if a functional is of class C1(E,R), then it possesses a global minimum
value provided it is coercive and satisfies the Palais–Smale condition. Due to the
presence of h0 and h1, the functional Λ may not belong to C1(E,R). This means
that we cannot apply directly the Minimum Principle, see [3, Theorem 3.1]. In this
situation, we need some modifications.

Definition 2.1. Let F be a map from a Banach space Y to R. We say that F is
weakly continuous differentiable on Y if and only if following two conditions are
satisfied

(i) For any u ∈ Y there exists a linear map DF(u) from Y to R such that

lim
t→0

F(u+ tv) −F(u)
t

= DF(u)(v)

for every v ∈ Y .
(ii) For any v ∈ Y , the map u 	→ DF(u)(v) is continuous on Y .

Remark 2.2. If we suppose further that v 	→ DF(u)(v) is a continuous linear
mapping on Y , then F is Gâteaux differentiable.
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Definition 2.3. We call u a generalized critical point (critical point, for short) of
F if DF(u) = 0. c is called a generalized critical value (critical value, for short) of
F if F(u) = c for some critical point u of F .

Denote by C1
w(Y ) the set of weakly continuously differentiable functionals on Y .

It is clear that C1(Y ) ⊂ C1
w(Y ) where we denote by C1(Y ) the set of all continuously

Fréchet differentiable functionals on Y . Now let F ∈ C1
w(Y ). We put

‖DF(u)‖ = sup{|DF(u)(h)|h ∈ Y, ‖h‖ = 1}

for any u ∈ Y , where ‖DF(u)‖ may be +∞.

Definition 2.4. We say that F satisfies the Palais–Smale condition at level c ∈ R

(denoted by (PS)c) if any sequence {un} ⊂ X for which

F(un) → c and DF(un) → 0 in X�

possesses a convergent subsequence. If this is true at every level c then we simply
say that F satisfies the Palais–Smale condition (denoted by (PS)).

Motivated by [3, Theorem 3.1], [12, Theorem 2.3], and [13, Theorem 2], we shall
obtain a similar version for weakly continuously differentiable functional which is
our main ingredient in this paper.

Theorem 2.5. Let F ∈ C1
w(X) where X is a Banach space. Assume that

(i) F is bounded from below, c = inf F ,
(ii) F satisfies (PS)c condition.

Then c is a critical value of F (i.e. there exists a critical point u0 ∈ X such that
F(u0) = c).

Proof. Let us assume, by negation, that c is not a critical value of F . By (PS)c we
deduce that there exists a constant ε > 0 such that [c− ε, c+ ε] contains no critical
value of F . Also by (PS)c we deduce that there exists a constant δ > 0 such that
‖DF(u)‖ � δ for all u such that F(u) ∈ [c− 2ε, c+ 2ε] (see [4, Lemma 2.2]).

Next, we define

X1 := {u ∈ X : c− 2ε < F(u) < c+ 2ε},
X2 := {u ∈ X : F(u) � c− 2ε or c+ 2ε � F(u)},
X3 := {u ∈ X : c− ε � F(u) � c+ ε}.

(2.1)

We firstly see that X1 is a open set, X2 and X3 are closed sets with X3 ⊂ X1,
X2 ∩X3 = ∅ and X1 ∪X2 = X .
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We now prove that there exists a vector field W on X which is locally Lipschitz
continuous on X , ‖W (u)‖ � 1 for all u ∈ X and ‖W (u)‖ = 0 for each u ∈ X2.
Furthermore, W also satisfies the following inequalities

DF(u)(W (u)) � 0, if u ∈ X, DF(u)(W (u)) � δ

2
, if u ∈ X3. (2.2)

Indeed, for each u ∈ X , we can find a vector w(u) ∈ X such that ‖w(u)‖ = 1
and DF(u)(w(u)) � 2

3‖DF(u)‖. If u ∈ X1, then we haveDF(u)(w(u)) > δ
2 . Hence,

there exists an open neighborhood Nu of u in X1 such that DF(v)(w(u)) > δ
2 for

all v ∈ Nu since v 	→ DF(v)(w(u)) is continuous on X .
Because {Nu : u ∈ X1} is an open covering of X1, it possesses a locally finite

refinement which will be denoted by {Nuj}j∈J . For each j ∈ J , let ρj(u) denote the
distance from u ∈ X1 to the complement of Nuj . Then ρj(·) is Lipschitz continuous
on X1 and ρj(u) = 0 if u �∈ Nuj . Set

βj(x) =
ρj(x)∑

k∈J

ρk(x)
, ∀x ∈ X1.

Since each u belongs to only finitely many sets Nuk
, then

∑
k∈J ρk(u) is only a

finite sum. Set

W0(u) =
∑
j∈J

βj(x)w(uj), ∀u ∈ X1.

Then W0 is locally Lipschitz continuous on X1 and W0(u) > δ
2 for all u ∈ X1. Put

α(u) =
dist(u,X2)

dist(u,X2) + dist(x,X3)
, ∀u ∈ X.

Then α(u) : X → [0, 1] is Lipschitz continuous on X and

α(u) =

{
0, on X2,

1, on X3.

Set

W (u) =

{
α(u)W0(u), for all u ∈ X1,

0, otherwise.

It is clear that W (u) is the vector field on X that we need.
Consider the flow η(t) = η(t, u) defined by dη

dt = −W (η) with η(0, u) = u. It
can be proved that the solution η(t, u) ∈ C(R ×X,X) (see [8] for detailed proof).
Next, we explore the properties of the pseudo-gradient flow η(t, u). By definition,

d

dt
F(η(t)) = DF(η(t))(−W (η(t))) = −DF(η(t))(W (η(t))). (2.3)

Therefore, by (2.2) and (2.3), d
dtF(η(t)) � 0 and the strict inequality holds if

F(u) ∈ (c− 2ε, c+2ε). Thus, F(η(t)) is non-increasing in t, and strictly decreasing
if F(u) ∈ (c − 2ε, c+ 2ε). Fixing u, we now claim that if F(u) ∈ [c− ε, c+ ε] and



April 1, 2009 16:55 WSPC/176-AA 00132

Existence Results for a Class of Non-Uniformly Elliptic Equations 191

F(η(t)) ∈ [c − ε, c + ε] for all t > 0, then there exists a unique t0 > 0 such that
F(η(t0)) � c− ε.

Indeed, assume that F(η(t)) ∈ [c− ε, c+ ε] for all t > 0. Then for all t > 0, we
have

2ε � F(η(0)) −F(η(t)) = −
∫ 0

t

DF(η(s))W (η(s))ds �
∫ t

0

δ

2
ds =

δt

2
. (2.4)

Therefore t � 4ε
δ . We see that the last inequality cannot hold for large t. Hence, for

each u such that F(u) ∈ [c − ε, c + ε] there exists t0 > 0 such that F(η(t0, u)) �
c − ε. This is a contradiction since c = inf F . Thus c is a critical value of the
functional F .

The following lemma concerns the smoothness of the functional Λ.

Lemma 2.6 (see [7, Lemma 2.4]). (i) If {un} is a sequence weakly converging
to u in X, denoted by un ⇀ u, then Λ(u) � lim infn→∞ Λ(un).

(ii) For all u, z ∈ E

Λ
(
u+ z

2

)
� 1

2
Λ(u) +

1
2
Λ(z) − k1‖u− z‖p

E .

(iii) Λ is continuous on E.
(iv) Λ is weakly continuously differentiable on E and

DΛ(u)(v) =
∫

Ω

a(x,∇u)∇v dx

for all u, v ∈ E.
(v) Λ(u) − Λ(v) � DΛ(v)(u − v) for all u, v ∈ E.

The following lemma concerns the smoothness of the functional Jλ,µ. The proof
is standard and simple, so we omit it.

Lemma 2.7. (i) If un ⇀ u in X, then limn→∞ Jλ,µ(un) = Jλ,µ(u).
(ii) Jλ,µ is continuous on E.
(iii) Jλ,µ is weakly continuously differentiable on E and

DJλ,µ(u)(v) = λ

∫
Ω

f(u)v dx+ µ

∫
Ω

g(u)v dx

for all u, v ∈ E.

Remark 2.8. The continuity of f and g together with conditions (f1) and (g)
imply that Jλ,µ is of class C1.

We are now in a position to prove our main results.
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3. Proof of Theorem 1.2

Throughout this section, we always assume that the assumptions (A1)–(A5) and
(f1) are fulfilled. We remark that the critical points of the functional Iλ,0 correspond
to the weak solutions of (Pλ).

Lemma 3.1. For every λ ∈ R, the functional Iλ,0 is coercive on E.

Proof. First, let S be the best Sobolev constant of the embedding W 1,p
0 (Ω) ↪→

Lp(Ω), that is,

S = inf
u∈W 1,p

0 (Ω)\{0}

(∫
Ω

|∇u|p dx
) 1

p

(∫
Ω

|u|p dx
) 1

p

.

Thus, we obtain

S|v|Lp � ‖v‖
for all v ∈ E. Let us fix λ ∈ R, arbitrarily. By (f1), there exists δ = δ(λ) such that

|f(t)| � pk0Sp 1
1 + |λ| |t|

p−1, ∀|t| � δ.

Integrating the above inequality, we have

|F (t)| � k0Sp 1
1 + |λ| |t|

p + max
|s|�δ

|f(s)||t|, ∀t ∈ R.

Thus, for every u ∈ E we obtain

Iλ,0(u) � Λ(u) − |Jλ,0(u)|

� k0‖u‖p
E − k0Sp |λ|

1 + |λ| |u|
p
Lp − |λ||Ω| 1

p′ |u|Lp max
|s|�δ

|f(s)|

� k0‖u‖p
E − k0

|λ|
1 + |λ| ‖u‖

p − |λ|
S |Ω| 1

p′ ‖u‖max
|s|�δ

|f(s)|

� k0‖u‖p
E − k0

|λ|
1 + |λ| ‖u‖

p
E − |λ|

S |Ω| 1
p′ ‖u‖E max

|s|�δ
|f(s)|

=
k0

1 + |λ| ‖u‖
p
E − |λ|

S |Ω| 1
p′ ‖u‖E max

|s|�δ
|f(s)|,

where p′ = p
p−1 . Since p > 1, then Iλ,0(u) → +∞ whenever ‖u‖E → +∞. Hence,

Iλ,0 is coercive on E.

Lemma 3.2. For every λ ∈ R, the functional Iλ,0 satisfies the Palais–Smale con-
dition on E.
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Proof. Let {un} be a sequence in E and β be a real number such that

|Iλ,0(un)| � β for all n (3.1)

and

DIλ,0(un) → 0 in E�. (3.2)

Since the functional Iλ,0 is coercive on E, then {un} is bounded in E. By
Remark 1.1(i), we deduce that {un} is bounded in X . Since X is reflexive, then by
passing to a subsequence, still denoted by {un}, we can assume that the sequence
{un} converges weakly to some u in X . We shall prove that the sequence {un}
converges strongly to u in E.

We observe by Remark 1.1(iii) that u ∈ E. Hence {‖un − u‖E} is bounded.
Since {‖DIλ,0(un)‖E�} converges to 0, then DIλ,0(un)(un − u) converges to 0.

We note that (f1) implies the existence of a constant c > 0 such that

|f(t)| � c(1 + |t|p−1), ∀t ∈ R.

Therefore,

0 �
∫

Ω

|f(un)||un − u| dx

� c

∫
Ω

|un − u| dx+ c

∫
Ω

|un|p−1|un − u| dx

� c(|Ω| 1
p′ + |un|p−1

Lp )|un − u|Lp .

Since un → u strongly in Lp(Ω), we get

lim
n→∞

∫
Ω

|f(un)||un − u| dx = 0.

Thus

lim
n→∞DJλ,0(un)(un − u) = 0.

This and the fact that

DΛ(un)(un − u) = DIλ,0(un)(un − u) +DJλ,0(un)(un − u)

give

lim
n→∞DΛ(un)(un − u) = 0.

By using (v) in Lemma 2.6, we get

Λ(u) − lim
n→∞Λ(un) = lim

n→∞(Λ(u) − Λ(un)) � lim
n→∞DΛ(un)(u − un) = 0.

This and (i) in Lemma 2.6 give

lim
n→∞ Λ(un) = Λ(u).
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Now if we assume by contradiction that ‖un − u‖E does not converge to 0, then
there exists ε > 0 and a subsequence {unm} of {un} such that ‖unm − u‖E � ε. By
using relation (ii) in Lemma 2.6, we get

1
2
Λ(u) +

1
2
Λ(unm) − Λ

(
unm + u

2

)
� k1‖unm − u‖p

E � k1ε
p.

Letting m→ ∞, we find that

lim sup
m→∞

Λ
(
unm + u

2

)
� Λ(u) − k1ε

p.

We also have that unm+u
2 converges weakly to u in E. Using (i) in Lemma 2.6 again,

we get

Λ(u) � lim inf
m→∞ Λ

(
unm + u

2

)
.

That is a contradiction. Therefore {un} converges strongly to u in E.

Proof of Theorem 1.2. The coerciveness and the Palais–Smale condition are
enough to prove that Iλ,0 attains its proper infimum in Banach space E (see Theo-
rem 2.5), so that (Pλ) has at least a solution u in E. We show that u is not trivial
for λ large enough. Indeed, let s0 be a real number as in (f2) and let Ω1 ⊂ Ω be
an open subset with |Ω1| > 0. Then, we deduce that there exists u1 ∈ C∞

0 (Ω) ⊂ E

such that u1(x) ≡ s0 on Ω1 and 0 � u1(x) � s0 in Ω\Ω1. We have

Iλ,0(u1) =
∫

Ω

A(x,∇u1)dx− λ

∫
Ω

F (u1)dx

�
∫

Ω

A(x,∇u1)dx− λ

∫
Ω1

F (u1)dx

= C − λ|Ω1|F (s0),

where C is a positive constant. Thus for λ large enough, we get Iλ,0(u1) < 0. Hence,
the solution u is not trivial. The proof is complete.

4. Proof of Theorem 1.3

Throughout this section, we always assume that the assumptions (A1)–(A5), (f1)
and (g) are fulfilled. The proof of Theorem 1.3 is almost similar to the proof of
Theorem 1.2. Let us fix λ ∈ R, arbitrarily.

Lemma 4.1. For each λ ∈ R, there exists a constant µ > 0, dependent of λ, such
that for every µ ∈ (0, µ), the functional Iλ,µ is coercive on E.

Proof. Since g is asymptotically (p − 1)-linear at infinity, then after integrating
there exists a constant m > 0 such that

|g(t)| � mpSp|t|p−1 +m, ∀t ∈ R.
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This inequality yields that

|G(t)| � mSp|t|p +m|t|, ∀t ∈ R.

Thus, for every u ∈ E we obtain

Iλ,µ(u) � Λ(u) − |Jλ,µ(u)|

� k0‖u‖p
E − k0

|λ|
1 + |λ| ‖u‖

p − |λ|
S |Ω| 1

p′ ‖u‖max
|s|�δ

|f(s)|

− |µ|m‖u‖p −m
|µ|
S |Ω| 1

p′ ‖u‖

� k0‖u‖p
E − k0

|λ|
1 + |λ| ‖u‖

p
E − |λ|

S |Ω| 1
p′ ‖u‖E max

|s|�δ
|f(s)|

− |µ|m‖u‖p
E −m

|µ|
S |Ω| 1

p′ ‖u‖E

=
(

k0

1 + |λ| − |µ|m
)
‖u‖p

E − |λ|
S |Ω| 1

p′ ‖u‖E max
|s|�δ

|f(s)| −m
|µ|
S |Ω| 1

p′ ‖u‖E,

where p′ = p
p−1 . Let µ = k0

m(1+|λ|) and fix µ ∈ (0,m). Since p > 1, then Iλ,µ(u) →
+∞ whenever ‖u‖E → +∞. Hence, Iλ,µ is coercive on E.

Lemma 4.2. Let λ and µ be chosen as in the previous lemma. Then, the functional
Iλ,µ satisfies the Palais–Smale condition on E for every µ ∈ (0, µ).

Proof. Let {un} be a sequence in E and β be a real number such that

|Iλ,µ(un)| � β for all n (4.1)

and

DIλ,µ(un) → 0 in E�. (4.2)

Similar to the proof of Lemma 3.2, {un} is bounded in E and then is bounded in
X . Therefore, there exists u ∈ X such that un ⇀ u in X and un → u in Lp(Ω).
We observe by Remark 1.1(iii) that u ∈ E. Hence {‖un − u‖E} is bounded. Since
{‖DIλ,0(un − u)‖E�} converges to 0, then DIλ,0(un − u)(un − u) converges to 0.

We note that (g) implies the existence of a constant c > 0 such that

|g(t)| � c(1 + |t|p−1), ∀t ∈ R.

Therefore,

0 �
∫

Ω

|g(un)||un − u|dx � c

∫
Ω

|un − u| dx+ c

∫
Ω

|un|p−1|un − u|dx

� c(|Ω| 1
p′ + ‖u‖p−1

n )‖un − u‖p.

Since un → u strongly in Lp(Ω), we get

lim
n→∞

∫
Ω

|g(un)||un − u| dx = 0.
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Thus

lim
n→∞DJλ,µ(un)(un − u) = 0.

This and the fact that

DΛ(un)(un − u) = DIλ,µ(un)(un − u) +DJλ,µ(un)(un − u)

give

lim
n→∞DΛ(un)(un − u) = 0.

Similar to the last part of the proof of Lemma 3.2, the last equality yields un → u

in E. This completes our proof.

Proof of Theorem 1.3. The coerciveness and the Palais–Smale condition are
enough to prove that Iλ,µ attains its proper infimum in Banach space E (see Theo-
rem 2.5), so that (Pλ,µ) has at least a solution u in E. We show that u is not trivial
for λ large enough. Indeed, let s0 be a real number as in (f2) and let Ω1 ⊂ Ω be
an open subset with |Ω1| > 0. Then, we deduce that there exists u1 ∈ C∞

0 (Ω) ⊂ E

such that u1(x) ≡ s0 on Ω1 and 0 � u1(x) � s0 in Ω\Ω1. We have

Iλ,µ(u1) =
∫

Ω

A(x,∇u1)dx− λ

∫
Ω

F (u1)dx− µ

∫
Ω

G(u1)dx

�
∫

Ω

A(x,∇u1)dx− λ

∫
Ω1

F (u1)dx− µ

∫
Ω

G(u1)dx

=
∫

Ω

A(x,∇u1)dx− µ

∫
Ω

G(u1)dx− λ

∫
Ω1

F (u1)dx

= C − λ|Ω1|F (s0),

where C is a positive constant (it is important to notice that the constant C actually
depends on the parameter µ). Thus, for λ large enough, we get Iλ,µ(u1) < 0. Hence,
the solution u is not trivial. The proof is complete.
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[5] G. Dincǎ, P. Jebelean and J. Mawhin, Variational and topological methods for Dirich-
let problems with p-Laplacian, Protugaliae Math. 58 (2001) 340–377.

[6] D. M. Duc, Nonlinear singular elliptic equations, J. London Math. Soc. 40(2) (1989)
420–440.

[7] D. M. Duc and N. T. Vu, Nonuniformly elliptic equations of p-Laplacian type, Non-
linear Anal. 61 (2005) 1483–1495.

[8] I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in
the large, Bull. Amer. Math. Soc. 39(2) (2002) 207–265.
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