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1. Introduction and preliminaries

The following two mean value theorems for time scales are due to M. Bohner and G. Guseinov.

Theorem A (See [1], Theorem 4.1). Suppose that f is continuous on ½a; b� and has a delta derivative at each point of ½a; bÞ. If
f ðaÞ ¼ f ðbÞ, then there exist points n;g 2 ½a; bÞ such that
f D nð Þ 5 0 5 f D gð Þ:
Theorem B (See [1], Theorem 4.2). Suppose that f is continuous on ½a; b� and has a delta derivative at each point of ½a; bÞ. If
f ðaÞ ¼ f ðbÞ, then there exist points n;g 2 ½a; bÞ such that
f D nð Þ b� að Þ 5 f bð Þ � f að Þ 5 f D gð Þ b� að Þ:
Motivated by Theorem A, the main aim of this paper is to present time scale version of mean value results for integrals in
the single variable case. We first introduce some preliminaries on time scales (see [2,3,5] for details).

Definition 1. A time scale T is an arbitrary nonempty closed subset of real numbers.

The calculus of time scales was initiated by Stefan Hilger in his PhD thesis [4] in order to create a theory that can unify
discrete and continuous analysis. Let T be a time scale. T has the topology that it inherits from the real numbers with the
standard topology.

Definition 2. Let rðtÞ and qðtÞ be the forward and backward jump operators in T, respectively. For t 2 T, we define the
forward jump operator r : T! T by
rðtÞ ¼ inf s 2 T : s > tf g;
while the backward jump operator q : T! T is defined by
qðtÞ ¼ sup s 2 T : s < tf g:
If rðtÞ > t, then we say that t is right-scattered, while if qðtÞ < t then we say that t is left-scattered.
. All rights reserved.
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In this definition we put inf ; ¼ sup T (i.e., rðtÞ ¼ t if T has a maximum t) and sup ; ¼ inf T (i.e., qðtÞ ¼ t if T has a min-
imum t), where ; denotes the empty set.

Points that are right-scattered and left-scattered at the same time are called isolated. If rðtÞ ¼ t and t– sup T, then t is
called right-dense, and if qðtÞ ¼ t and t – inf T, then t is called left-dense. Points that are right-dense and left-dense at the
same time are called dense.

Definition 3. Let t 2 T, then two mappings l; m : T! ½0;þ1Þ satisfying
l tð Þ :¼ rðtÞ � t; m tð Þ :¼ t � qðtÞ

are called the graininess functions.

We now introduce the set Tj which is derived from the time scales T as follows. If T has a left-scattered maximum t, then
Tj :¼ T� ftg, otherwise Tj :¼ T.

Definition 4. Let f : T! R be a function on time scales. Then for t 2 Tj, we define f DðtÞ to be the number, if one exists
(finite), such that for all e > 0 there is a neighborhood U of t such that for all s 2 U
f ðrðtÞÞ � f sð Þ � f DðtÞ rðtÞ � sð Þ
�� �� 5 e rðtÞ � sj j:
We say that f is D-differentiable on Tj provided f DðtÞ exists for all t 2 Tj.

Assume that f : T! R is a function and let t 2 Tj (t– min T). Then we have the following

(i) If f is D-differentiable at t, then f is continuous at t.
(ii) If f is left continuous at t and t is right-scattered, then f is D-differentiable at t with
f DðtÞ ¼ f ðrðtÞÞ � f tð Þ
l tð Þ :
(iii) If t is right-dense, then f is D-differentiable at t if and only if
lims!t
f tð Þ � f sð Þ

t � s
;

exists a finite number. In this case

f DðtÞ ¼ lims!t
f tð Þ � f sð Þ

t � s
:

(iv) If f is D-differentiable at t, then
f ðrðtÞÞ ¼ f ðtÞ þ lðtÞf DðtÞ:
Proposition 1 (See [2], Theorem 1.20). Let f ; g : T! R be differentiable at t 2 Tj. Then
fgð ÞD tð Þ ¼ f D tð Þg tð Þ þ f r tð Þð ÞgD tð Þ ¼ f tð ÞgD tð Þ þ f D tð Þg r tð Þð Þ:
Definition 5. A mapping f : T! R is called rd-continuous provided if it satisfies

(1) f is continuous at each right-dense point.
(2) The left-sided limit lims!t�f ðsÞ ¼ f ðt�Þ exists at each left-dense point t of T.
Remark 1. It follows from Theorem 1.74 of Bohner and Peterson [2] that every rd-continuous function has an anti-
derivative.

Definition 6. A function F : T! R is called a D-antiderivative of f : T! R provided f DðtÞ ¼ f ðtÞ holds for all t 2 Tj. Then the
D-integral of f is defined by
Z b

a
f tð ÞDt ¼ F bð Þ � F að Þ:
Proposition 2 (See [2], Theorem 1.77). Let f ; g be rd-continuous, a; b; c 2 T and a; b 2 R. Then

(1)
R b

a ðaf ðtÞ þ bgðtÞÞDt ¼ a
R b

a f ðtÞDt þ b
R b

a gðtÞDt;

(2)
R b

a f ðtÞDt ¼ �
R a

b f ðtÞDt;

(3)
R b

a f ðtÞDt ¼
R c

a f ðtÞDt þ
R b

c f ðtÞDt;

(4)
R a

a f ðtÞDt ¼ 0:
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Definition 7. We say that a function p : T! R is regressive provided
1þ l tð Þp tð Þ– 0; 8t 2 Tj
holds.

Definition 8. If a function p is regressive, then we define the exponential function by
ep t; sð Þ ¼ exp
Z t

s
nl sð Þ p sð Þð ÞDs

� �
; 8s; t 2 T
where nhðzÞ is the cylinder transformation which is defined by
nh sð Þ ¼
1
h Log 1þ shð Þ; if h > 0;
s; if h ¼ 0;

(

where Log is the principal logarithm function.

Remark 2. It is obviously to see that e1ðt; sÞ is well-defined and e1ðt; sÞ > 0 for all t; s 2 T.

We now list here two properties of epðt; sÞ which we will use in the rest of this paper.

Theorem C (See [2], Theorem 2.33). If p is regressive, then for each t0 2 T fixed, epðt; sÞ is a solution of the initial value problem
yD ¼ p tð Þy; y t0ð Þ ¼ 1
on T.

Theorem D (See [2], Theorem 2.36). If p is regressive, then

(1) epðt; sÞ ¼ 1
epðs;tÞ.

(2) ð 1
epðt;sÞ Þ

Dt ¼ �p
epðrðtÞ;sÞ.

Throughout this paper, we suppose that T is a time scale, a; b 2 T with a < b and an interval means the intersection of real
interval with the given time scale.

2. Main results

Theorem 1. Let f be a continuous function on ½a; b� such that
Z b

a
f ðxÞDx ¼ 0:
Then there exist n;g 2 ½a; bÞ so that
f nð Þ 5
Z n

a
f ðxÞDx;

Z g

a
f ðxÞDx 5 f gð Þ:
Proof of Theorem 1. Let
hðxÞ ¼ e1 a; xð Þ
Z x

a
f tð ÞDt; x 2 ½a; bÞ:
Then
hDðxÞ ¼ e1 a; xð Þ
Z x

a
f tð ÞDt

� �D

¼ e1 a; xð Þð ÞD
Z x

a
f tð ÞDt þ e1 a;rðxÞð Þ

Z x

a
f tð ÞDt

� �D

¼ 1
e1 x; að Þ

� �D Z x

a
f tð ÞDt þ e1 a;rðxÞð Þ

Z x

a
f tð ÞDt

� �D

¼ �1
e1 rðxÞ; xð Þ

Z x

a
f tð ÞDt þ e1 a;rðxÞð Þf ðxÞ

¼ �e1 a;rðxÞð Þ
Z x

a
f tð ÞDt þ e1 a;rðxÞð Þf ðxÞ:
Since hðaÞ ¼ hðbÞ then there exists n;g 2 ½a; bÞ such that
hD nð Þ 5 0 5 hD gð Þ:
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Hence
�e1 a;r nð Þð Þ
Z n

a
f tð ÞDt þ e1 a;r nð Þð Þf nð Þ 5 0 5 � e1 a;r gð Þð Þ

Z g

a
f tð ÞDt þ e1 a;r gð Þð Þf gð Þ;
which implies that
f nð Þ 5
Z n

a
f ðxÞDx;

Z g

a
f ðxÞDx 5 f gð Þ:
The proof is complete. h

Theorem 2. Let f be a continuous function on ½a; b� such that
Z b

a
f ðxÞDx ¼ 0:
Then there exist n;g 2 ½a; bÞ so that
e1 a; nð Þ
e1 a;r nð Þð Þ f nð Þ 5

Z r nð Þ

a
f tð ÞDt;
and
 Z r gð Þ

a
f tð ÞDt 5

e1 a;gð Þ
e1 a;r gð Þð Þ f gð Þ:
Proof of Theorem 2. Let
hðxÞ ¼ e1 a; xð Þ
Z x

a
f tð ÞDt:
Then
hDðxÞ ¼ e1 a; xð Þf ðxÞ � e1 a;rðxÞð Þ
Z rðxÞ

a
f tð ÞDt:
Since hðaÞ ¼ hðbÞ then there exists n;g 2 ½a; bÞ such that
gD nð Þ 5 0 5 gD gð Þ:
Hence
e1 a; nð Þf nð Þ � e1 a;r nð Þð Þ
Z r nð Þ

a
f tð ÞDt 5 0 5 e1 a;gð Þf gð Þ � e1 a;r gð Þð Þ

Z r gð Þ

a
f tð ÞDt;
which implies that
e1 a; nð Þ
e1 a;r nð Þð Þ f nð Þ 5

Z r nð Þ

a
f tð ÞDt;

Z r gð Þ

a
f tð ÞDt 5

e1 a;gð Þ
e1 a;r gð Þð Þ f gð Þ:
The proof is complete. h

Corollary 1. Let T ¼ R, from Theorems 1 and 2 together with the continuity of f we deduce that the existence of c 2 ½a; b� such that
f cð Þ ¼
Z c

a
f ðxÞdx
provided
Z b

a
f ðxÞdx ¼ 0:
Theorem 3. Let f be a continuous function on ½a; b� such that
Z b

a
f ðxÞDx ¼ 0:
Then for each T 3 c < a, there exist n;g 2 ½a; bÞ so that



326 Quô�c-Anh Ngô / Applied Mathematics and Computation 213 (2009) 322–328
f nð Þ n� cð Þ 5
Z n

a
f tð ÞDt;

Z g

a
f tð ÞDt 5 f gð Þ g� cð Þ:
Proof of Theorem 3. Let
hðxÞ ¼ 1
x� c

Z x

a
f tð ÞDt; x 2 ½a; bÞ; T 3 c < a:
Therefore
hDðxÞ ¼ �1
rðxÞ � cð Þ x� cð Þ

Z x

a
f tð ÞDt þ 1

rðxÞ � c
f ðxÞ:
Since hðaÞ ¼ hðbÞ then there exists n;g 2 ½a; bÞ such that
hD nð Þ 5 0 5 hD gð Þ:
Hence
�1
r nð Þ � cð Þ n� cð Þ

Z n

a
f tð ÞDt þ 1

r nð Þ � c
f nð Þ 5 0 5

�1
r gð Þ � cð Þ g� cð Þ

Z g

a
f tð ÞDt þ 1

r gð Þ � c
f gð Þ;
which implies
f nð Þ
r nð Þ � c

5

R n
a f tð ÞDt

r nð Þ � cð Þ n� cð Þ ;R g
a f tð ÞDt

r gð Þ � cð Þ g� cð Þ 5
f gð Þ

r gð Þ � c
:

Thus
f nð Þ n� cð Þ 5
Z n

a
f tð ÞDt;

Z g

a
f tð ÞDt 5 f gð Þ g� cð Þ:
The proof is complete. h

Corollary 2. Let T ¼ R, from Theorem 3 together with the continuity of f we deduce the existence of c 2 ½a; b� such that
f cð Þ n� cð Þ ¼
Z c

a
f ðxÞdx;
for each c < a provided
Z b

a
f ðxÞDx ¼ 0:
Theorem 4. Let f ; g be a continuous function on ½a; b�. Then there exist n;g 2 ½a; bÞ so that
f nð Þ
Z b

n
g tð ÞDt

 !
5

Z r nð Þ

a
f tð ÞDt

� �
g nð Þ;
and
f gð Þ
Z b

g
g tð ÞDt

 !
=

Z r gð Þ

a
f tð ÞDt

� �
g gð Þ:
Proof of Theorem 4
hðxÞ ¼ �
Z x

a
f tð ÞDt

� � Z x

b
g tð ÞDt

� �
; x 2 ½a; bÞ:
Then
hDðxÞ ¼ �f ðxÞ
Z x

b
g tð ÞDt

� �
�

Z rðxÞ

a
f tð ÞDt

� �
gðxÞ:
Since hðaÞ ¼ hðbÞ then there exist n;g 2 ½a; bÞ such that
hD nð Þ 5 0 5 hD gð Þ:
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Hence
�f nð Þ
Z n

b
g tð ÞDt

� �
�

Z r nð Þ

a
f tð ÞDt

� �
g nð Þ 5 0 5 � f gð Þ

Z g

b
g tð ÞDt

� �
�

Z r gð Þ

a
f tð ÞDt

� �
g gð Þ;
which implies
0 5 f nð Þ
Z n

b
g tð ÞDt

� �
þ

Z r nð Þ

a
f tð ÞDt

� �
g nð Þ;

0 = f gð Þ
Z g

b
g tð ÞDt

� �
þ

Z r gð Þ

a
f tð ÞDt

� �
g gð Þ;
or equivalently
f nð Þ
Z b

n
g tð ÞDt

 !
5

Z r nð Þ

a
f tð ÞDt

� �
g nð Þ;

f gð Þ
Z b

g
g tð ÞDt

 !
=

Z r gð Þ

a
f tð ÞDt

� �
g gð Þ:
The proof is complete. h

Corollary 3. Let T ¼ R, from Theorem 4 together with the continuity of f and g we deduce the existence of c 2 ½a; b� such that
f cð Þ
Z b

c
gðxÞdx

 !
¼

Z c

a
f ðxÞdx

� �
g cð Þ:
Theorem 5. Let f ; g be continuous functions on ½a; b�. Then there exist n;g 2 ½a; bÞ so that
Z n

a
f tð ÞDt

� � Z n

b
g tð ÞDt

� �
5 f nð Þ

Z n

b
g tð ÞDt

� �
þ

Z r nð Þ

a
f tð ÞDt

� �
g nð Þ
and
 Z g

a
f tð ÞDt

� � Z g

b
g tð ÞDt

� �
= f gð Þ

Z g

b
g tð ÞDt

� �
þ

Z r gð Þ

a
f tð ÞDt

� �
g gð Þ:
Proof of Theorem 5. Let
hðxÞ ¼ �e1 a; xð Þ
Z x

a
f tð ÞDt

� � Z x

b
g tð ÞDt

� �
:

Then
hDðxÞ ¼ e1 a;rðxÞð Þ
Z x

a
f tð ÞDt

� � Z x

b
g tð ÞDt

� �
� e1 a;rðxÞð Þ

Z x

a
f tð ÞDt

� � Z x

b
g tð ÞDt

� �� �D

¼ e1 a;rðxÞð Þ
Z x

a
f tð ÞDt

� � Z x

b
g tð ÞDt

� �
� e1 a;rðxÞð Þ f ðxÞ

Z x

b
g tð ÞDt

� �
þ

Z rðxÞ

a
f tð ÞDt

� �
gðxÞ

� �
:

Since hðaÞ ¼ hðbÞ then there exists n;g 2 ½a; bÞ such that
hD nð Þ 5 0 5 hD gð Þ:
Hence
e1 a;r nð Þð Þ
Z n

a
f tð ÞDt

� � Z n

b
g tð ÞDt

� �
� e1 a;r nð Þð Þ f nð Þ

Z n

b
g tð ÞDt

� �
þ

Z r nð Þ

a
f tð ÞDt

� �
g nð Þ

� �
5 0;
and
e1 a;r gð Þð Þ
Z g

a
f tð ÞDt

� � Z g

b
g tð ÞDt

� �
� e1 a;r gð Þð Þ f gð Þ

Z g

b
g tð ÞDt

� �
þ

Z r gð Þ

a
f tð ÞDt

� �
g gð Þ

� �
= 0:
Thus
Z n

a
f tð ÞDt

� � Z n

b
g tð ÞDt

� �
5 f nð Þ

Z n

b
g tð ÞDt

� �
þ

Z r nð Þ

a
f tð ÞDt

� �
g nð Þ
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and
 Z g

a
f tð ÞDt

� � Z g

b
g tð ÞDt

� �
= f gð Þ

Z g

b
g tð ÞDt

� �
þ

Z r gð Þ

a
f tð ÞDt

� �
g gð Þ:
The proof is complete. h

Corollary 4. Let T ¼ R, from Theorem 4 together with the continuity of f and g we deduce the existence of c 2 ½a; b� such that
Z c

a
f ðxÞdx

� � Z c

b
gðxÞdx

� �
¼ f cð Þ

Z c

b
gðxÞdx

� �
þ

Z c

a
f ðxÞdx

� �
g cð Þ:
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