Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

New inequalities of Ostrowski-like type involving n knots and the L^{p}-norm of the m-th derivative

Vu Nhat Huy ${ }^{\text {a }}$, Quốc-Anh $N g \hat{o}^{\text {a,b,* }}$
${ }^{\text {a }}$ Department of Mathematics, College of Science, Viêt Nam National University, Hà Nôi, Viêt Nam
${ }^{\mathrm{b}}$ Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore

ARTICLE INFO

Article history:

Received 23 April 2008
Received in revised form 3 March 2009
Accepted 30 March 2009

Keywords:

Inequality
Error
Integral
Taylor
Ostrowski

Abstract

On the basis of recent results due to Nenad Ujević, we obtain some new inequalities of Ostrowski-like type involving n knots and the L^{p}-norm of the m-th derivative where n, m, p are arbitrary numbers.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a number of authors have considered error inequalities for some known and some new quadrature formulas. Sometimes they have considered generalizations of these formulas; see [1,2] and the references therein where the mid-point and trapezoid quadrature rules are considered.

This work is motivated by some results due to Nenad Ujević. Here we recall them.
Theorem 1 (See [1]). Let $I \subset \mathbb{R}$ be an open interval such that $[a, b] \subset I$ and let $f: I \rightarrow \mathbb{R}$ be a twice-differentiable function such that $f^{\prime \prime}$ is bounded and integrable. Then we have

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{2}\left(f\left(\frac{a+b}{2}-(2-\sqrt{3})(b-a)\right)\right.\right. \\
& \left.\quad+f\left(\frac{a+b}{2}+(2-\sqrt{3})(b-a)\right)\right) \left\lvert\, \leqq \frac{7-4 \sqrt{3}}{8}\left\|f^{\prime \prime}\right\|_{\infty}(b-a)^{3}\right. \tag{1}
\end{align*}
$$

Theorem 2 (See [2]). Let $I \subset \mathbb{R}$ be an open interval such that $[a, b] \subset I$ and let $f: I \rightarrow \mathbb{R}$ be a twice-differentiable function such that $f^{\prime \prime} \in L^{2}(a, b)$. Then we have

$$
\left\lvert\, \int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{2}\left(f\left(\frac{a+b}{2}-\frac{3-\sqrt{6}}{2}(b-a)\right)\right.\right.
$$

[^0]\[

$$
\begin{equation*}
\left.+f\left(\frac{a+b}{2}+\frac{3-\sqrt{6}}{2}(b-a)\right)\right) \left\lvert\, \leqq \sqrt{\frac{49}{80}-\frac{1}{4} \sqrt{6}}\left\|f^{\prime \prime}\right\|_{2}(b-a)^{\frac{5}{2}}\right. \tag{2}
\end{equation*}
$$

\]

In the above mentioned results, constants $\frac{7-4 \sqrt{3}}{8}$ in (1) and $\sqrt{\frac{49}{80}-\frac{1}{4} \sqrt{6}}$ in (2) are sharp in the sense that these cannot be replaced by smaller ones. This leads us to strengthen (1) and (2) by enlarging the number of knots (two knots in both (1) and (2)) and replacing the norms $\|\cdot\|_{\infty}$ in (1) and $\|\cdot\|_{2}$ in (2).

Before stating our main result, let us introduce the following notation.

$$
I(f)=\int_{a}^{b} f(x) \mathrm{d} x
$$

Let $1 \leqq m, n<\infty$ and $1 \leqq p \leqq \infty$. For each $i=\overline{1, n}$, we assume $0<x_{i}<1$ such that

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n}=\frac{n}{2} \\
\cdots \\
x_{1}^{j}+x_{2}^{j}+\cdots+x_{n}^{j}=\frac{n}{j+1} \\
\cdots \\
x_{1}^{m-1}+x_{2}^{m-1}+\cdots+x_{n}^{m-1}=\frac{n}{m}
\end{array}\right.
$$

Put

$$
Q\left(f, n, m, x_{1}, \ldots, x_{n}\right)=\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+x_{i}(b-a)\right) .
$$

Remark 3. With the above notation, (1) reads as follows:

$$
\begin{equation*}
\left|I(f)-Q\left(f, 2,2, \frac{1}{2}-(2-\sqrt{3}), \frac{1}{2}+(2-\sqrt{3})\right)\right| \leqq \frac{7-4 \sqrt{3}}{8}\left\|f^{\prime \prime}\right\|_{\infty}(b-a)^{3} \tag{3}
\end{equation*}
$$

while (2) reads as follows:

$$
\begin{equation*}
\left|I(f)-Q\left(f, 2,2, \frac{1}{2}-\frac{3-\sqrt{6}}{2}, \frac{1}{2}+\frac{3-\sqrt{6}}{2}\right)\right| \leqq \sqrt{\frac{49}{80}-\frac{1}{4} \sqrt{6}}\left\|f^{\prime \prime}\right\|_{2}(b-a)^{\frac{5}{2}} \tag{4}
\end{equation*}
$$

We are in a position to state our main result.
Theorem 4. Let $I \subset \mathbb{R}$ be an open interval such that $[a, b] \subset I$ and let $f: I \rightarrow \mathbb{R}$ be an m-times-differentiable function such that $f^{(m)} \in L^{p}(a, b)$. Then we have

$$
\begin{equation*}
\left|I(f)-Q\left(f, n, m, x_{1}, \ldots, x_{n}\right)\right| \leqq \frac{1}{m!}\left(\left(\frac{1}{m q+1}\right)^{\frac{1}{q}}+\left(\frac{1}{(m-1) q+1}\right)^{\frac{1}{q}}\right)\left\|f^{(m)}\right\|_{p}(b-a)^{m+\frac{1}{q}} \tag{5}
\end{equation*}
$$

where

$$
\frac{1}{p}+\frac{1}{q}=1
$$

and

$$
\|f\|_{r}:= \begin{cases}\left(\int_{a}^{b}|f(x)|^{r} \mathrm{~d} x\right)^{\frac{1}{r}}, & \text { when } 1 \leq r<\infty \\ \underset{[a, b]}{\operatorname{ess} \sup |f|,} & \text { when } r=\infty\end{cases}
$$

Remark 5. It is worth noticing that the right hand side of (5) does not involve $x_{i}, i=\overline{1, n}$, and that m can be chosen arbitrarily. This means that our inequality (5) is better in some sense. However, the inequality (5) is not sharp due to the restriction of the technique that we use. We hope that we will soon see some responses on this problem.

2. Proofs

Before proving our main theorem, we need an essential lemma below. It is well-known in the literature as Taylor's formula or Taylor's theorem with the integral remainder.

Lemma 6 (See [3]). Let $f:[a, b] \rightarrow \mathbb{R}$ and let r be a positive integer. If f is such that $f^{(r-1)}$ is absolutely continuous on $[a, b]$, $x_{0} \in(a, b)$, then for all $x \in(a, b)$ we have

$$
f(x)=T_{r-1}\left(f, x_{0}, x\right)+R_{r-1}\left(f, x_{0}, x\right)
$$

where $T_{r-1}\left(f, x_{0}, \cdot\right)$ is Taylor's polynomial of degree $r-1$, that is,

$$
T_{r-1}\left(f, x_{0}, x\right)=\sum_{k=0}^{r-1} \frac{f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k}}{k!}
$$

and the remainder can be given by

$$
\begin{equation*}
R_{r-1}\left(f, x_{0}, x\right)=\int_{x_{0}}^{x} \frac{(x-t)^{r-1} f^{(r)}(t)}{(r-1)!} \mathrm{d} t \tag{6}
\end{equation*}
$$

By a simple calculation, the remainder in (6) can be rewritten as

$$
R_{r-1}\left(f, x_{0}, x\right)=\int_{0}^{x-x_{0}} \frac{\left(x-x_{0}-t\right)^{r-1} f^{(r)}\left(x_{0}+t\right)}{(r-1)!} \mathrm{d} t
$$

which helps us to deduce a similar representation of f as follows:

$$
\begin{equation*}
f(x+u)=\sum_{k=0}^{r-1} \frac{u^{k}}{k!} f^{(k)}(x)+\int_{0}^{u} \frac{(u-t)^{r-1}}{(r-1)!} f^{(r)}(x+t) \mathrm{d} t . \tag{7}
\end{equation*}
$$

Proof of Theorem 4. Define

$$
F(x)=\int_{a}^{x} f(x) \mathrm{d} x
$$

By the Fundamental Theorem of Calculus

$$
I(f)=F(b)-F(a) .
$$

Applying Lemma 6 to $F(x)$ with $x=a$ and $u=b-a$, we get

$$
F(b)=F(a)+\sum_{k=1}^{m} \frac{(b-a)^{k}}{k!} F^{(k)}(a)+\int_{0}^{b-a} \frac{(b-a-t)^{m}}{m!} F^{(m+1)}(a+t) \mathrm{d} t
$$

which yields

$$
I(f)=\sum_{k=1}^{m} \frac{(b-a)^{k}}{k!} F^{(k)}(a)+\int_{0}^{b-a} \frac{(b-a-t)^{m}}{m!} F^{(m+1)}(a+t) \mathrm{d} t
$$

Equivalently,

$$
I(f)=\sum_{k=0}^{m-1} \frac{(b-a)^{k+1}}{(k+1)!} f^{(k)}(a)+\int_{0}^{b-a} \frac{(b-a-t)^{m}}{m!} f^{(m)}(a+t) \mathrm{d} t
$$

For each $1 \leqq i \leqq n$, applying Lemma 6 to $f(x)$ with $x=a$ and $u=x_{i}(b-a)$, we get

$$
\begin{align*}
f\left(a+x_{i}(b-a)\right) & =\sum_{k=0}^{m-1} \frac{x_{i}^{k}(b-a)^{k}}{k!} f^{(k)}(a)+\int_{0}^{x_{i}(b-a)} \frac{\left(x_{i}(b-a)-t\right)^{m-1}}{(m-1)!} f^{(m)}(a+t) \mathrm{d} t \\
& =\sum_{k=0}^{m-1} \frac{x_{i}^{k}(b-a)^{k}}{k!} f^{(k)}(a)+\int_{0}^{b-a} \frac{x_{i}^{m}(b-a-u)^{m-1}}{(m-1)!} f^{(m)}\left(a+x_{i} u\right) \mathrm{d} u . \tag{8}
\end{align*}
$$

By applying (8) to $i=\overline{1, n}$ and then summing, we deduce that

$$
\begin{align*}
\sum_{i=1}^{n} f\left(a+x_{i}(b-a)\right) & =\sum_{i=1}^{n} \sum_{k=0}^{m-1} \frac{x_{i}^{k}(b-a)^{k}}{k!} f^{(k)}(a)+\sum_{i=1}^{n} \int_{0}^{b-a} \frac{x_{i}^{m}(b-a-u)^{m-1}}{(m-1)!} f^{(m)}\left(a+x_{i} u\right) \mathrm{d} u \\
& =\sum_{k=0}^{m-1} \frac{\sum_{i=1}^{n} x_{i}^{k}(b-a)^{k}}{k!} f^{(k)}(a)+\sum_{i=1}^{n} \int_{0}^{b-a} \frac{x_{i}^{m}(b-a-u)^{m-1}}{(m-1)!} f^{(m)}\left(a+x_{i} u\right) \mathrm{d} u \\
& =\sum_{k=0}^{m-1} \frac{n(b-a)^{k}}{(k+1)!} f^{(k)}(a)+\sum_{i=1}^{n} \int_{0}^{b-a} \frac{x_{i}^{m}(b-a-u)^{m-1}}{(m-1)!} f^{(m)}\left(a+x_{i} u\right) \mathrm{d} u . \tag{9}
\end{align*}
$$

Thus,

$$
Q\left(f, n, m, x_{1}, \ldots, x_{n}\right)=\sum_{k=0}^{m-1} \frac{(b-a)^{k+1}}{(k+1)!} f^{(k)}(a)+\frac{b-a}{n} \sum_{i=1}^{n} \int_{0}^{b-a} \frac{x_{i}^{m}(b-a-u)^{m-1}}{(m-1)!} f^{(m)}\left(a+x_{i} u\right) \mathrm{d} u
$$

Therefore,

$$
\begin{aligned}
& \left|I(f)-Q\left(f, n, m, x_{1}, \ldots, x_{n}\right)\right| \\
& \quad=\left|\int_{0}^{b-a} \frac{(b-a-t)^{m}}{m!} f^{(m)}(a+t) \mathrm{d} t-\frac{b-a}{n} \sum_{i=1}^{n} \int_{0}^{b-a} \frac{x_{i}^{m}(b-a-u)^{m-1}}{(m-1)!} f^{(m)}\left(a+x_{i} u\right) \mathrm{d} u\right| \\
& \quad \leqq\left|\int_{0}^{b-a} \frac{(b-a-t)^{m}}{m!} f^{(m)}(a+t) \mathrm{d} t\right|+\frac{b-a}{n} \sum_{i=1}^{n}\left|\int_{0}^{b-a} \frac{x_{i}^{m}(b-a-u)^{m-1}}{(m-1)!} f^{(m)}\left(a+x_{i} u\right) \mathrm{d} u\right| \\
& \quad=\left|\int_{a}^{b} \frac{(b-x)^{m}}{m!} f^{(m)}(x) \mathrm{d} x\right|+\frac{b-a}{n} \sum_{i=1}^{n}\left|\int_{a}^{b} \frac{x_{i}^{m}(b-x)^{m-1}}{(m-1)!} f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} x\right) \mathrm{d} x\right| \\
& \quad \leqq\left\|\frac{(b-\cdot)^{m}}{m!} f^{(m)}\right\|_{1}+\frac{b-a}{n} \sum_{i=1}^{n}\left\|\frac{x_{i}^{m}(b-\cdot)^{m-1}}{(m-1)!} f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} \cdot\right)\right\|_{1} .
\end{aligned}
$$

Using the Hölder inequality, we get

$$
\begin{equation*}
\left\|\frac{(b-\cdot)^{m}}{m!} f^{(m)}\right\|_{1}=\frac{1}{m!}\left\|(b-\cdot)^{m} f^{(m)}\right\|_{1} \leqq \frac{1}{m!}\left\|f^{(m)}\right\|_{p}\left\|(b-\cdot)^{m}\right\|_{q}=\frac{1}{m!}\left(\frac{(b-a)^{m q+1}}{m q+1}\right)^{\frac{1}{q}}\left\|f^{(m)}\right\|_{p} \tag{10}
\end{equation*}
$$

We see that $\left\|f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} \cdot\right)\right\|_{\infty} \leqq\left\|f^{(m)}\right\|_{\infty}$ while, for $1 \leqq p<\infty$, we have

$$
\begin{aligned}
\left\|f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} \cdot\right)\right\|_{p} & =\left(\int_{a}^{b}\left|f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} x\right)\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& =\frac{1}{x_{i}^{\frac{1}{p}}}\left(\int_{a}^{b}\left|f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} x\right)\right|^{p} \mathrm{~d}\left(\left(1-x_{i}\right) a+x_{i} x\right)\right)^{\frac{1}{p}} \\
& =\frac{1}{x_{i}^{\frac{1}{p}}}\left(\int_{a}^{\left(1-x_{i}\right) a+x_{i} b}\left|f^{(m)}(t)\right|^{p} \mathrm{~d} t\right)^{\frac{1}{p}} \\
& \leqq \frac{1}{x_{i}^{\frac{1}{p}}}\left(\int_{a}^{b}\left|f^{(m)}(t)\right|^{p} \mathrm{~d} t\right)^{\frac{1}{p}} \\
& =\frac{1}{x_{i}^{\frac{1}{p}}}\left\|f^{(m)}\right\|_{p} \\
& \leqq \frac{1}{x_{i}}\left\|f^{(m)}\right\|_{p}
\end{aligned}
$$

This helps us to deduce that

$$
\begin{aligned}
& \frac{b-a}{n} \sum_{i=1}^{n}\left\|\frac{x_{i}^{m}(b-\cdot)^{m-1}}{(m-1)!} f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} \cdot\right)\right\|_{1} \\
& \quad=\frac{b-a}{n} \sum_{i=1}^{n} \frac{x_{i}^{m}}{(m-1)!}\left\|(b-\cdot)^{m-1} f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} \cdot\right)\right\|_{1} \\
& \quad \leqq \frac{b-a}{n} \sum_{i=1}^{n} \frac{x_{i}^{m}}{(m-1)!}\left\|f^{(m)}\left(\left(1-x_{i}\right) a+x_{i} \cdot\right)\right\|_{p}\left\|(b-\cdot)^{(m-1)}\right\|_{q} \\
& \quad \leqq \frac{b-a}{n} \sum_{i=1}^{n} \frac{x_{i}^{m}}{(m-1)!} \frac{\left\|f^{(m)}\right\|_{p}}{x_{i}}\left(\frac{(b-a)^{(m-1) q+1}}{(m-1) q+1}\right)^{\frac{1}{q}} \\
& \quad=\frac{b-a}{n} \sum_{i=1}^{n} x_{i}^{m-1} \frac{\left\|f^{(m)}\right\|_{p}}{(m-1)!}\left(\frac{(b-a)^{(m-1) q+1}}{(m-1) q+1}\right)^{\frac{1}{q}} \\
& \quad=\frac{\left\|f^{(m)}\right\|_{p}}{m!}\left(\frac{(b-a)^{m q+1}}{(m-1) q+1}\right)^{\frac{1}{q}} .
\end{aligned}
$$

It follows that

$$
\left|I(f)-Q\left(f, n, m, x_{1}, \ldots, x_{n}\right)\right| \leqq \frac{1}{m!}\left(\frac{(b-a)^{m q+1}}{m q+1}\right)^{\frac{1}{q}}\left\|f^{(m)}\right\|_{p}+\frac{\left\|f^{(m)}\right\|_{p}}{m!}\left(\frac{(b-a)^{m q+1}}{(m-1) q+1}\right)^{\frac{1}{q}}
$$

which completes our proof.

3. Examples

In this section, by applying our main theorem, we will obtain some new inequalities which cannot be easily obtained from [1,2].

Example 7. When $n=3, m=3$ and

$$
\begin{equation*}
0<\underbrace{\frac{1}{4}-\frac{\sqrt{21}}{12}}_{x_{1}}<\underbrace{\frac{1}{2}}_{x_{2}}<\underbrace{\frac{1}{4}+\frac{\sqrt{21}}{12}}_{x_{3}}<1 \tag{11}
\end{equation*}
$$

we deduce that

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{3}\left(f\left(a+\left(\frac{1}{4}-\frac{\sqrt{21}}{12}\right)(b-a)\right)+f\left(a+\frac{1}{2}(b-a)\right)\right.\right. \\
& \left.\quad+f\left(a+\left(\frac{1}{4}+\frac{\sqrt{21}}{12}\right)(b-a)\right)\right) \left\lvert\, \leqq \frac{\sqrt{7}+\sqrt{5}}{6 \sqrt{35}}\left\|f^{\prime \prime \prime}\right\|_{2}(b-a)^{\frac{7}{2}}\right. \tag{12}
\end{align*}
$$

Example 8. When $n=2, m=3$ and

$$
\begin{equation*}
0<\underbrace{\frac{1}{2}-\frac{1}{2 \sqrt{3}}}_{x_{1}}<\underbrace{\frac{1}{2}-\frac{1}{2 \sqrt{3}}}_{x_{2}}<1 \tag{13}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{2}\left(f\left(\frac{a+b}{2}-\frac{1}{2 \sqrt{3}}(b-a)\right)+f\left(\frac{a+b}{2}+\frac{1}{2 \sqrt{3}}(b-a)\right)\right)\right| \leqq \frac{7}{72}\left\|f^{\prime \prime \prime}\right\|_{\infty}(b-a)^{4} . \tag{14}
\end{equation*}
$$

Example 9. When $m=2$ and $0<x_{i}<1$ such that $\sum_{i=1}^{n} x_{i}=\frac{n}{2}$ then we have

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+x_{i}(b-a)\right)\right| \leqq \frac{5}{12}\left\|f^{\prime \prime}\right\|_{\infty}(b-a)^{3}, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+x_{i}(b-a)\right)\right| \leqq \frac{\sqrt{5}+\sqrt{3}}{2 \sqrt{15}}\left\|f^{\prime \prime}\right\|_{2}(b-a)^{\frac{5}{2}} \tag{16}
\end{equation*}
$$

Example 10. When $m=3$ and $0<x_{i}<1$ such that $\sum_{i=1}^{n} x_{i}=\frac{n}{2}$ and $\sum_{i=1}^{n} x_{i}^{2}=\frac{n}{3}$ then we have

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+x_{i}(b-a)\right)\right| \leqq \frac{7}{72}\left\|f^{\prime \prime \prime}\right\|_{\infty}(b-a)^{4} . \tag{17}
\end{equation*}
$$

Acknowledgments

The authors would like to express sincere gratitude to the two anonymous referees for their constructive suggestions on the manuscript.

References

[1] N. Ujević, Error inequalities for a quadrature formula of open type, Rev. Colombiana Mat. 37 (2003) 93-105
[2] N. Ujević, Error inequalities for a quadrature formula and applications, Comput. Math. Appl. 48 (2004) 1531-1540.
[3] G.A. Anastassiou, S.S. Dragomir, On some estimates of the remainder in Taylor's formula, J. Math. Anal. Appl. 263 (2001) 246-263.

[^0]: * Corresponding author at: Department of Mathematics, College of Science, Viêt Nam National University, Hà Nôi, Viêt Nam.

 E-mail addresses: nhat_huy85@yahoo.com (V.N. Huy), bookworm_vn@yahoo.com (Q.-A. Ngô).

