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Abstract

In this paper we first derive a sharpi3s type inequality on time scales and then apply

it to the sharp Ostrowski-@ss inequality on time scales which improves our a recent
result.
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1 Introduction

In 2002, almost at the same time, by using similar somewhat complicated methods, Cheng

and Sun in [7] as well as Mdtiin [16] have proved the following Gss type inequality,
respectively.
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Theorem 1.1. Let f,g: [a,b] — R be two integrable functions such that

Y=g =r (1.1)

for some constantg I for all x € [a,b]. Then

x——/f dx/g X) dx
_a/:f(y)d%dx

Moreover, Matt has proved that there exists a functgattaining the equality in (1.2),
Cerone and Dragomir in [8] have proved that the cons@hﬁ (1.2) is sharp. The result
stated in Theorem 1.1 is of particular interest and very useful in the case when

/ab f(x)—b_la/:f(y)d%dx

can be evaluated exactly. A great deal of sharp integral inequalities can be established by
using this theorem.

The development of the theory of time scales was initiated by Hilger [10] in 1988 as
a theory capable to contain both difference and differential calculus in a consistent way.
Since then, many authors have studied certain integral inequalities on time scales ([1, 4, 5,
11, 17]). Recently, Liu and Nig[14] proved the following Ostrowski-@es type inequality
on time scales, which is a combination of bothi€s inequality and Ostrowski inequality
on time scales due to Bohner and Matthews ([4, 5]).

Theorem 1.2. Let ab,st € T, a< b and f: [a,b] — R be differentiable. If $ is rd-
continuous and

(1.2)

y< AL ST, Vtelah).
Then we have

b _
F(t) — b_lafa fo(s)As— w (hz(t,a) . hz(t,b)) ‘ <

for allt € [a,b] where R(t,s) is as in Definition 2.1.

(b—a)(I —-v),

I

It is easy to see that the foregoing inequality is not sharp. In the first part of this paper,
we shall extend Theorem 1.1 to arbitrary time scale (see Theorem 3.1 below). We also note
that, inspired by Liu in [13], our proof is very simple. As an application, we shall slightly
improve the above Theorem 1.2 as follow by giving a sharp bound.

Theorem 1.3. Under the assumptions of Theorem 1.2, we have

1055 [ o0 DT it o)
ﬁ i b ha (t, @) — ha(t,b) 3
é2<b_ya>/a PLX) = ‘AX’

for all t € [a,b], where ft,x) is defined as if4.1). Moreover, the constar‘g in (1.3)is
sharp.
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In fact, we do not know the relationship between the inequalities in Theorem 1.3 and
Theorem 1.2. But we are sure that whBr= R, Theorem 1.3 gives a better result than
Theorem 1.2.

2 Time scales essentials

Now we briefly introduce the time scales theory and refer the reader to Hilger [10] and the
books [2, 3, 12] for further details.

By a time scalél' we mean any closed subsetR®fvith order and topological structure
present in canonical way. Fore T, we define thforward jump operatoro : T — T
by o(t) =inf{se T :s>t}, while thebackward jump operatop : T — T is defined by
p(t)=sup{se T:s<t}.If o(t) >t, then we say thdtis right-scatteredwhile if p(t) <t
then we say thdtis left-scatteredIf o(t) =t, thet is calledright-denseand ifp(t) =t then
t is calledleft-dense If T has a left-scattered maximumthenT* := T — {t}, otherwise
T* := T. Furthermore for a functiorf : T — R, we denote the functioi® : T — R by
fo(t) = f(o(t)) forallt € T.

Assume thaf : T — R andt € TX. Then we definéA(t) to be the number, if one exists,
with the property that for any given> 0 there is a neighborhodd of t such that

[19(t) — (9) — 12(t) (0(t) - 9)| <elo(t) —

for all s€ U. We say thaff is A-differentiable orlT™ providedf2(t) exists for allt € T*.
A mappingf : T — R is calledrd-continuous(denoted byC,q) if: f is continuous at
each right-dense point or maximal elementlyfthe left-sided IimitS Iitn_1 f(s)=f(t—)

exists at each left-dense poindf T. A functionF : T — R is called aA-antiderivative of
f : T — R providedF2(t) = f(t) holds for allt € T*.

Definition 2.1. Lethy : T? — R, k € Ng be defined by
ho(t,ss=1 forall steT

and then recursively by
t
hk+1(t,s):/hk(r,s)AT forall steT.
S

Throughout this paper, we suppose tfiats a time scalea,b € T with a < b and an
interval means the intersection of real interval with the given time scale.
3 The Griuss type inequality on time scales

We firstly state our @iss type inequality for general time scales.

Theorem 3.1.Letab,se T, f,ge Cq and f,g: [a,b] — R. Then for

y=g(s) =T, (3.1)
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/abf(x)g(x x——/f Ax/ o(x ‘

we have

(3.2)
:I/a f(y)Ay| Ax.
Moreover, the constarﬁ in (3.2)is sharp.
Proof. Since
( f(y)Ay) =0,
then it is clear that
b 1
/ f(x)g(X)Ax — —/ Ax/ 9(x)Ax
a b
:/< /f Ay>< _y >Ax’
a
b
< sup g(x)—ﬂ [l g2 [ 1y ax
a<x<b 2 a b—a/a
By assumption (3.1), we get
_yth Ty
aw - Y5t <55
and the desired inequality (3.2) follows immediately.
To prove the sharpness of this inequality, let us define
roif f(x) / f(y)by > 0,
9(x) =
v if £(%) / f(y)2y < O.
Then it is easy to verify that (3.2) is equallty. O

Similarly to Theorem 3.1, we obtain the weightedii€s type inequality for general
time scales.

Theorem 3.2. Letab,se T, f,g,we Cq and f,g,w: [a,b] — R. Then for

Y=g =T, (3.3)
and
w(x) >0 fora.e. xe [a,b], (3.4)
we have
[ w09 109000 52 w19 [ wigax
a J2w(x)ax a a

(3.5)
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b MKX) b __
/ <W<x>f<x>_m / w<y>f(y>Ay) Ax=0,

Proof. Since

then

X)AX — bw(lx)Ax /a bW(x)f(x)Ax /a bW(x)g(x)Ax
g wix) VT
/ <w<x>f<x> e w(y)f(y)Ay) (900~ Y5 ) ax

b b
o] [0 10— s [ Wty

Q(X)—T

and the desired inequality (3.5) follows immediately.
To prove the sharpness of this inequality, let us define

< sup AX.

a<x<b

By assumption (3.3), we get

1 b
roff) - ——— f(y)by > 0,
10— g /w(y) (y)ay 2

g(x) = 1
y if f(x / w(y) f(y)Ay < 0.
 JRw(y)ny Ja

Then it is easy to verify that (3.5) is equality. O

4 The sharp Ostrowki-Grlss inequality on time scales

In this section, by applying Theorem 3.1, we shall prove Theorem 1.3.

Proof of Theorem 1.3Let

s—a, as<s<t,
p(t,S):{ s—b, t<s<bh. (4.1)

Applying Theorem 3.1 for the choicegx) := p(t,x) andg(x) := f4(x) to get
b 1 b b

/ p(t,x) FA(x )Ax—b—/ p(t,x)Ax/ f2(x)Ax
a _

b
p(t,x) ——/a p(t,y)Ay

(4.2)
AX.

We obviously have
1 P _fb—-f(a
b—a/a f2(x)Ax = b a
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and

1 _ hp(t,@)—ho(t,b)
—_a/a‘p(t,x)Ax_ e,

Hence,
b

A

By (4.2) and (4.3), we deduce that

/ab p(t,x) F4(x)Ax — bia/ab p(t,x)Ax/ab fA(x)Ax

hy (t,a) — hy(t,b)
b—a

AX. 4.3)

b
Ax:/
a

hz(t,a)—hz(t,b)‘

1 b
p(t,X)—m/a p(t,y)Ay p(t,x) — b_a

(4.4)

§ L p(ta X) - Ax.

By using Montgomery Identity, see [5], we deduce that

1/bf°(x)Ax+1/b (t,%) FA(X) A
—a.Ja b—a a P,

which helps us to deduce that

—a)

_ - g - - A

_’f(t) b—a/a f°(s)As /ptxAx /f X)AX
1 b

= x——/ ptxAx/ fA(X)AX] .

fi/ £9( ) ()(hz(t,a)hz(tab))‘

Hence
1 /b f(b)—f(a)
ft——/f“sAs— ho(t,a) — hy(t,b
1052 [t TP () et b)
r_y b hZ(tva)_hZ(tab)
< _
forallt € [a,b]. It is obviously to see that the foregoing inequality is sharp. O

If we apply the Theorem 1.3 to different time scales, we will get some well-known and
some new results.

Corollary 4.1 (Continuous case).LetT = R, then inequality(1.3) becomes

‘f(t)—b_lal/:f(s)ds—f(bg:;(a)(t—a;b)’§8(b a(F—y)  (45)

for all t € [a,b], wherey < f’(t) < I'. Actually, inequality(4.5) is sharp, see [8, Theorem
3].
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Corollary 4.2 (Discrete case).LetT =7Z,a=0,b=n, s=j,t =iand f(k) = x. With
these, it is known that

h (t,s) = < t;s ), forall t,seZ.

Therefore,

e (£.0) = ( ; ) :t(t;l)  hp(tn) = < t;n ) _ (t—n)(tz—n—l).

Thus, we have
n+1
( . )‘ (4.6)

10 xn—xo_ n+1
W
X nglj n (

foralli =1,n, wherey < Ax; <T and

grzg

p(i,0) =0,
p(17j):j_n7 1§j§n_17
p(n7j):j7 Oé]én_]'?

. j, 0 j<«i,

j—n, i=j=n-1

Moreover, the constarg in (4.6)is sharp.

Corollary 4.3 (Quantum calculus case).LetT = ¢°, g> 1, a= g™, b = " with m< n.
In this situation, one has

k=14 v
M (t,s) = rLtqu, forall t,seT.
p=0
Therefore,
(t—q) (t—q™?) (t—q") (t—ag™?)
h, (t.dM) = h, (t.q") = .
b (t,9") 1+q , ha(t,q") 1+q
Then
q' N (M o+l 2mil
fm_qn_lqm/f(;(S)AS_f(qqr)]_;éq ><t_q L )‘
" (4.7)
r_ n-1 il 2mil
< s Y p(t,qk)(tqq> ,
where fqt) (1)
q
ys —"——-~~-<T, Vtelab
@-D) 2.0
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and
o(t. o) = g‘—q" gqr=d<t,
’ o—q", t<g<<q".

Moreover, the constarg in (4.7)is sharp.
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