A MULTIPLICITY RESULT FOR A CLASS OF EQUATIONS OF p-LAPLACIAN TYPE WITH SIGN-CHANGING NONLINEARITIES

NGUYEN THANH CHUNG
Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
e-mail: ntchung82@yahoo.com
and QUỐC ANH NGÔ
Department of Mathematics, College of Science, Vietnam National University, Hanoi, Vietnam Department of Mathematics, National University of Singapore, Science Drive 2, Singapore 117543
e-mail: bookworm_vn@yahoo.com

(Received 11 July 2008; accepted 22 December 2008)

Abstract

Using variational arguments we study the non-existence and multiplicity of non-negative solutions for a class equations of the form $$
-\operatorname{div}(a(x, \nabla u))=\lambda f(x, u) \text { in } \Omega,
$$ where Ω is a bounded domain in $\mathbb{R}^{N}, N \geqq 3, f$ is a sign-changing Carathéodory function on $\Omega \times[0,+\infty)$ and λ is a positive parameter.

2002 Mathematics Subject Classification. 35J20, 35J60, 35J65, 58E05.

1. Introduction. This paper deals with the non-existence and multiplicity of non-negative, non-trivial solutions to the following problem,

$$
\begin{align*}
-\operatorname{div}(a(x, \nabla u)) & =\lambda f(x, u) \text { in } \Omega, \tag{1.1}\\
u & =0 \text { on } \partial \Omega, \tag{1.2}
\end{align*}
$$

where Ω is a bounded domain in \mathbb{R}^{N}, function a satisfies

$$
|a(x, \xi)| \leqq c_{0}\left(h_{0}(x)+h_{1}(x)|\xi|^{p-1}\right)
$$

for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega, h_{0}(x) \geqq 0, h_{1}(x) \geqq 1$ for a.e. $x \in \Omega, p \geqq 2$ and $\lambda>0$ is a parameter. When h_{0} and h_{1} belong to $L^{\infty}(\Omega)$, the problem has been studied by many authors (see $[\mathbf{2}, \mathbf{8}, \mathbf{1 0}]$ for details). Here we study the situation that $h_{0} \in L^{\frac{p}{p-1}}(\Omega)$ and $h_{1} \in L_{l o c}^{1}(\Omega)$. Then problem (1.1)-(1.2) now may be non-uniform in the sense that the functional associated to the problem may be infinity for some u.

We point out the fact that in [4, 13], D. M. Duc and N. T. Vu have studied the following Dirichlet elliptic problem,

$$
\begin{align*}
-\operatorname{div}(a(x, \nabla u)) & =f(x, u) \text { in } \Omega, \tag{1.3}\\
u & =0 \text { on } \partial \Omega, \tag{1.4}
\end{align*}
$$

where the nonlinear term f verifies the so-called Ambrosetti-Rabinowitz condition. The authors obtained the existence of a weak solution by using a variant of the

Mountain pass theorem introduced in [3]. Then, H. Q. Toan and Q.-A. Ngô [12] gave some multiplicity results in the case when $f(x, u)=h(x)|u|^{r-1} u+g(x)|u|^{s-1} u$. Using the Mountain pass theorem in [3] combined with Ekeland's variational principle in [5] they proved that problem (1.3)-(1.4) has at least two weak solutions.

Motivated by K. Perera [10] and M. Mihăilescu and V. Rădulescu [7], the goal of this work is to investigate the problem (1.1)-(1.2) with positive parameter λ and the sign-changing nonlinearity f. We also do not require that the nonlinear term f verifies the Ambrosetti-Rabinowitz condition as in $[4,12]$.

In order to state our main result, let us introduce the following hypotheses on problem (1.1)-(1.2).

Assume that $N \geqq 3$ and $2 \leqq p<N$. Let Ω be a bounded domain with a smooth boundary $\partial \Omega$. Consider that $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, a=a(x, \xi)$, is the continuous derivative with respect to ξ of the continuous function $A: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}, A=A(x, \xi)$, that is, $a(x, \xi)=\partial A(x, \xi) / \partial \xi$ and $A(x, 0)=0$ for a.e. $x \in \Omega$. Assume that there are positive constant c_{0} and two non-negative measurable functions h_{0}, h_{1} such that $h_{0} \in L^{p / p-1}(\Omega), h_{1} \in L_{l o c}^{1}(\Omega), h_{1}(x) \geqq 1$, a.e. $x \in \Omega$. Suppose that a and A satisfy the following hypotheses.
$\left(\mathbf{A}_{1}\right)|a(x, \xi)| \leqq c_{0}\left(h_{0}(x)+h_{1}(x)|\xi|^{p-1}\right)$ for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.
(\mathbf{A}_{2}) The following inequality holds

$$
0 \leqq(a(x, \xi)-a(x, \psi)) \cdot(\xi-\psi)
$$

for all $\xi, \psi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$, with equality if and only if $\xi=\psi$.
$\left(\mathbf{A}_{\mathbf{3}}\right)$ There exists a positive constant k_{0} such that

$$
A\left(x, \frac{\xi+\psi}{2}\right) \leqq \frac{1}{2} A(x, \xi)+\frac{1}{2} A(x, \psi)-k_{0} h_{1}(x)|\xi-\psi|^{p}
$$

for all $\xi, \psi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$, that is, A is p-uniformly convex.
(A) There exists a constant $k_{1}>0$ such that the following inequalities hold true

$$
k_{1} h_{1}(x)|\xi|^{p} \leqq a(x, \xi) \cdot \xi \leqq p A(x, \xi)
$$

for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.

Example 1.

1. Let

$$
A(x, \xi)=\frac{h(x)}{p}|\xi|^{p}, \quad a(x, \xi)=h(x)|\xi|^{p-2} \xi
$$

with $p \geqq 2$ and $h \in L_{l o c}^{1}(\Omega)$. Then we get the operator $\operatorname{div}\left(h(x)|\nabla u|^{p-2} \nabla u\right)$, and if $h(x) \equiv 1$ in Ω we conclude the well-known p-Laplacian operator

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

as in $[\mathbf{8}, \mathbf{1 0}]$.
2. Let

$$
A(x, \xi)=\frac{h(x)}{p}\left(\left(1+|\xi|^{2}\right)^{\frac{p}{2}}-1\right)
$$

with $p \geqq 2, h \in L^{\frac{p}{p-1}}(\Omega)$. Then

$$
a(x, \xi)=h(x)\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}} \xi
$$

We obtain the generalised mean curvature operator

$$
\operatorname{div}\left(h(x)\left(1+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \nabla u\right) .
$$

It should be observed that the above examples have not been considered in $[\mathbf{2 , 8 , 1 0}]$ yet. For more information and connection on these operators, the reader may consult either [2] or [8] and the references therein.

As in [10], we assume that function $f: \Omega \times[0,+\infty) \rightarrow \mathbb{R}$ is a sign-changing Carathéodory function and satisfies the following hypotheses:
$\left(\mathbf{F}_{1}\right) f(x, 0)=0,|f(x, t)| \leqq C t^{p-1}$ for all $t \in[0 .+\infty)$, a.e. $x \in \Omega$, and for some constant $C>0$.
$\left(\mathbf{F}_{2}\right)$ There exist two positive constants $t_{0}, t_{1}>0$ such that $F(x, t) \leqq 0$ for $0 \leqq t \leqq t_{0}$ and $F\left(x, t_{1}\right)>0$.
$\left(\mathbf{F}_{3}\right) \limsup _{t \rightarrow \infty} \frac{F(x, t)}{t^{p}} \leqq 0$ uniformly in x, where $F(x, t)=\int_{0}^{t} f(x, s) \mathrm{d} s$.
Let $W^{1, p}(\Omega)$ be the usual Sobolev space and $W_{0}^{1, p}(\Omega)$ be the closure of $C_{0}^{\infty}(\Omega)$ under the norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} .
$$

We now consider the following subspace of $W_{0}^{1, p}(\Omega)$:

$$
H:=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega} h_{1}(x)|\nabla u|^{p} \mathrm{~d} x<+\infty\right\} .
$$

Then H is an infinite dimensional Banach space with respect to the norm (see [4])

$$
\|u\|_{H}=\left(\int_{\Omega} h_{1}(x)|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

We define the functional $\Phi_{\lambda}: H \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\Phi_{\lambda}(u)=\Lambda(u)-I(u), \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda(u)=\int_{\Omega} A(x, \nabla u) \mathrm{d} x, \quad I(u)=\lambda \int_{\Omega} F(x, u) \mathrm{d} x, \quad u \in H . \tag{1.6}
\end{equation*}
$$

Since $h_{0} \in L^{p / p-1}(\Omega)$, then the value $\Phi_{\lambda}(u)$ may be infinity for some $u \in W_{0}^{1, p}(\Omega)$, that is, the functional may not be defined throughout $W_{0}^{1, p}(\Omega)$. In order to overcome this difficulty, we choose the subspace H of $W_{0}^{1, p}(\Omega)$.

Definition 1. We say that $u \in H$ is a weak solution of problem (1.1)-(1.2) if and only if

$$
\begin{equation*}
\int_{\Omega} a(x, \nabla u) \nabla \varphi \mathrm{d} x-\lambda \int_{\Omega} f(x, u) \varphi \mathrm{d} x=0 \tag{1.7}
\end{equation*}
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$.
Then we have the following remark which plays an important role in our arguments.
Remark 1.
(i) By $\left(A_{4}\right)$ and (i) in Proposition 2, it is easy to see that

$$
H=\left\{u \in W_{0}^{1, p}(\Omega): \Lambda(u)<\infty\right\}=\left\{u \in W_{0}^{1, p}(\Omega): \Phi_{\lambda}(u)<\infty\right\}
$$

(ii) Since $h_{1}(x) \geqq 1$, a.e. $x \in \Omega$, we have $\|u\| \leqq\|u\|_{H}$ for all $u \in H$. Thus, the continuous embeddings

$$
H \hookrightarrow W_{0}^{1, p}(\Omega) \hookrightarrow L^{i}(\Omega), \quad p \leqq i \leqq p^{*}
$$

hold true.
(iii) Since $\int_{\Omega} h_{1}(x)|\nabla u|^{p} \mathrm{~d} x<+\infty$ for any $u \in C_{0}^{\infty}(\Omega)$ and $h_{1} \in L_{l o c}^{1}(\Omega)$, we have $C_{0}^{\infty}(\Omega) \subset H$.

The main result for the existence of solutions of (1.1) can be formulated as follows.
Theorem 1. Under hypotheses $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$ and $\left(\mathrm{F}_{1}\right)$, there exists a positive constant $\underline{\lambda}$ such that for all $\lambda \in(0, \underline{\lambda})$, problem $(1.1)-(1.2)$ has no weak solution.

Theorem 2. Under hypotheses $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$ and $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$, there exists a positive constant $\bar{\lambda}$ such that for all $\lambda \geqq \bar{\lambda}$, problem (1.1)-(1.2) has at least two distinct nonnegative, non-trivial weak solutions.

To prove Theorem 2, we first prove that the functional associated to the problem (1.1)-(1.2) is bounded from below and coercive, and thus the first weak solution is obtained due to a variant of the minimum principle which we will prove in the next section (see Theorem 4). To obtain the second solution to the problem (1.1)-(1.2), we shall use a variant of the mountain pass theorem due to Duc (see Proposition 1).
2. Auxiliary results. Due to the presence of h_{1}, functional Λ may not be continuously Fréchet differentiable functionals on H. This means that we cannot apply the classical Mountain pass theorem by Ambrosetti-Rabinowitz (see [1] for details). To overcome this difficulty, we shall use a weak version of the Mountain pass theorem introduced by Duc [3]. Now we introduce the following concept of weakly continuously differentiability due to Duc.

Definition 2. Let \mathcal{F} be a map from a Banach space X to \mathbb{R}. We say that \mathcal{F} is weakly continuously differentiable on X if and only if the following two conditions are satisfied:
(i) For any $u \in X$ there exists a linear map $D \mathcal{F}(u)$ from X to \mathbb{R} such that

$$
\lim _{t \rightarrow 0} \frac{\mathcal{F}(u+t v)-\mathcal{F}(u)}{t}=D \mathcal{F}(u)(v)
$$

for every $v \in X$.
(ii) For any $v \in X$, the map $u \mapsto D \mathcal{F}(u)(v)$ is continuous on X.

REMARK 2. If we suppose further that $v \mapsto D \mathcal{F}(u)(v)$ is continuous linear mapping on X, then \mathcal{F} is Gâteaux differentiable.

Definition 3. We call u a generalised critical point (critical point, for short) of \mathcal{F} if $D \mathcal{F}(u)=0 . c$ is called a generalised critical value (critical value, for short) of \mathcal{F} if $\mathcal{F}(u)=c$ for some critical point u of \mathcal{F}.

Denote by $C_{w}^{1}(X)$ the set of weakly continuously differentiable functionals on X. It is clear that $C^{1}(X) \subset C_{w}^{1}(X)$ where we denote by $C^{1}(X)$ the set of all continuously Fréchet differentiable functionals on X. Now let $\mathcal{F} \in C_{w}^{1}(X)$; we put

$$
\|D \mathcal{F}(u)\|=\sup \{|D \mathcal{F}(u)(h)| h \in Y,\|h\|=1\}
$$

for any $u \in X$, where $\|D \mathcal{F}(u)\|$ may be $+\infty$.
Definition 4. We say that \mathcal{F} satisfies the Palais-Smale condition at level $c \in \mathbb{R}$ (denoted by $(\mathrm{PS})_{c}$) if any sequence $\left\{u_{n}\right\} \subset X$ for which

$$
\mathcal{F}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad D \mathcal{F}\left(u_{n}\right) \rightarrow 0 \text { in } X^{\star}
$$

possesses a convergent subsequence. If this is true at every level c then we simply say that \mathcal{F} satisfies the Palais-Smale condition (denoted by (PS)).

Definition 5. We say that \mathcal{F} satisfies the Cerami condition at level $c \in \mathbb{R}$ (denoted by $\left.(\mathrm{C})_{c}\right)$ if any sequence $\left\{u_{n}\right\} \subset X$ for which

$$
\mathcal{F}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad\left(1+\left\|x_{n}\right\|\right) D \mathcal{F}\left(u_{n}\right) \rightarrow 0 \text { in } X^{\star}
$$

possesses a convergent subsequence. If this is true at every level c, then we simply say that \mathcal{F} satisfies the Cerami condition (denoted by (C)).

In the proof of our main theorems, we shall use the following results which is proved in [9]. We will recall its proof for completeness.

Theorem 3 (see [9]). Let $\mathcal{F} \in C_{w}^{1}(X)$ where X is a Banach space. Assume that
(i) \mathcal{F} is bounded from below, $c=\inf \mathcal{F}$,
(ii) \mathcal{F} satisfies the (PS) condition.

Then c is a critical value of \mathcal{F} (i.e. there exists a critical point $u_{0} \in X$ such that $\mathcal{F}\left(u_{0}\right)=c$)
Proof of Theorem 3. Let c be an arbitrary real number. Before proving the theorem, we need the following notation:

$$
\mathcal{F}^{c}=\{u \in X \mid \mathcal{F}(u) \leqq c\} .
$$

Let us assume, by negation, that c is not a critical value of \mathcal{F}. Then, Theorem 2.2 in [13] implies the existence of $\varepsilon>0$ and $\eta \in C([0,+\infty) \times X, X)$ satisfying $\eta\left(1, \mathcal{F}^{c+\varepsilon}\right) \subset \mathcal{F}^{c-\varepsilon}$. This is a contradiction since $\mathcal{F}^{c-\varepsilon}=\emptyset$ due to the fact that $c=\inf \mathcal{F}$.

Remark 3. By Corollary 2.1.1 in [6], if $\mathcal{F}: X \rightarrow \mathbb{R}$ is a locally Lipschitz, bounded from below function and it satisfies the (C) condition, then \mathcal{F} is coercive. This leads us to state the following lemma.

Lemma 1. If $\mathcal{F}: X \rightarrow \mathbb{R}$ is a locally Lipschitz, bounded from below function and it satisfies the (C) condition then it satisfies the ($P S$) condition.

Proof. Let $\left\{u_{n}\right\}_{n} \subset X$ be a sequence such that $\mathcal{F}\left(u_{n}\right)$ is bounded and $D \mathcal{F}\left(u_{n}\right) \rightarrow 0$ in X^{\star}. By Remark $3, \mathcal{F}$ is coercive, and this helps us to deduce that $\left\{u_{n}\right\}_{n}$ is bounded in X. Hence also $\left(1+\left\|u_{n}\right\|\right) D \mathcal{F}\left(u_{n}\right) \rightarrow 0$ in X^{\star}, and because \mathcal{F} satisfies the (C) condition, it follows that $\left\{u_{n}\right\}_{n}$ has a strongly convergent subsequence. This completes the proof.

Similar to Theorem 3, we have the following new result.
Theorem 4. Let \mathcal{F} be continuous on X and be of class $C_{w}^{1}(X)$ where X is a Banach space. Assume that
(i) \mathcal{F} is bounded from below, $c=\inf \mathcal{F}$,
(ii) \mathcal{F} satisfies the (C) condition.

Then c is a critical value of \mathcal{F} (i.e. there exists a critical point $u_{0} \in X$ such that $\mathcal{F}\left(u_{0}\right)=c$).
The proof of Theorem 4 follows from Lemma 1, so we omit it. Next we provide a variant Mountain pass theorem due to Duc [3].

Proposition 1 (see [3]). Let $\mathcal{F} \in C_{w}^{1}(X)$ where X is a Banach space and satisfies (PS) condition. Assume that $\mathcal{F}(0)=0$ and there exist a positive constant ρ and $z_{0} \in X$ such that
(i) $\left\|z_{0}\right\|_{X}>\rho$ and $\mathcal{F}\left(z_{0}\right) \leqq 0$.
(ii) $\alpha=\inf \left\{\mathcal{F}(u): u \in X,\|u\|_{X}=\rho\right\}>0$.

Assume that the set

$$
G=\left\{\varphi \in C([0,1], X): \varphi(0)=0, \varphi(1)=z_{0}\right\}
$$

is not empty. Put

$$
\beta:=\inf \{\max \mathcal{F}(\varphi([0,1])): \varphi \in G\}
$$

Then $\beta \geqq \alpha$ and β is a critical value of \mathcal{F}.
For the use of Proposition 1, we refer the reader to [3, 12, 13]. We end this section by studying some certain properties of the functional Φ_{λ} given by (1.5) but we first recall some results which will be used throughout this work.

Proposition 2 (see [4]).
(i) A verifies the growth condition

$$
|A(x, \xi)| \leqq c_{0}\left(h_{0}(x)|\xi|+h_{1}(x)|\xi|^{p}\right)
$$

for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.
(ii) $A(x, \xi)$ is convex with respect to ξ. Moreover, by $\left(A_{3}\right)$ for all $u, v \in H$ we have

$$
\begin{equation*}
\Lambda\left(\frac{u+v}{2}\right) \leqq \frac{1}{2} \Lambda(u)+\frac{1}{2} \Lambda(v)-k_{0}\|u-v\|_{H}^{p} . \tag{2.1}
\end{equation*}
$$

Using the method as in [4] with some simple computations we obtain the following proposition which concerns the smoothness of the functional Φ_{λ}.

Proposition 3.
(i) If $\left\{u_{m}\right\}$ is a sequence weakly converging to u in $W_{0}^{1, p}(\Omega)$, then

$$
\Lambda(u) \leqq \liminf _{m \rightarrow \infty} \Lambda\left(u_{m}\right)
$$

and

$$
\lim _{m \rightarrow \infty} I\left(u_{m}\right)=I(u) .
$$

(ii) The functionals Λ and I are continuous on H.
(iii) Functional Φ_{λ} is weakly continuously differentiable on H and we have

$$
D \Phi_{\lambda}(u)(\varphi)=\int_{\Omega} a(x, \nabla u) \nabla \varphi \mathrm{d} x-\lambda \int_{\Omega} f(x, u) \varphi \mathrm{d} x
$$

for all $u, \varphi \in H$.

3. Proofs of the theorems.

Proof of Theorem 1. Let us denote by S the best constant in the Sobolev embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{p}(\Omega)$, i.e.

$$
\begin{equation*}
S=\inf _{W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}}{\left(\int_{\Omega}|u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}} . \tag{3.1}
\end{equation*}
$$

Then, if u is a weak solution of problem (1.1)-(1.2), multiplying (1.1) by u and integrating by parts combined with conditions $\left(\mathrm{A}_{4}\right)$ and $\left(\mathrm{F}_{1}\right)$ gives

$$
\begin{align*}
k_{1} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x & \leqq k_{1} \int_{\Omega} h_{1}(x)|\nabla u|^{p} \mathrm{~d} x \tag{3.2}\\
& \leqq \int_{\Omega} a(x, \nabla u) \nabla u \mathrm{~d} x=\lambda \int_{\Omega} f(x, u) u \mathrm{~d} x \leqq C \lambda \int_{\Omega}|u|^{p} \mathrm{~d} x
\end{align*}
$$

Hence, choosing $\underline{\lambda}=k_{1} S / C$, where S is given by (3.1), we conclude the proof.
We will prove Theorem 2 by using critical point theory. Set $f(x, t)=0$ for all $t<0$ and consider the energy functional $\Phi_{\lambda}: H \rightarrow \mathbb{R}$ which is given by (1.5).

Lemma 2. If u is a critical point of Φ_{λ} then u is non-negative in Ω.
Proof. Observe that if u is a critical point of Φ_{λ}, denoting by u^{-}the negative part of u, i.e. $u^{-}(x)=\min \{u(x), 0\}$ we have

$$
\begin{align*}
0=D \Phi_{\lambda}(u)\left(u^{-}\right) & =\int_{\Omega} a(x, \nabla u) \nabla u^{-} \mathrm{d} x-\lambda \int_{\Omega} f(x, u) u^{-} \mathrm{d} x \tag{3.3}\\
& \geqq k_{1} \int_{\Omega} h_{1}(x)\left|\nabla u^{-}\right|^{p} \mathrm{~d} x=k_{1}\left\|u^{-}\right\|_{H}^{p},
\end{align*}
$$

which yields that $u \geqq 0$ for a.e. x in Ω. Thus, non-trivial critical points of the functional Φ_{λ} are non-negative, non-trivial solutions of problem (1.1)-(1.2).

The following lemma shows that the functional Φ_{λ} satisfies all of the assumptions of Theorem 3. Then problem (1.1)-(1.2) admits a weak solution $u_{1} \in H$ as a global minimiser and $u_{1} \geqq 0$.

Lemma 3. The functional Φ_{λ} is bounded from below and satisfies the (PS) condition on H.

Proof. By conditions $\left(\mathrm{F}_{1}\right)$ and $\left(\mathrm{F}_{3}\right)$, there exists a constant $C_{\lambda}=C(\lambda)>0$ such that

$$
\begin{equation*}
\lambda F(x, t) \leqq \frac{k_{1} S}{2 p}|t|^{p}+C_{\lambda} \tag{3.4}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and a.e. $x \in \Omega$. Hence,

$$
\begin{align*}
\Phi_{\lambda}(u) & =\int_{\Omega} A(x, \nabla u) \mathrm{d} x-\lambda \int_{\Omega} F(x, u) \mathrm{d} x \\
& \geqq \frac{k_{1}}{p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} \mathrm{~d} x-\int_{\Omega}\left(\frac{k_{1} S}{2 p}|u|^{p}+C_{\lambda}\right) \mathrm{d} x \tag{3.5}\\
& \geqq \frac{k_{1}}{2 p}\|u\|_{H}^{p}-C_{\lambda}|\Omega|
\end{align*}
$$

where $|\Omega|$ denotes the Lebesgue measure of Ω in \mathbb{R}^{N}. Thus, the functional Φ_{λ} is coercive and hence bounded from below on H.

Let $\left\{u_{m}\right\}$ be a Palais-Smale sequence in H, i.e.

$$
\begin{equation*}
\left|\Phi_{\lambda}\left(u_{m}\right)\right| \leqq c \text { for all } m, \quad \Phi_{\lambda}^{\prime}\left(u_{m}\right) \rightarrow 0 \text { in } H^{\star} . \tag{3.6}
\end{equation*}
$$

Since Φ_{λ} is coercive on $H,\left\{u_{m}\right\}$ is bounded in H. By Remark 1 (ii), $\left\{u_{m}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$. It follows that there exists $u \in W_{0}^{1, p}(\Omega)$ such that, passing to a subsequence, still denoted by $\left\{u_{m}\right\}$, it converges weakly to u in $W_{0}^{1, p}(\Omega)$. We shall prove that $\left\{u_{m}\right\}$ converges strongly to u in H.

Indeed, we observe by Remark 1(i), Proposition 3(i) and (3.6) that $u \in H$. Hence, $\left\{\left\|u_{m}-u\right\|_{H}\right\}$ is bounded. This and (3.6) imply that $D \Phi_{\lambda}\left(u_{m}\right)\left(u_{m}-u\right)$ converges to 0 as $m \rightarrow \infty$.

Using condition $\left(\mathrm{F}_{1}\right)$ combined with Hölder's inequality we deduce that

$$
\begin{align*}
0 \leqq \int_{\Omega}\left|f\left(x, u_{m}\right)\right|\left|u_{m}-u\right| \mathrm{d} x & \leqq C \int_{\Omega}\left|u_{m}\right|^{p-1}\left|u_{m}-u\right| \mathrm{d} x \tag{3.7}\\
& \leqq C\left\|u_{m}\right\|_{L^{p}(\Omega)}^{p-1}\left\|u_{m}-u\right\|_{L^{p}(\Omega)}
\end{align*}
$$

Since the embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact, $\left\{u_{m}\right\}$ converges strongly to u in $L^{p}(\Omega)$. Therefore, relation (3.7) implies that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} D I\left(u_{m}\right)\left(u_{m}-u\right)=0 \tag{3.8}
\end{equation*}
$$

Combining relations (3.6) and (3.8) with the fact that

$$
D \Lambda\left(u_{m}\right)\left(u_{m}-u\right)=D \Phi_{\lambda}\left(u_{m}\right)\left(u_{m}-u\right)+D I\left(u_{m}\right)\left(u_{m}-u\right),
$$

we conclude that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} D \Lambda\left(u_{m}\right)\left(u_{m}-u\right)=0 . \tag{3.9}
\end{equation*}
$$

On the other hand, the convex property of functional Λ (see Proposition 2(ii)) implies that

$$
\begin{equation*}
\Lambda(u)-\lim _{m \rightarrow \infty} \Lambda\left(u_{m}\right)=\lim _{m \rightarrow \infty}\left(\Lambda(u)-\Lambda\left(u_{m}\right)\right) \geqq \lim _{m \rightarrow \infty} D \Lambda\left(u_{m}\right)\left(u-u_{m}\right)=0 \tag{3.10}
\end{equation*}
$$

Combining this with Proposition 3(i), we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \Lambda\left(u_{m}\right)=\Lambda(u) . \tag{3.11}
\end{equation*}
$$

We now assume by contradiction that $\left\{u_{m}\right\}$ does not converge strongly to u in H, and then there exist a constant $\epsilon>0$ and a subsequence $\left\{u_{m_{k}}\right\}$ of $\left\{u_{m}\right\}$ such that $\left\|u_{m_{k}}-u\right\|_{H} \geqq \epsilon$. Using Proposition 2(ii) we get

$$
\begin{equation*}
\frac{1}{2} \Lambda(u)+\frac{1}{2} \Lambda\left(u_{m_{k}}\right)-\Lambda\left(\frac{u_{m_{k}}+u}{2}\right) \geqq k_{0}\left\|u_{m_{k}}-u\right\|_{H}^{p} \geqq k_{0} \epsilon^{p} . \tag{3.12}
\end{equation*}
$$

Letting $k \rightarrow \infty$, relation (3.12) gives

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \Lambda\left(\frac{u_{m_{k}}+u}{2}\right) \leqq \Lambda(u)-k_{0} \epsilon^{p} \tag{3.13}
\end{equation*}
$$

We remark that sequence $\left\{\frac{u_{m_{k}}+u}{2}\right\}$ also converges weakly to u in $W_{0}^{1, p}(\Omega)$. So, using Proposition 3(i) again we get

$$
\begin{equation*}
\Lambda(u) \leqq \liminf _{k \rightarrow \infty} \Lambda\left(\frac{u_{m_{k}}+u}{2}\right), \tag{3.14}
\end{equation*}
$$

which contradicts (3.13). Therefore, $\left\{u_{m}\right\}$ converges strongly to u in H.
Lemma 4. There exists a positive constant $\bar{\lambda}$ such that for all $\lambda \geqq \bar{\lambda}, \inf _{H} \Phi_{\lambda}<0$, and hence $u_{1} \not \equiv 0$, i.e. the solution u_{1} is not trivial.

Proof. Let $\Omega_{0} \subset \Omega$ be a compact subset large enough and a function $\varphi_{0} \in C_{0}^{\infty}(\Omega)$ such that $\varphi_{0}(x)=t_{1}$ in Ω_{0} and $0 \leqq \varphi_{0}(x) \leqq t_{1}$ in $\Omega \backslash \Omega_{0}$, where t_{1} is chosen as in assumption $\left(F_{2}\right)$: then we have

$$
\begin{equation*}
\int_{\Omega} F\left(x, \varphi_{0}\right) \mathrm{d} x \geqq \int_{\Omega_{0}} F\left(x, \varphi_{0}\right) \mathrm{d} x-C t_{1}^{p}\left|\Omega \backslash \Omega_{0}\right|>0 . \tag{3.15}
\end{equation*}
$$

Thus, $\Phi_{\lambda}\left(\varphi_{0}\right)<0$ for $\lambda \geqq \bar{\lambda}$ with $\bar{\lambda}$ large enough. This implies that $\inf _{H} \Phi_{\lambda}<0$ and then $\Phi_{\lambda}\left(u_{1}\right)<0$ for $\lambda \geqq \bar{\lambda}$, i.e. $u_{1} \not \equiv 0$.

In the next part of this paper, we shall show the existence of the second solution $u_{2} \neq u_{1}$ by using the Mountain pass theorem introduced in [3]. To this purpose, we
first fix $\lambda \geqq \bar{\lambda}$ and set

$$
\widehat{f}(x, t)= \begin{cases}0, & \text { for } t<0 \tag{3.16}\\ f(x, t) & \text { for } 0 \leqq t \leqq u_{1}(x) \\ f\left(x, u_{1}(x)\right) & \text { for } t>u_{1}(x)\end{cases}
$$

and $\widehat{F}(x, t)=\int_{0}^{t} \widehat{f}(x, s) \mathrm{d} s$. Define the functional $\widehat{\Phi}_{\lambda}: H \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\widehat{\Phi}_{\lambda}(u)=\int_{\Omega} A(x, \nabla u) \mathrm{d} x-\lambda \int_{\Omega} \widehat{F}(x, u) \mathrm{d} x . \tag{3.17}
\end{equation*}
$$

With the same arguments as those used for the functional Φ_{λ}, we can show that $\widehat{\Phi}_{\lambda}$ is weakly continuously differentiable on H and

$$
D \widehat{\Phi}_{\lambda}(u)(\varphi)=\int_{\Omega} a(x, \nabla u) \nabla \varphi \mathrm{d} x-\lambda \int_{\Omega} \widehat{f}(x, u) \varphi \mathrm{d} x
$$

for all $u, \varphi \in H$.
Lemma 5. If $u \in H$ is a critical point of $\widehat{\Phi}_{\lambda}$ then $u \leqq u_{1}$. So, u is a solution of problem (1.1)-(1.2) in the order interval $\left[0, u_{1}\right]$.

Proof. By the definitions of Φ_{λ} and $\widehat{\Phi}_{\lambda}$, if u is a critical point of $\widehat{\Phi}_{\lambda}$ then $u \geqq 0$ as before and by condition $\left(\mathrm{A}_{2}\right)$ we have

$$
\begin{align*}
0= & \left(D \widehat{\Phi}_{\lambda}^{\prime}(u)-D \Phi_{\lambda}\left(u_{1}\right)\right)\left(\left(u-u_{1}\right)^{+}\right) \\
= & \int_{\Omega}\left(a(x, \nabla u)-a\left(x, \nabla u_{1}\right)\right) \cdot \nabla\left(u-u_{1}\right)^{+} \mathrm{d} x \\
& -\lambda \int_{\Omega}\left(\widehat{f}(x, u)-f\left(x, u_{1}\right)\right)\left(u-u_{1}\right)^{+} \mathrm{d} x \tag{3.18}\\
= & \int_{\left\{u>u_{1}\right\}}\left(a(x, \nabla u)-a\left(x, \nabla u_{1}\right)\right) \cdot\left(\nabla u-\nabla u_{1}\right) \mathrm{d} x \geqq 0 .
\end{align*}
$$

According to (3.18) and condition (A_{2}), the equality holds if and only if $\nabla u=\nabla u_{1}$. It follows that $\nabla u(x)=\nabla u_{1}(x)$ for all $x \in \Omega_{1}:=\left\{y \in \Omega: u(y)>u_{1}(y)\right\}$. Hence,

$$
\int_{\Omega_{1}}\left|\nabla\left(u-u_{1}\right)\right|^{p} \mathrm{~d} x=0 \text { and thus } \int_{\Omega}\left|\nabla\left(u-u_{1}\right)^{+}\right|^{p} \mathrm{~d} x=0
$$

Combining this with Remark 1(ii), we conclude that $\left\|\left(u-u_{1}\right)^{+}\right\|_{L^{p}(\Omega)}=0$ and then $\left(u-u_{1}\right)^{+}=0$ in Ω, that is, $u \leqq u_{1}$ in Ω.

Lemma 6. There exist a constant $\rho \in\left(0,\left\|u_{1}\right\|_{H}\right)$ and a constant $\alpha>0$ such that $\widehat{\Phi}_{\lambda}(u) \geqq \alpha$ for all $u \in H$ with $\|u\|_{H}=\rho$.

Proof. We set $\Omega_{u}=\left\{x \in \Omega: u(x)>\min \left\{u_{1}(x), t_{0}\right\}\right\}$, where t_{0} is given as in $\left(\mathrm{F}_{2}\right)$. Then, by (3.16) and condition $\left(\mathrm{F}_{1}\right)$, we have $\widehat{F}(x, u(x)) \leqq 0$ on $\Omega \backslash \Omega_{u}$. Hence,

$$
\begin{equation*}
\widehat{\Phi}_{\lambda}(u) \geqq k_{1}\|u\|_{H}^{p}-\lambda \int_{\Omega_{u}} \widehat{F}(x, u) \mathrm{d} x . \tag{3.19}
\end{equation*}
$$

Using (F_{1}), Hölder's inequality and Remark 1(ii), we get

$$
\begin{equation*}
\int_{\Omega_{u}} \widehat{F}(x, u) \mathrm{d} x \leqq C \int_{\Omega_{u}}|u|^{p} \mathrm{~d} x \leqq C\left|\Omega_{u}\right|^{1-\frac{p}{q}}\|u\|_{H}^{p}, \tag{3.20}
\end{equation*}
$$

where $q=\frac{N p}{N-p}$. Therefore,

$$
\begin{equation*}
\widehat{\Phi}_{\lambda}(u) \geqq\|u\|_{H}^{p}\left(k_{1}-\lambda C\left|\Omega_{u}\right|^{1-\frac{p}{q}}\right) . \tag{3.21}
\end{equation*}
$$

In order to prove Lemma 6 , it is enough to show that $\left|\Omega_{u}\right| \rightarrow 0$ as $\|u\|_{H} \rightarrow 0$. Indeed, let $\epsilon>0$ be arbitrary; we choose $\Omega_{\epsilon} \subset \Omega$ a compact subset, large enough such that $\left|\Omega \backslash \Omega_{\epsilon}\right|<\epsilon$, and denote by $\Omega_{u, \epsilon}:=\Omega_{u} \cap \Omega_{\epsilon}$. Then it is clear that

$$
\begin{equation*}
\|u\|_{H}^{p} \geqq\|u\|^{p} \geqq \int_{\Omega}|u|^{p} \mathrm{~d} x \geqq \int_{\Omega_{u, \epsilon}} u^{p} \mathrm{~d} x \geqq l^{p}\left|\Omega_{u, \epsilon}\right|, \tag{3.22}
\end{equation*}
$$

where $l=\min \left\{\min u_{1}\left(\Omega_{\epsilon}\right), t_{0}\right\}$. Letting $\|u\|_{H} \rightarrow 0$ we deduce that $\left|\Omega_{u, \epsilon}\right| \rightarrow 0$. Since $\Omega_{u} \subset \Omega_{u, \epsilon} \cup \Omega \backslash \Omega_{\epsilon}$ we have $\left|\Omega_{u}\right| \leqq\left|\Omega_{u, \epsilon}\right|+\epsilon$ with $\epsilon>0$ as arbitrary. Thus, $\left|\Omega_{u}\right| \rightarrow 0$ as $\|u\|_{H} \rightarrow 0$.

Lemma 7. Functional $\widehat{\Phi}_{\lambda}$ satisfies the (PS) condition on H.
Proof. We observe by (3.21) that $\widehat{\Phi}_{\lambda}$ is coercive. Therefore, every Palais-Smale sequence of $\widehat{\Phi}_{\lambda}$ is bounded in H. We follow the method as those used in the proof of Lemma 3. It can be shown that the functional $\widehat{\Phi}_{\lambda}$ satisfies the (PS) condition on H.

Proof of Theorem 2. By Lemmas 2-4, using Theorem 3, problem (1.1)-(1.2) admits a non-negative, non-trivial weak solution u_{1}. Setting

$$
\begin{equation*}
c:=\inf _{\gamma \in \Gamma} \max _{u \in \gamma([0,1])} \widehat{\Phi}_{\lambda}(u), \tag{3.23}
\end{equation*}
$$

where $\Gamma:=\left\{\gamma \in C([0,1], H): \gamma(0)=0, \gamma(1)=u_{1}\right\}$, Lemmas 6-7 show that all of the assumptions of Proposition 1 are fulfilled, $\Phi_{\lambda}\left(u_{1}\right)=\Phi_{\lambda}\left(u_{1}\right)<0$ and $\left\|u_{1}\right\|_{H}>\rho$. Then, $c>0$ is a critical value of $\widehat{\Phi}_{\lambda}$, i.e. there exists $u_{2} \in H$ such that $D \widehat{\Phi}_{\lambda}\left(u_{2}\right)(\varphi)=0$ for all $\varphi \in H$ and $\widehat{\Phi}_{\lambda}\left(u_{2}\right)=c>0$. By Lemma $5,0 \leqq u_{2} \leqq u_{1}$ in Ω. Therefore, using (3.16) some simple computations give us

$$
\widehat{\Phi}_{\lambda}\left(u_{2}\right)=\Phi_{\lambda}\left(u_{2}\right), \quad D \widehat{\Phi}_{\lambda}\left(u_{2}\right)(\varphi)=D \Phi_{\lambda}\left(u_{2}\right)(\varphi) \text { for all } \varphi \in H .
$$

By Remark 1(iii), we conclude that u_{2} is a weak solution of problem (1.1)-(1.2). Furthermore, $\Phi_{\lambda}\left(u_{2}\right)=c>0>\Phi_{\lambda}\left(u_{1}\right)$. Thus, u_{2} is not trivial and $u_{2} \neq u_{1}$. The proof of Theorem 2 is now complete.

REFERENCES

1. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 4 (1973), 349-381.
2. P. De Nápoli and M. C. Mariani, Mountain pass solutions to equations of p-Laplacian type, Nonlinear Anal. 54 (2003), 1205-1219.
3. D. M. Duc, Nonlinear singular elliptic equations, J. Lond. Math. Soc. 40(2) (1989), 420-440.
4. D. M. Duc and N. T. Vu, Non-uniformly elliptic equations of p-Laplacian type, Nonlinear Anal. 61 (2005), 1483-1495.
5. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
6. L. Gasiński and N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems. Series in Mathematical Analysis and Applications, 8. Chapman \& Hall/CRC, Boca Raton, FL, 2005.
7. M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A 462 (2006), 2625-2641.
8. M. Mihăilescu, Existence and multiplicity of weak solutions for a class of denegerate nonlinear elliptic equations, Boundary Value Probl. (2006), Art. ID 41295, 17 pp.
9. Q.-A. Ngô, and H. Q. Toan, Existence of solutions for a resonant problem under Landesman-Lazer conditions, Electron. J. Diff. Eqns. 2008 (98) (2008), 1-10.
10. K. Perera, Multiple positive solutions for a class of quasilinear elliptic boundary-value problems, Electron. J. Differential Equations 7 (2003), 1-5.
11. M. Struwe, Variational Methods: Applications to nonlinear partial differential equations and Hamiltonian systems, 4 ed. (Springer-Verlag, Berlin, 2008).
12. H. Q. Toan and Q.-A. Ngô, Multiplicity of weak solutions for a class of non-uniformly elliptic equations of p-Laplacian type, Nonlinear Anal. 70 (2009), 1536-1546.
13. N. T. Vu, Mountain pass theorem and non-uniformly elliptic equations, Vietnam J. Math 33 (4) (2005), 391-408.
