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SEVERAL INTERESTING INTEGRAL INEQUALITIES

WENJUN LIU, QUÓ̂C-ANH NGÔ AND VU NHAT HUY

(Communicated by N. Ujević)

Abstract. In this paper, several interesting integral inequalities are presented and some open
problems are proposed later on.

1. Introduction

In the paper [22], Qi proposed the following open problem, which has attracted
much attention from some mathematicians (cf. [1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 18, 21,
23, 24, 25]).

Open problem 1. Under what conditions does the inequality

∫ b

a
[ f (x)]t dx �

(∫ b

a
f (x)dx

)t−1

(1)

hold for t > 1?
Shortly after the paper [22] was published, the authors in [25] proved that

THEOREM A. The inequality (1) holds true for all t > 1 provided

∫ b

a
f (x)dx � (b−a)t−1 . (2)

After years, Qi et al. [23] got the following extension.

THEOREM B. Let f(x) be continuous and not identically zero on [a,b] , differ-
entiable in (a,b) , with f (a) = 0 , and let α , β be positive real numbers such that
α > β > 1 . If (

f
α−β
β−1 (x)

)′ �
�

(α−β)β
1

β−1

α−1

for all x ∈ (a,b) then ∫ b

a
f α (x)dx

�
�

(∫ b

a
f (x)dx

)β
.

Then, the first author of this paper [13, 14] obtained the following result.
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THEOREM C. Let f (x) be continuous and not identically zero on [a,b] , differ-
entiable in (a,b) with f (a) = 0 , and let α,β be positive real numbers such that
α > β > 1 . If

0 �

(
f

α−β
α(β−1) (x)

)′ �
�

(α−β )β 1/(β−1)

α−1
(3)

and

0 �

(
f
α−β
β−1 (x)

)′ �
�

(α−β )β 1/(β−1)

α−1
(4)

for x ∈ (a,b) , then

(∫ b

a
[ f (x)]α dx

) 1
β �

�

∫ b

a
f (x)dx

�
�

(∫ b

a
[ f (x)]

1
α dx

)β
. (5)

Recently, in the paper [20] the second author of this paper et al. studied another
very interesting integral inequality and proved the following result

THEOREM D. Let f (x) be a continous function on [0,1] satisfying

∫ 1

x
f (t)dt �

∫ 1

x
tdt , ∀x ∈ [0,1] . (6)

Then the inequalities

∫ 1

0
f α+1 (x)dx �

∫ 1

0
xα f (x)dx � 1

α +2

and ∫ 1

0
f α+1 (x)dx �

∫ 1

0
x f α (x)dx

hold for every positive real number α > 0 .

Then, they proposed the following open problem

Open problem 2. Under what conditions does the inequality

∫ 1

0
f α+β (x)dx �

∫ 1

0
xα f β (x)dx (7)

hold for α and β ?
Theorem D is a generalization of Problem 2 (when α = 1) of the 2nd Interna-

tional Mathematical Competition for University Students, Plovdiv, Bulgaria, 2–7 Au-
gust, 1995 (see [11, 17]). Shortly after the paper [20] was published, the first author of
this paper [15] gave an affirmative answer to the above Open problem 2 and obtained
the following result (see also Bougoffa [7], Boukerrioua and Guezane-Lakoud [6]).
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THEOREM E. Let f (x) � 0 be a continuous function on [0,1] satisfying

∫ 1

x
f β (t)dt �

∫ 1

x
tβ dt, ∀ x ∈ [0,1]. (8)

Then the inequality (7) holds for every positive real number α > 0 and β > 0 .

More recently, the first author of this paper [16] obtained an extension of the above
Open problem 2.

THEOREM F. Let f (x) � 0 be a continuous function on [a,b] satisfying

∫ b

x
f min{1,β}(t)dt �

∫ b

x
(t −a)min{1,β}dt, ∀ x ∈ [a,b]. (9)

Then the inequality ∫ b

a
f α+β (x)dx �

∫ b

a
(x−a)α f β (x)dx (10)

holds for every positive real number α > 0 and β > 0 .

It is clear that inequality (10) is a special case of the following inequality
∫ b

a
f α+β (x)dx �

∫ b

a
f α(x)gβ (x)dx (11)

where f ,g are positive functions on [a,b] . In [10], the author obtained the following
result

THEOREM G. Let f ∈ L1[a,b] , g ∈ C([a,b]) such that f (x),g(x) � 0 and g is
nondecreasing on [a,b] . If

∫ b

x
f (t)dt �

∫ b

x
g(t)dt, ∀ x ∈ [a,b], (12)

then inequality (11) holds for every positive real number α > 0 and β > 0 satisfying
α +β � 1 .

The purpose of this paper is to establish other similar integral inequalities. At last,
some open problems are proposed. Our main results are from Theorem 1 to Theorem
10 which will be stated and proved in Section 2.

2. Main Results and Proofs

In the first part of this section, we shall study the similar combination between
inequalities (1) and (11). For instance, we have

THEOREM 1. Let f (x),g(x) � 0 be continuous functions on [a,b] , g is nonde-
creasing. Assume that λ ,α,β are positive constants with α +β � λ > 1 . If

∫ b

x
f (t)dt �

∫ b

x
g(t)dt, ∀x ∈ [a,b] (13)
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and ∫ b

a
f
α+β
λ (t)dt � (b−a)λ−1 , (14)

then the following inequality

∫ b

a
f α+β (x)dx �

(∫ b

a
f
α
λ (x)g

β
λ (x)dx

)λ−1

(15)

holds true.

Proof. By using Theorem A, we deduce that

∫ b

a
f α+β (x)dx =

∫ b

a

(
f
α+β
λ (x)

)λ
dx �

(∫ b

a
f
α+β
λ (x)

)λ−1

.

On the other hand, using Theorem G, we deduce that

∫ b

a
f
α+β
λ (x) �

∫ b

a
f
α
λ (x)g

β
λ (x)dx.

Summing up the above two inequalities, we get the result.

THEOREM 2. Let f (x),g(x) � 0 be continuous functions on [a,b] , g is nonde-
creasing. Assume that λ ,γ,α,β are positive constants with α +β � λ > γ > 1 . If

∫ b

x
f (t)dt �

∫ b

x
g(t)dt, ∀x ∈ [a,b] (16)

and (
f
α+β
λ · λ−γγ−1 (x)

)′
� (λ − γ)γ

1
γ−1

λ −1
, ∀x ∈ (a,b), (17)

then the following inequality

∫ b

a
f α+β (x)dx �

(∫ b

a
f
α
λ (x)g

β
λ (x)dx

)γ
(18)

holds true.

Proof. By using Theorem B, we deduce that

∫ b

a
f α+β (x)dx =

∫ b

a

(
f
α+β
λ (x)

)λ
dx �

(∫ b

a
f
α+β
λ (x)

)γ
.

Then we use the same proof as above to get the result.
In the sequel, we shall study some inequalities which is similar to (10) or (11). We

firstly obtain the following theorem.
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THEOREM 3. Let f (x) > 0 be a continuous and decreasing function on [a,b] .
Then the inequality ∫ b

a
f β (x)dx

∫ b

a
f γ (x)dx

�

∫ b

a
(x−a)α f β (x)dx

∫ b

a
(x−a)α f γ (x)dx

(19)

holds for every positive real number α > 0 and β � γ > 0 . If f (x) is increasing, then
the inequality in (19) reverses.

Proof. We only prove the case ”�”. For this purpose, we only need to prove
∫ b

a
f β (x)dx

∫ b

a
(x−a)α f γ (x)dx �

∫ b

a
f γ (x)dx

∫ b

a
(x−a)α f β (x)dx,

which is equivalent to
∫ b

a
f β (x)dx

∫ b

a
(y−a)α f γ (y)dy �

∫ b

a
f γ (x)dx

∫ b

a
(y−a)α f β (y)dy .

That is to prove
∫ b

a

∫ b

a
f γ (x) f γ (y)(y−a)α

(
f β−γ(x)− f β−γ(y)

)
dxdy � 0.

We denote

G =
∫ b

a

∫ b

a
f γ (x) f γ (y)(y−a)α

(
f β−γ (x)− f β−γ(y)

)
dxdy .

Then

G =
∫ b

a

∫ b

a
f γ (x) f γ (y)(x−a)α

(
f β−γ(y)− f β−γ(x)

)
dxdy .

Therefore

2G =
∫ b

a

∫ b

a
f γ (x) f γ (y)

(
(y−a)α − (x−a)α

)(
f β−γ(x)− f β−γ(y)

)
dxdy .

Since f (x) � 0 is a continuous and decreasing function on [a,b] , we have(
(y−a)α − (x−a)α

)(
f β−γ (x)− f β−γ(y)

)
> 0

for all x,y ∈ [a,b]. Therefore 2G � 0. We complete the proof.

REMARK 1. The following special case of the Theorem 3 (for f (x) � 0 be a
continuous and decreasing function on [0,1])

∫ 1

0
f 2(x)dx

∫ 1

0
f (x)dx

�

∫ 1

0
x f 2(x)dx

∫ 1

0
x f (x)dx

(20)

gives an answer to the test question 5 in the Mathematics Contest of Tsinghua Univer-
sity, China in 1985.
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Similar to the method used in the proof of the previous theorem, we obtain the
following three theorems.

THEOREM 4. Let f (x),g(x) � 0 be continuous functions on [a,b] such that f (x)
is decreasing and g(x) is increasing. Then the inequality

∫ b

a
f β (x)dx

∫ b

a
f γ (x)dx

�

∫ b

a
gα(x) f β (x)dx

∫ b

a
gα(x) f γ (x)dx

(21)

holds for every positive real number α > 0 and β � γ > 0 . If f (x) is increasing, then
(21) reverses.

Proof. We only prove the case ”�”. For this purpose, we only need to prove

∫ b

a
f β (x)dx

∫ b

a
gα(x) f γ (x)dx �

∫ b

a
f γ (x)dx

∫ b

a
gα(x) f β (x)dx,

which is equivalent to

∫ b

a
f β (x)dx

∫ b

a
gα(y) f γ (y)dy �

∫ b

a
f γ (x)dx

∫ b

a
gα(y) f β (y)dy .

That is to prove

∫ b

a

∫ b

a
f γ (x) f γ (y)gα(y)[ f β−γ(x)− f β−γ(y)]dxdy � 0.

We denote

G =
∫ b

a

∫ b

a
f γ (x) f γ (y)gα(y)[ f β−γ (x)− f β−γ(y)]dxdy .

Then

G =
∫ b

a

∫ b

a
f γ (x) f γ (y)gα(x)[ f β−γ (y)− f β−γ(x)]dxdy .

Therefore

2G =
∫ b

a

∫ b

a
f γ (x) f γ (y)

(
gα(y)−gα(x)

)(
f β−γ(x)− f β−γ(y)

)
dxdy .

Since f (x) � 0 is a continuous and decreasing function on [a,b] , we have

(
gα(y)−gα(x)

)(
f β−γ(x)− f β−γ(y)

)
> 0

for all x,y ∈ [a,b]. Therefore 2G � 0. We complete the proof.
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THEOREM 5. Let f (x) � 0 be a continuous function on [a,b] and satisfies

[(y−a)α f α(x)− (x−a)α f α (y)][ f β−γ(x)− f β−γ(y)] � 0, ∀ x,y ∈ [a,b]. (22)

Then the inequality

∫ b

a
f α+β (x)dx

∫ b

a
f α+γ (x)dx

�

∫ b

a
(x−a)α f β (x)dx

∫ b

a
(x−a)α f γ (x)dx

(23)

holds for every positive real number α > 0 and β � γ > 0 . If (22) reverses, then (23)
reverses.

Proof. We only prove the case ”�”. For this purpose, we only need to prove

H :=
∫ b

a

∫ b

a
f α+γ(x) f γ (y)(y−a)α [ f β−γ(x)− f β−γ(y)]dxdy � 0.

Since

H =
∫ b

a

∫ b

a
f γ (x) f α+γ (y)(x−a)α [ f β−γ(y)− f β−γ(x)]dxdy,

we have

2H =
∫ b

a

∫ b

a
f γ (x) f γ (y)[(y−a)α f α (x)− (x−a)α f α (y)][ f β−γ(x)− f β−γ(y)]dxdy .

The condition (22) implies that H � 0.

THEOREM 6. Let f (x),g(x) � 0 be continuous functions on [a,b] and satisfy

[gα(y) f α (x)−gα(x) f α (y)][ f β−γ (x)− f β−γ(y)] � 0, ∀ x,y ∈ [a,b]. (24)

Then the inequality ∫ b

a
f α+β (x)dx

∫ b

a
f α+γ (x)dx

�

∫ b

a
gα(x) f β (x)dx

∫ b

a
gα(x) f γ (x)dx

(25)

holds for every positive real number α > 0 and β � γ > 0 . If (24) reverses, then (25)
reverses.

Proof. We only prove the case ”�”. For this purpose, we only need to prove

H :=
∫ b

a

∫ b

a
f α+γ (x) f γ (y)gα(y)[ f β−γ(x)− f β−γ(y)]dxdy � 0.

Since

H =
∫ b

a

∫ b

a
f γ (x) f α+γ (y)gα(x)[ f β−γ(y)− f β−γ(x)]dxdy,
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we have

2H =
∫ b

a

∫ b

a
f γ (x) f γ (y)[gα(y) f α (x)−gα(x) f α (y)][ f β−γ (x)− f β−γ(y)]dxdy .

The condition (24) implies that H � 0.
Our next result is the following theorem which will be used frequently in the rest

of this section.

THEOREM 7. Let f (x),g(x),h(x) � 0 be continuous functions on [a,b] such that

(
g(x)−g(y)

)(
f (y)
h(y)

− f (x)
h(x)

)
� 0. (26)

Then the inequality ∫ b

a
f (x)dx

∫ b

a
h(x)dx

�

∫ b

a
f (x)g(x)dx

∫ b

a
h(x)g(x)dx

(27)

holds. If (26) reverses, then (27) reverses.

Proof. We need to prove that

∫ b

a
f (x)dx

∫ b

a
h(x)g(x)dx �

∫ b

a
h(x)dx

∫ b

a
f (x)g(x)dx,

which is equivalent to

∫ b

a
f (x)dx

∫ b

a
h(y)g(y)dy �

∫ b

a
h(x)dx

∫ b

a
f (y)g(y)dy .

That is to prove ∫ b

a

∫ b

a
g(y)

(
f (x)h(y)− f (y)h(x)

)
dxdy � 0.

We denote

G =
∫ b

a

∫ b

a
g(y)

(
f (x)h(y)− f (y)h(x)

)
dxdy .

Then

G =
∫ b

a

∫ b

a
g(x)

(
f (y)h(x)− f (x)h(y)

)
dxdy .

Therefore

2G =
∫ b

a

∫ b

a

(
g(x)−g(y)

)(
f (y)h(x)− f (x)h(y)

)
dxdy

=
∫ b

a

∫ b

a
h(x)h(y)

(
g(x)−g(y)

)(
f (y)
h(y)

− f (x)
h(x)

)
dxdy .

From the hypotheses, it is easy to see that 2G � 0. We complete the proof.
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REMARK 2. It is obviously to see that (26) holds true for f ,g,h such that either

• g is increasing and f
h is decreasing

or

• g is decreasing and f
h is increasing.

By applying Theorem 7, we have

THEOREM 8. Let f (x),h(x) > 0 be continuous functions on [a,b] with f (x) �
h(x) for all x and such that f (x)

h(x) is decreasing and f (x) is increasing. Then the in-
equality ∫ b

a
f (x)dx

∫ b

a
h(x)dx

�

∫ b

a
f p(x)dx

∫ b

a
hp(x)dx

(28)

holds for all p � 1 . If f (x)
h(x) is increasing, then (28) reverses.

Proof. Since p � 1 and f is increasing, then g(x) := f p−1(x) is also increasing.
By applying the foregoing Theorem, we deduce that

∫ b

a
f (x)dx

∫ b

a
h(x)dx

�

∫ b

a
f (x) f p−1(x)dx

∫ b

a
h(x) f p−1(x)dx

. (29)

Moreover, since f (x) � h(x) for all x , then

∫ b

a
f (x) f p−1(x)dx

∫ b

a
h(x) f p−1(x)dx

�

∫ b

a
f p(x)dx

∫ b

a
hp(x)dx

. (30)

Summing up (29) and (30), we get the result.
Involving convex functions, we have

THEOREM 9. Let f (x),h(x) > 0 be continuous functions on [a,b] with f (x) �
h(x) for all x and such that f (x)

h(x) is decreasing and f (x) is increasing. Assume that

ϕ(x) is a convex function with ϕ(0) = 0 . Then the inequality

∫ b

a
f (x)dx

∫ b

a
h(x)dx

�

∫ b

a
ϕ( f (x))dx

∫ b

a
ϕ(h(x))dx

(31)

holds.
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Proof. Since ϕ is convex with ϕ(0) = 0, then ϕ(x)
x is increasing. This and the

fact that f (x) � h(x) yield
ϕ ( f (x))

f (x)
� ϕ (h(x))

h(x)
.

Moreover, f and ϕ(x)
x are increasing, then the following function

g(x) =
ϕ ( f (x))

f (x)

is also increasing. This helps us to deduce that

∫ b

a
ϕ( f (x))dx

∫ b

a
ϕ(h(x))dx

=

∫ b

a
f (x)

ϕ( f (x))
f (x)

dx

∫ b

a
h(x)

ϕ(h(x))
h(x)

dx
�

∫ b

a
f (x)

ϕ( f (x))
f (x)

dx

∫ b

a
h(x)

ϕ( f (x))
f (x)

dx
�

∫ b

a
f (x)dx

∫ b

a
h(x)dx

.

The proof is complete.
The following theorem slightly improves Theorem 9.

THEOREM 10. Let f (x),g(x),h(x) > 0 be continuous functions on [a,b] with

f (x) � h(x) for all x and such that f (x)
h(x) is decreasing and f (x),g(x) are increasing.

Assume that ϕ(x) is a convex function with ϕ(0) = 0 . Then the inequality

∫ b

a
f (x)dx

∫ b

a
h(x)dx

�

∫ b

a
ϕ( f (x))g(x)dx

∫ b

a
ϕ(h(x))g(x)dx

(32)

holds.

Proof. Similar to the proof of the foregoing theorem, we have

∫ b

a
φ( f (x))g(x)dx

∫ b

a
φ(h(x))g(x)dx

=

∫ b

a

φ( f (x))
f (x)

g(x) f (x)dx

∫ b

a

φ(h(x))
h(x)

g(x)h(x)dx

�

∫ b

a

φ( f (x))
f (x)

g(x) f (x)dx

∫ b

a

φ( f (x))
f (x)

g(x)h(x)dx
�

∫ b

a
f (x)dx

∫ b

a
h(x)dx

.

The proof is complete.
Lastly, we propose the following open problems.

Open Problem 3. Can the condition (22) in the Theorem 5 (or (24) in the Theorem
6) be improved?
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Open Problem 4. Under what conditions does the inequality

∫ b

a
f α+β (x)dx �

(∫ b

a
(x−a)α f β (x)dx

)λ
(33)

hold for α,β and λ ?

Open Problem 5. Under what conditions does the inequality

∫ b

a
f α+β (x)dx

∫ b

a
f α+γ (x)dx

�

(∫ b

a
(x−a)α f β (x)dx

)δ

(∫ b

a
(x−a)α f γ (x)dx

)λ (34)

hold for α,β ,γ,δ and λ ?

Open Problem 6. Assume that ϕ(x) is a convex function with ϕ(0) = 0. Under
what conditions does the inequality

∫ b

a
f (x)dx

∫ b

a
h(x)dx

�

(∫ b

a
ϕ( f (x))g(x)dx

)δ

(∫ b

a
ϕ(h(x))g(x)dx

)λ (35)

hold for δ and λ ?
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