Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-Laplacian type

Hoang Quoc Toan, Quốc-Anh Ngô*
Department of Mathematics, College of Science, Viêt Nam National University, Hà Nôi, Viêt Nam

Received 6 October 2007; accepted 14 February 2008

Abstract

This paper deals with the multiplicity of weak solutions in $W_{0}^{1}(\Omega)$ to a class of nonuniformly elliptic equations of the form $$
-\operatorname{div}(a(x, \nabla u))=h(x)|u|^{r-1} u+g(x)|u|^{s-1} u
$$ in a bounded domain Ω of \mathbb{R}^{N}. Here a satisfies $|a(x, \xi)| \leqq c_{0}\left(h_{0}(x)+h_{1}(x)|\xi|^{p-1}\right)$ for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega, h_{0} \in L^{\frac{p}{p-1}}(\Omega)$, $h_{1} \in L_{\mathrm{loc}}^{1}(\Omega), h_{1}(x) \geqq 1$ for a.e. x in $\Omega, 1<r<p-1<s<(N p-N+p) /(N-p)$. (c) 2008 Elsevier Ltd. All rights reserved.

Keywords: p-Laplacian; Nonuniform elliptic equations; Multiplicity

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{N}. In the present paper we study the multiplicity of nontrivial solutions of the following Dirichlet elliptic problem:

$$
\begin{equation*}
-\operatorname{div}(a(x, \nabla u))=h(x)|u|^{r-1} u+g(x)|u|^{s-1} u \tag{1}
\end{equation*}
$$

where $|a(x, \xi)| \leqq c_{0}\left(h_{0}(x)+h_{1}(x)|\xi|^{p-1}\right)$ for any ξ in \mathbb{R}^{N} and a.e. $x \in \Omega, h_{0}(x) \geqq 0$ and $h_{1}(x) \geqq 1$ for any x in Ω. For h_{0} and h_{1} belonging to L^{∞}, the problem has been studied. Here we study the case in which h_{0} and h_{1} belong to $L^{\frac{p}{p-1}}(\Omega)$ and $L_{\text {loc }}^{1}(\Omega)$ respectively. The equation now may be nonuniformly elliptic. To our knowledge, such equations were first studied by Duc et al. and $\mathrm{Vu}[3,6]$. In both papers, the authors studied the following problem:

$$
\begin{equation*}
-\operatorname{div}(a(x, \nabla u))=f(x, u) \tag{2}
\end{equation*}
$$

where the nonlinear term f verifies the Ambrosetti-Rabinowitz type condition, see [1]. They then obtained the existence of a weak solution by using a variation of the Mountain-Pass Theorem introduced in [2]. We also point out the fact that for the case when $h_{1} \equiv 1$, our problem (1) was studied in [4]. Our goal is to extend the results of [4] (for the "nonuniform case") and of $[3,6]$ (the existence of at least two weak solutions).

[^0]In order to state our main theorem, let us introduce our hypotheses on the structure of problem (1).
Assume that $N \geqq 3$ and $2 \leqq p<N$. Let Ω be a bounded domain in \mathbb{R}^{N} having C^{2} boundary $\partial \Omega$. Consider $a: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, a=a(x, \xi)$, as the continuous derivative with respect to ξ of the continuous function $A: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}, A=A(x, \xi)$, that is, $a(x, \xi)=\frac{\partial A(x, \xi)}{\partial \xi}$. Assume that there are a positive real number c_{0} and two nonnegative measurable functions h_{0}, h_{1} on Ω such that $h_{1} \in L_{\text {loc }}^{1}(\Omega), h_{0} \in L^{\frac{p}{p-1}}(\Omega), h_{1}(x) \geqq 1$ for a.e. x in Ω.

Suppose that a and A satisfy the hypotheses below:
$\left(\mathbf{A}_{1}\right)|a(x, \xi)| \leqq c_{0}\left(h_{0}(x)+h_{1}(x)|\xi|^{p-1}\right)$ for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.
$\left(\mathbf{A}_{2}\right)$ There exists a constant $k_{1}>0$ such that

$$
A\left(x, \frac{\xi+\psi}{2}\right) \leqq \frac{1}{2} A(x, \xi)+\frac{1}{2} A(x, \psi)-k_{1} h_{1}(x)|\xi-\psi|^{p}
$$

for all x, ξ, ψ, that is, A is p-uniformly convex.
$\left(\mathbf{A}_{3}\right) A$ is p-subhomogeneous, that is,

$$
0 \leqq a(x, \xi) \xi \leqq p A(x, \xi)
$$

for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.
(A) There exists a constant $k_{0}>0$ such that

$$
A(x, \xi) \geqq k_{0} h_{1}(x)|\xi|^{p}
$$

for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.
(A5) $A(x, 0)=0$ for all $x \in \Omega$.
($\left.\mathbf{A}_{6}\right) A(x,-\xi)=A(x, \xi)$ for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.
Example 1. (i) $A(x, \xi)=\frac{1}{p}|\xi|^{p}, a(x, \xi)=|\xi|^{p-2} \xi$ with $p \geqq 2$. We get the p-Laplacian operator.
(ii) $A(x, \xi)=\frac{1}{p}|\xi|^{p}+\theta(x)\left(\sqrt{1+|\xi|^{2}}-1\right), a(x, \xi)=|\xi|^{p-2} \xi+\theta(x) \frac{\xi}{\sqrt{1+|\xi|^{2}}}$ with $p \geqq 2$ and θ a suitable function. We get the operator

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\operatorname{div}\left(\theta(x) \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

which can be regarded as the sum of the p-Laplacian operator and a degenerate form of the mean curvature operator.
(iii) $A(x, \xi)=\frac{1}{p}\left(\left(\theta^{\frac{2}{p-1}}(x)+|\xi|^{2}\right)^{\frac{p}{2}}-\theta^{\frac{p}{p-1}}(x)\right), a(x, \xi)=\left(\theta^{\frac{2}{p-1}}(x)+|\xi|^{2}\right)^{\frac{p-2}{2}} \xi$ with $p \geqq 2$ and θ a suitable function. Now we get the operator

$$
\operatorname{div}\left(\left(\theta^{\frac{2}{p-1}}(x)+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \nabla u\right)
$$

which is a variant of the generalized mean curvature operator

$$
\operatorname{div}\left(\left(1+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \nabla u\right)
$$

Regarding the functions h and g, we assume that
(H) $h(x) \geqq 0$ for all $x \in \Omega$ and $h \in L^{r_{0}}(\Omega) \cap L^{\infty}(\Omega)$, where

$$
\frac{1}{r_{0}}+\frac{(r+1)}{p^{*}}=1,
$$

that is $r_{0}=\frac{N p}{N p-(r+1)(N-p)}$.
(G) $g(x)>0$ a.e. $x \in \Omega$ and $g \in L^{s_{0}}(\Omega) \cap L^{\infty}(\Omega)$, where

$$
\frac{1}{s_{0}}+\frac{(s+1)}{p^{*}}=1,
$$

that is $s_{0}=\frac{N p}{N p-(s+1)(N-p)}$.

Let $W^{1, p}(\Omega)$ be the usual Sobolev space. Next, we define $X:=W_{0}^{1, p}(\Omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ under the norm

$$
\begin{equation*}
\|u\|=\left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \tag{3}
\end{equation*}
$$

We now consider the following subspace of $W_{0}^{1, p}(\Omega)$:

$$
E=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega} h_{1}(x)|\nabla u|^{p} \mathrm{~d} x<+\infty\right\} .
$$

The space E can be endowed with the norm

$$
\|u\|_{E}=\left(\int_{\Omega} h_{1}(x)|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} .
$$

As in [3], it is known that E is an infinite dimensional Banach space. We say that $u \in E$ is a weak solution for problem (1) if

$$
\int_{\Omega} a(x, \nabla u) \nabla \varphi \mathrm{d} x-\int_{\Omega} h(x)|u|^{r-1} u \varphi \mathrm{~d} x-\int_{\Omega} g(x)|u|^{s-1} u \varphi \mathrm{~d} x=0
$$

for all $\varphi \in E$.
Let

$$
\begin{aligned}
& J(u)=\frac{1}{r+1} \int_{\Omega} h(x)|u|^{r+1} \mathrm{~d} x+\frac{1}{s+1} \int_{\Omega} g(x)|u|^{s+1} \mathrm{~d} x, \\
& \Lambda(u)=\int_{\Omega} A(x, \nabla u) \mathrm{d} x,
\end{aligned}
$$

and

$$
I(u)=\Lambda(u)-J(u)
$$

for all $u \in E$.
The following remark plays an important role in our arguments.
Remark 2. (i) $\|u\| \leqq\|u\|_{E}$ for all $u \in E$ since $h_{1}(x) \geqq 1$. Thus the continuous embeddings

$$
E \hookrightarrow X \hookrightarrow L^{i}(\Omega), \quad p \leqq i \leqq p^{\star}
$$

hold true.
(ii) By $\left(\mathbf{A}_{4}\right)$ and (i) in Lemma 5, it is easy to see that

$$
E=\left\{u \in W_{0}^{1, p}(\Omega): \Lambda(u)<+\infty\right\}=\left\{u \in W_{0}^{1, p}(\Omega): I(u)<+\infty\right\} .
$$

(iii) $C_{0}^{\infty}(\Omega) \subset E$ since $|\nabla u|$ is in $C_{c}(\Omega)$ for any $u \in C_{0}^{\infty}(\Omega)$ and $h_{1} \in L_{\mathrm{loc}}^{1}(\Omega)$.

Our main results are included in a couple of theorems below.
Theorem 3. Assume $1<r<p-1<s<(N p-N+p) /(N-p)$ and conditions $\left(\mathbf{A}_{1}\right)-\left(\mathbf{A}_{5}\right)$, (\mathbf{H}), and (\mathbf{G}) are fulfilled. Then problem (1) has at least two nontrivial weak solutions in E provided that the product $\|h\|_{L^{r} 0(\Omega)}^{\frac{s+1-p}{s^{r}}}\|g\|_{L^{s}(\Omega)}^{\frac{p-r-1}{s^{s}-r}}$ is small enough.

Theorem 4. Assume $1<r<p-1<s<(N p-N+p) /(N-p)$ and conditions $\left(\mathbf{A}_{1}\right)-\left(\mathbf{A}_{6}\right)$, (\mathbf{H}), and (\mathbf{G}) are fulfilled. Then problem (1) has infinitely many nontrivial generalized solutions in E.

To see the power of the theorems, we compare our assumptions to those considered in [5,3,4,6]. Our problem (1) covers the following cases which have been considered in the literature:
(i) $A(x, \xi)=\frac{1}{p}|\xi|^{p}$ with $p \geqq 2$.
(ii) $A(x, \xi)=\frac{1}{p}\left(\left(1+|\xi|^{2}\right)^{\frac{p}{2}}-1\right)$ with $p \geqq 2$.

Moreover, our assumption includes the following situations which could not be handled in [5,4].
(i) $A(x, \xi)=\frac{h(x)}{p}|\xi|^{p}$ with $p \geqq 2$ and $h \in L_{\text {loc }}^{1}(\Omega)$.
(ii) $A(x, \xi)=\frac{h(x)}{p}\left(\left(1+|\xi|^{2}\right)^{\frac{p}{2}}-1\right)$ with $p \geqq 2$ and $h \in L^{\frac{p}{p-1}}(\Omega)$.

2. Auxiliary results

In this section we recall certain properties of functionals Λ and J. But firstly, we list here some properties of A.
Lemma 5 (See [3]).
(i) A verifies the growth condition

$$
|A(x, \xi)| \leqq c_{0}\left(h_{0}(x)|\xi|+h_{1}(x)|\xi|^{p}\right)
$$

for all $\xi \in \mathbb{R}^{N}$, a.e. $x \in \Omega$.
(ii) $A(x, z \xi) \leqq A(x, \xi) z^{p}$ for all $z \geqq 1, x, \xi \in \mathbb{R}^{N}$.

Due to the presence of h_{1}, the functional Λ does not belong to $C^{1}(E, \mathbb{R})$. This means that we cannot apply directly the Mountain-Pass Lemma of Ambrosetti and Rabinowitz. In this situation, we recall the following concept of weakly continuous differentiability. Our approach is based on a weak version of the Mountain-Pass Lemma introduced by Duc [2].

Definition 6. Let \mathcal{F} be a map from a Banach space Y to \mathbb{R}. We say that \mathcal{F} is weakly continuous differentiable on Y if and only if the following two conditions are satisfied:
(i) For any $u \in Y$ there exists a linear map $D \mathcal{F}(u)$ from Y to \mathbb{R} such that

$$
\lim _{t \rightarrow 0} \frac{\mathcal{F}(u+t v)-J(u)}{t}=D \mathcal{F}(u)(v)
$$

for every $v \in Y$.
(ii) For any $v \in Y$, the map $u \mapsto D \mathcal{F}(u)(v)$ is continuous on Y.

Denote by $C_{w}^{1}(Y)$ the set of weakly continuously differentiable functionals on Y. It is clear that $C^{1}(Y) \subset C_{w}^{1}(Y)$ where we denote by $C^{1}(Y)$ the set of all continuously Frechet differentiable functionals on Y. For simplicity of notation, we shall denote $D \mathcal{F}(u)$ by $\mathcal{F}^{\prime}(u)$.

The following lemma concerns the smoothness of the functional Λ.
Lemma 7 (See [3]).
(i) If $\left\{u_{n}\right\}$ is a sequence weakly converging to u in X, denoted by $u_{n} \rightharpoonup u$, then $\Lambda(u) \leqq \liminf _{n \rightarrow \infty} \Lambda\left(u_{n}\right)$.
(ii) For all $u, z \in E$,

$$
\Lambda\left(\frac{u+z}{2}\right) \leqq \frac{1}{2} \Lambda(u)+\frac{1}{2} \Lambda(z)-k_{1}\|u-z\|_{E}^{p} .
$$

(iii) Λ is continuous on E.
(iv) Λ is weakly continuously differentiable on E and

$$
\left\langle\Lambda^{\prime}(u), v\right\rangle=\int_{\Omega} a(x, \nabla u) \nabla v \mathrm{~d} x
$$

for all $u, v \in E$.
(v) $\Lambda(u)-\Lambda(v) \geqq\left\langle\Lambda^{\prime}(v), u-v\right\rangle$ for all $u, v \in E$.

The following lemma concerns the smoothness of the functional J. The proof is standard and simple, so we omit it.

Lemma 8. (i) If $u_{n} \rightharpoonup u$ in X, then $\lim _{n \rightarrow \infty} J\left(u_{n}\right)=J(u)$.
(ii) J is continuous on E.
(iii) J is weakly continuously differentiable on E and

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega} h(x)|u|^{r-1} u v \mathrm{~d} x+\int_{\Omega} g(x)|u|^{s-1} u v \mathrm{~d} x
$$

for all $u, v \in E$.
Our main tool is a variation of the Mountain-Pass Theorem introduced in [2] and the Z_{2} version of it introduced in [6].

Lemma 9 (Mountain-Pass Lemma). Let \mathcal{F} be a continuous function from a Banach space E into \mathbb{R}. Let \mathcal{F} be weakly continuously differentiable on E and satisfy the Palais-Smale condition. Assume that $\mathcal{F}(0)=0$ and there exist a positive real number ρ and $z_{0} \in E$ such that
(i) $\left\|z_{0}\right\|_{E}>\rho, \mathcal{F}\left(z_{0}\right) \leqq \mathcal{F}(0)$.
(ii) $\alpha=\inf \left\{\mathcal{F}(u): u \in E,\|u\|_{E}=\rho\right\}>0$.

Put $G=\left\{\phi \in C([0,1], E): \phi(0)=0, \phi(1)=z_{0}\right\}$. Assume that $G \neq \emptyset$. Set

$$
\beta=\inf \{\max \mathcal{F}(\phi([0,1])): \phi \in G\}
$$

Then $\beta \geqq \alpha$ and β is a critical value of \mathcal{F}.
Lemma 10 (Symmetric Mountain-Pass Lemma). Let E be an infinite dimensional Banach space. Let \mathcal{F} be weakly continuously differentiable on E and satisfy the Palais-Smale condition. Assume that $\mathcal{F}(0)=0$ and:
(i) There exist a positive real number α and ρ such that

$$
\inf _{u \in \partial B_{\rho}} \mathcal{F}(u) \geqq \alpha>0
$$

where B_{ρ} is an open ball in E of radius ρ centered at the origin and ∂B_{ρ} is its boundary.
(ii) For each finite dimensional linear subspace Y in E, the set

$$
\{u \in Y: \mathcal{F}(u) \geqq 0\}
$$

is bounded.
Then \mathcal{F} possesses an unbounded sequence of critical values.

3. Proofs

We remark that the critical points of the functional I correspond to the weak solutions of (1). In order to apply Lemma 9 we need to verify the following facts.

Lemma 11. (i) I is a continuous function from E to \mathbb{R}.
(ii) I be weakly continuously differentiable on E and

$$
\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega} a(x, \nabla u) \nabla v \mathrm{~d} x-\int_{\Omega} h(x)|u|^{r-1} u v \mathrm{~d} x-\int_{\Omega} g(x)|u|^{s-1} u v \mathrm{~d} x
$$

for all $u, v \in E$.
(iii) $I(0)=0$.
(iv) There exist two positive real numbers ρ and α such that

$$
\inf \left\{I(u): u \in E,\|u\|_{E}=\rho\right\}>\alpha .
$$

(v) There exists $\psi \in E$ such that $\lim _{t \rightarrow \infty} I(t \psi)=-\infty$.
(vi) I satisfies the Palais-Smale condition on E.
(vii) There exists $z_{0} \in E$ such that $\left\|z_{0}\right\|_{E}>\rho, I\left(z_{0}\right) \leqq 0$.
(viii) The set

$$
G=\left\{\varphi \in C([0,1], E): \varphi(0)=0, \varphi(1)=z_{0}\right\}
$$

is not empty.
Proof. (i) This comes from (iii) in Lemma 7 and (ii) in Lemma 8.
(ii) This comes from (iv) in Lemma 7 and (iii) in Lemma 8.
(iii) This comes from the definition of I.
(iv) First, let \mathcal{S} be the best Sobolev constant of the embedding $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$, that is,

$$
\mathcal{S}=\inf _{u \in W^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x}{\left(\int_{\Omega}|u|^{p^{\star}} \mathrm{d} x\right)^{\frac{p}{p^{\star}}}} .
$$

Thus, we obtain

$$
\mathcal{S}^{\frac{1}{p}}\|v\|_{L p^{\star}(\Omega)} \leqq\|v\|
$$

for all $v \in E$. Since

$$
r_{0}=\frac{N p}{N p-(r+1)(N-p)}
$$

then

$$
\frac{1}{r_{0}}+\frac{1}{\frac{p^{\star}}{r+1}}=\frac{N p-(r+1)(N-p)}{N p}+(r+1) \frac{N-p}{N p}=1
$$

By Hölder's inequality and the above relation we deduce

$$
\begin{align*}
\int_{\Omega} h(x)|u|^{r+1} \mathrm{~d} x & \leqq\|h\|_{L^{r_{0}}(\Omega)}\|u\|_{L^{p^{\star}}(\Omega)}^{r+1} \tag{4}\\
& \leqq\|h\|_{L^{r_{0}}(\Omega)} \frac{1}{\mathcal{S}^{\frac{r+1}{p}}}\left(S^{\frac{1}{p}}\|h\|_{L^{p^{\star}}(\Omega)}\right)^{r+1} \tag{5}\\
& \leqq\|h\|_{L^{r_{0}}(\Omega)} \frac{1}{\mathcal{S}^{\frac{r+1}{p}}}\|u\|_{E}^{r+1}=:(r+1) \mu\|u\|_{E}^{r+1} . \tag{6}
\end{align*}
$$

With similar arguments, we have

$$
\int_{\Omega} g(x)|u|^{s+1} \mathrm{~d} x \leqq(s+1) \nu\|u\|_{E}^{s+1} .
$$

Thus, we obtain

$$
\begin{align*}
I(u) & \geqq \min \left\{k_{0}, \frac{1}{p}\right\}\|u\|_{E}^{p}-\mu\|u\|_{E}^{r+1}-v\|u\|_{E}^{s+1} \tag{7}\\
& =\left(\lambda-\mu\|u\|_{E}^{r+1-p}-v\|u\|_{E}^{s+1-p}\right)\|u\|_{E}^{p} . \tag{8}
\end{align*}
$$

We show that there exists $t_{0}>0$ such that

$$
\begin{equation*}
\lambda-\mu t_{0}^{r+1-p}-\nu t_{0}^{s+1-p}>0 . \tag{9}
\end{equation*}
$$

To do that, we define the function

$$
Q(t)=\mu t^{r+1-p}+v t^{s+1-p}, \quad t>0 .
$$

Since $\lim _{t \rightarrow \infty} Q(t)=\lim _{t \rightarrow 0} Q(t)=\infty$, it follows that Q possesses a positive minimum, say $t_{0}>0$. In order to find t_{0}, we have to solve equation $Q^{\prime}\left(t_{0}\right)=0$, where

$$
Q^{\prime}(t)=(r+1-p) \mu t^{r-p}+(s+1-p) v t^{s-p} .
$$

A simple computation yields

$$
t_{0}=\left(\frac{p-r-1}{s+1-p} \frac{\mu}{v}\right)^{\frac{1}{s-r}}
$$

Thus, relation (9) holds provided that

$$
\mu\left(\frac{p-r-1}{s+1-p} \frac{\mu}{\nu}\right)^{\frac{r+1-p}{s-r}}+\nu\left(\frac{p-r-1}{s+1-p} \frac{\mu}{v}\right)^{\frac{s+1-p}{s-r}}<\lambda
$$

or equivalently

$$
\frac{\mu^{\frac{s+1-p}{s-r}}}{v^{\frac{r+1-p}{s-r}}}\left(\frac{p-r-1}{s+1-p}\right)^{\frac{r+1-p}{s-r}}+\frac{\mu^{\frac{s+1-p}{s-r}}}{v^{\frac{r+1-p}{s-r}}}\left(\frac{p-r-1}{s+1-p}\right)^{\frac{s+1-p}{s-r}}<\lambda
$$

or

$$
\|h\|_{L^{\frac{s}{s}(\Omega)}}^{\frac{s+1-p}{s-r}}\|g\|_{L^{s_{0}}(\Omega)}^{\frac{p-r-1}{s-r}}
$$

is small enough.
(v) Let $\psi \in C_{0}^{\infty}(\Omega), \psi \geqq 0, \psi \not \equiv 0$. Then using Lemma 5 , we have

$$
\begin{align*}
I(t \psi)= & \int_{\Omega} A(x, t \nabla \psi) \mathrm{d} x-\frac{t^{r+1}}{r+1} \int_{\Omega} h(x)|\psi|^{r+1} \mathrm{~d} x \tag{10}\\
& -\frac{t^{s+1}}{s+1} \int_{\Omega} g(x)|\psi|^{s+1} \mathrm{~d} x \tag{11}\\
\leqq & t^{p} \int_{\Omega} A(x, \nabla \psi) \mathrm{d} x-\frac{t^{s+1}}{s+1} \int_{\Omega} g(x)|\psi|^{s+1} \mathrm{~d} x . \tag{12}
\end{align*}
$$

Thus, $\lim _{t \rightarrow \infty} I(t \psi)=-\infty$.
(vi) Let $\left\{u_{n}\right\}$ be a sequence in X and β be a real number such that $I\left(u_{n}\right) \rightarrow \beta$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in E^{\star}. We prove that $\left\{u_{n}\right\}$ is bounded in E. We assume by contradiction that $\left\|u_{n}\right\|_{E} \rightarrow \infty$ as $n \rightarrow \infty$. It follows from conditions $\left(\mathbf{A}_{3}\right)$ and $\left(\mathbf{A}_{4}\right)$ that for n large enough

$$
\begin{align*}
\beta+1+\left\|u_{n}\right\|_{E} \geqq & I\left(u_{n}\right)-\frac{1}{s+1}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \tag{13}\\
= & \int_{\Omega}\left(A\left(x, \nabla u_{n}\right)-\frac{1}{s+1} a\left(x, \nabla u_{n}\right) \nabla u_{n}\right) \mathrm{d} x \tag{14}\\
& -\frac{s-r}{(r+1)(s+1)} \int_{\Omega} h(x)\left|u_{n}\right|^{r+1} \mathrm{~d} x \tag{15}
\end{align*}
$$

or

$$
\begin{align*}
\beta & +1+\left\|u_{n}\right\|_{E}+\frac{s-r}{(r+1)(s+1)} \int_{\Omega} h(x)\left|u_{n}\right|^{r+1} \mathrm{~d} x \tag{16}\\
& \geqq\left(1-\frac{p}{s+1}\right) k_{0} \int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x . \tag{17}
\end{align*}
$$

Hence

$$
\begin{align*}
& \beta+1+\left\|u_{n}\right\|_{E}+\frac{s-r}{(r+1)(s+1)}\|h\|_{L^{r_{0}}(\Omega)} \frac{1}{\mathcal{S}^{\frac{r+1}{p}}}\left\|u_{n}\right\|_{E}^{r+1} \tag{18}\\
& \geqq\left(1-\frac{p}{s+1}\right) k_{0}\left\|u_{n}\right\|_{E}^{p} . \tag{19}
\end{align*}
$$

Since $1<r<p-1$ and $\left\|u_{n}\right\|_{E} \rightarrow \infty$ as $n \rightarrow \infty$, dividing the above inequality by $\left\|u_{n}\right\|_{E}^{p}$ and passing to the limit as $n \rightarrow \infty$ we obtain a contradiction. Hence $\left\{u_{n}\right\}$ is bounded in E. By Remark 2, we deduce that $\left\{u_{n}\right\}$ is bounded in X. Since X is reflexive, then by passing to a subsequence, still denoted by $\left\{u_{n}\right\}$, we can assume that the sequence $\left\{u_{n}\right\}$ converges weakly to some u in X. We shall prove that the sequence $\left\{u_{n}\right\}$ converges strongly to u in E.

We observe by Remark 2 that $u \in E$. Hence $\left\{\left\|u_{n}-u\right\|_{E}\right\}$ is bounded. Since $\left\{\left\|I^{\prime}\left(u_{n}-u\right)\right\|_{E}\right\}$ converges to 0 , then $\left\langle I^{\prime}\left(u_{n}-u\right), u_{n}-u\right\rangle$ converges to 0 .

Since E is continuously embedded in $L^{p^{\star}}(\Omega)$, then we deduce that u_{n} converges weakly to u in $L^{p^{\star}}(\Omega)$. Then it is clear that $\left|u_{n}\right|^{r-1} u_{n}$ converges weakly to $|u|^{r-1} u$ in $L^{p^{\star}}(\Omega)$.

Now define the operator $U: L^{\frac{p^{*}}{r}}(\Omega) \rightarrow \mathbb{R}$ by

$$
\langle U, w\rangle=\int_{\Omega} h(x) u w \mathrm{~d} x
$$

We remark that U is linear. Moreover, it follows from

$$
\frac{1}{p^{\star}}+\frac{r}{p^{\star}}+\frac{1}{r_{0}}=1
$$

that U is continuous since $h \in L^{r_{0}}(\Omega)$. All the above pieces of information imply

$$
\left.\left.\left.\langle U,| u_{n}\right|^{r-1} u_{n}\right\rangle\left.\rightarrow\langle U,| u\right|^{r-1} u\right\rangle,
$$

that is,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} h(x)\left|u_{n}\right|^{r-1} u_{n} u \mathrm{~d} x=\int_{\Omega} h(x)|u|^{r+1} \mathrm{~d} x .
$$

With the same arguments we can show that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\Omega} g(x)\left|u_{n}\right|^{s-1} u_{n} u \mathrm{~d} x=\int_{\Omega} g(x)|u|^{s+1} \mathrm{~d} x, \tag{20}\\
& \lim _{n \rightarrow \infty} \int_{\Omega} h(x)\left|u_{n}\right|^{r+1} \mathrm{~d} x=\int_{\Omega} h(x)|u|^{r+1} \mathrm{~d} x \tag{21}\\
& \lim _{n \rightarrow \infty} \int_{\Omega} g(x)\left|u_{n}\right|^{s+1} \mathrm{~d} x=\int_{\Omega} g(x)|u|^{s+1} \mathrm{~d} x . \tag{22}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\Omega} h(x)\left|u_{n}\right|^{r-1} u_{n}\left(u_{n}-u\right) \mathrm{d} x=\lim _{n \rightarrow \infty}\left(\int_{\Omega} h(x)\left|u_{n}\right|^{r+1} d x-\int_{\Omega} h(x)|u|^{r+1} \mathrm{~d} x\right) \\
& \quad-\lim _{n \rightarrow \infty}\left(\int_{\Omega} h(x)\left|u_{n}\right|^{r-1} u_{n} u \mathrm{~d} x-\int_{\Omega} h(x)|u|^{r+1} \mathrm{~d} x\right)
\end{aligned}
$$

which yields

$$
\lim _{n \rightarrow \infty} \int_{\Omega} h(x)\left|u_{n}\right|^{r-1} u_{n}\left(u_{n}-u\right) \mathrm{d} x=0
$$

Similarly, we obtain

$$
\lim _{n \rightarrow \infty} \int_{\Omega} g(x)\left|u_{n}\right|^{s-1} u_{n}\left(u_{n}-u\right) \mathrm{d} x=0
$$

On the other hand,

$$
\begin{align*}
\left\langle J^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle= & \int_{\Omega} h(x)\left|u_{n}\right|^{r-1} u_{n}\left(u_{n}-u\right) \mathrm{d} x \tag{23}\\
& +\int_{\Omega} g(x)\left|u_{n}\right|^{s-1} u_{n}\left(u_{n}-u\right) \mathrm{d} x \tag{24}
\end{align*}
$$

Thus

$$
\lim _{n \rightarrow \infty}\left\langle J^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=0
$$

This and the fact that

$$
\left\langle\Lambda^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=\left\langle I^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle+\left\langle J^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle
$$

gives

$$
\lim _{n \rightarrow \infty}\left\langle\Lambda^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=0
$$

By using (v) in Lemma 7, we get

$$
\Lambda(u)-\lim _{n \rightarrow \infty} \Lambda\left(u_{n}\right)=\lim _{n \rightarrow \infty}\left(\Lambda(u)-\Lambda\left(u_{n}\right)\right) \geqq \lim _{n \rightarrow \infty}\left\langle\Lambda^{\prime}\left(u_{n}\right), u-u_{n}\right\rangle=0 .
$$

This and (i) in Lemma 7 give

$$
\lim _{n \rightarrow \infty} \Lambda\left(u_{n}\right)=\Lambda(u) .
$$

Now if we assume by contradiction that $\left\|u_{n}-u\right\|_{E}$ does not converge to 0 , then there exists $\varepsilon>0$ and a subsequence $\left\{u_{n_{m}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
\left\|u_{n_{m}}-u\right\|_{E} \geqq \varepsilon
$$

By using relation (ii) in Lemma 7, we get

$$
\frac{1}{2} \Lambda(u)+\frac{1}{2} \Lambda\left(u_{n_{m}}\right)-\Lambda\left(\frac{u_{n_{m}}+u}{2}\right) \geqq k_{1}\left\|u_{n_{m}}-u\right\|_{E}^{p} \geqq k_{1} \varepsilon^{p} .
$$

Letting $m \rightarrow \infty$ we find that

$$
\lim \sup _{m \rightarrow \infty} \Lambda\left(\frac{u_{n_{m}}+u}{2}\right) \leqq \Lambda(u)-k_{1} \varepsilon^{p} .
$$

We also have that $\frac{u_{n m}+u}{2}$ converges weakly to u in E. Using (i) in Lemma 7 again, we get

$$
\Lambda(u) \leqq \lim _{m \rightarrow \infty} \inf _{m} \Lambda\left(\frac{u_{n_{m}}+u}{2}\right) .
$$

That is a contradiction. Therefore $\left\{u_{n}\right\}$ converges strongly to u in E.
(vii) The existence of $z_{0} \in E$ such that $\left\|z_{0}\right\|_{E}>\rho, I\left(z_{0}\right) \leqq 0$ is followed from the fact that $\lim _{t \rightarrow \infty} I(t \psi)=-\infty$.
(viii) We consider a function $\varphi \in C([0,1], E)$ defined by $\varphi(t)=t z_{0}$, for every $t \in[0,1]$. It is clear that $\varphi \in G$.

Proof of Theorem 3. Using Lemmas 9 and 11 we deduce the existence of $u_{1} \in E$ as a nontrivial generalized solution of (1). We prove now that there exists a second weak solution $u_{2} \in E$ such that $u_{2} \neq u_{1}$.

By Lemma 11, it follows that there exists a ball centered at the origin $B \subset E$, such that

$$
\inf _{\partial B} I>0 .
$$

On the other hand, by the lemma there exists $\phi \in E$ such that $I(t \phi)<0$, for all $t>0$ small enough. Recalling that relation (7) holds for all $u \in E$, that is,

$$
I(u) \geqq \lambda\|u\|_{E}^{p}-\mu\|u\|_{E}^{r+1}-v\|u\|_{E}^{s+1}
$$

we get that

$$
-\infty<\underline{c}:=\inf _{B} I<0 .
$$

We let now

$$
0<\varepsilon<\inf _{\partial B} I-\inf _{B} I .
$$

Applying Ekeland's Variational Principle for the functional $I: \bar{B} \rightarrow \mathbb{R}$, there exists $u_{\varepsilon} \in \bar{B}$ such that

$$
\begin{align*}
& I\left(u_{\varepsilon}\right)<\frac{\inf }{\bar{B}} I+\varepsilon \tag{25}\\
& I\left(u_{\varepsilon}\right)<I(u)+\varepsilon\left\|u-u_{\varepsilon}\right\|_{E}, \quad u \neq u_{\varepsilon} . \tag{26}
\end{align*}
$$

Since

$$
I\left(u_{\varepsilon}\right)<\inf _{\bar{B}} I+\varepsilon<\inf _{B} I+\varepsilon<\inf _{\partial B} I
$$

it follows that $u_{\varepsilon} \in B$. Now we define $M: \bar{B} \rightarrow \mathbb{R}$ by $M(u)=I(u)+\varepsilon\left\|u-u_{\varepsilon}\right\|_{E}$. It is clear that u_{ε} is a minimum point of M and thus

$$
\frac{M\left(u_{\varepsilon}+t \nu\right)-M\left(u_{\varepsilon}\right)}{t} \geqq 0
$$

for a small $t>0$ and v in the unit sphere of E. The above relation yields

$$
\frac{I\left(u_{\varepsilon}+t \nu\right)-I\left(u_{\varepsilon}\right)}{t}+\varepsilon\|\nu\|_{E} \geqq 0 .
$$

Letting $t \rightarrow 0$ it follows that

$$
\left\langle I^{\prime}\left(u_{\varepsilon}\right), \nu\right\rangle+\varepsilon\|\nu\|_{E}>0
$$

and we infer that $\left\|I^{\prime}\left(u_{\varepsilon}\right)\right\|_{E} \leqq \varepsilon$. We deduce that there exists $\left\{u_{n}\right\} \subset B$ such that $I\left(u_{n}\right) \rightarrow \underline{c}$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$. Using the fact that J satisfies the Palais-Smale condition on E we deduce that $\left\{u_{n}\right\}$ converges strongly to u_{2} in E. Thus, u_{2} is a weak solution for (1) and since $0>\underline{c}=I\left(u_{2}\right)$ it follows that u_{2} is nontrivial.

Finally, we point out the fact that $u_{1} \neq u_{2}$ since

$$
I\left(u_{1}\right)=\bar{c}>0>\underline{c}=I\left(u_{2}\right) .
$$

The proof is complete.
Proof of Theorem 4. In view of $\left(\mathbf{A}_{6}\right), I$ is even. In order to apply Lemma 10, it is enough to verify condition (ii) in Lemma 10. It is known that

$$
\begin{align*}
\int_{\Omega} A\left(x, \nabla u_{n}\right) \mathrm{d} x & \leqq c_{0}\left(\left(\int_{\Omega}\left|h_{0}(x)\right| \mathrm{d} x\right)^{\frac{p-1}{p}}\left\|u_{n}\right\|_{E}+\left\|u_{n}\right\|_{E}^{p}\right) \tag{27}\\
& =c_{1}\left\|u_{n}\right\|_{E}+c_{0}\left\|u_{n}\right\|_{E}^{p} \tag{28}
\end{align*}
$$

This gives

$$
I(u) \leqq c_{1}\left\|u_{n}\right\|_{E}+c_{0}\left\|u_{n}\right\|_{E}^{p}-\frac{1}{s+1} \int_{\Omega} g(x)|u|^{s+1} \mathrm{~d} x .
$$

Suppose that \widetilde{E} is a finite dimensional subspace of E. Setting

$$
\|u\|_{\widetilde{E}}=\left(\int_{\Omega} g(x)|u|^{s+1} \mathrm{~d} x\right)^{\frac{1}{s+1}}
$$

for all $u \in \widetilde{E}$, we see that $\|\cdot\|_{\tilde{E}}$ is a norm in \widetilde{E}. We also note that in \widetilde{E} the norms are equivalent. Thus, there exists a positive constant K such that

$$
\|u\|_{E} \leqq K\|u\|_{\tilde{E}}
$$

This implies that

$$
I(u) \leqq c_{1}\left\|u_{n}\right\|_{E}+c_{0}\left\|u_{n}\right\|_{E}^{p}-\frac{K}{s+1}\|u\|_{E}^{s+1} .
$$

Since $p<s+1$ then $\{u \in \widetilde{E}: I(u) \geqq 0\}$ is bounded. Hence, I possesses an unbounded sequence of critical values. Therefore, I possesses infinitely many critical points in E. This completes the proof.

References

[1] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) $349-381$.
[2] D.M. Duc, Nonlinear singular elliptic equations, J. London Math. Soc. (2) 40 (1989) 420-440.
[3] D.M. Duc, N.T. Vu, Nonuniformly elliptic equations of p-Laplacian type, Nonlinear Anal. 61 (2005) 1483-1495.
[4] M. Mihailescu, Existence and multiplicity of weak solutions for a class of degenerate nonlinear elliptic equations, Bound. Value Probl. (2006) 1-17. Article ID 41295.
[5] P. de Nápoli, M.C. Mariani, Mountain pass solutions to equations of p-Laplacian type, Nonlinear Anal. 54 (2003) $1205-1219$.
[6] N.T. Vu, Mountain pass theorem and nonuniformly elliptic equations, Vietnam J. Math. 33 (4) (2005) 391-408.

Further reading

[1] R.A. Adams, Sobolev Spaces, Academic Press, London, 1975.
[2] G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for Dirichlet problems with p-Laplacian, Protugaliae Math. 58 (2001) 340-377.
[3] M. Struwe, Variational Methods, Springer, New York, 1996.

[^0]: * Corresponding author. Tel.: +84 48581135.

 E-mail address: bookworm_vn@yahoo.com (Q.-A. Ngô).

