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Abstract. In this paper we study the existence of positive solution of the following Dirichlet problem for a
system of nonlinear equations on a bounded domain −∆pu = λf (x, u, v) in Ω

−∆qv = µg (x, u, v) in Ω
u = v = 0 on ∂Ω.

The proof is based on the comparison principle and the Schauder Fixed-Point Theorem.
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1 Introduction

In this present work we are interested in the study of the following Dirichlet problem
−∆pu = λf (x, u, v) in Ω
−∆qv = µg (x, u, v) in Ω
u = v = 0 on ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with a smooth boundary ∂Ω; p, q > N ; λ, µ are suitable
parameters; f, g : Ω × [0,+∞)× [0,+∞) → [0,+∞) are continuous functions and

−∆su = div
(
|∇u|s−2∇u

)
denotes the s-Laplacian as usual.

The study of nonlinear systems, such as (1), naturally arises in the study of various kinds of nonlinear
phenomena such as non-Newtonian fluid: pseudo-plastic fluids correspond to s ∈ (1, 2) while dilatant fluids
correspond to s > 2. The case s = 2 expresses Newtonian fluids phenomena such as chemical reactions,
pattern formation, polulation evolution. As a consequence, positive solutions of (1) are of interest. Problem
(1) covers several important cases. When p = q = 2, (1) becomes the semilinear elliptic system:

−∆u = λf (x, u, v) in Ω
−∆v = µg (x, u, v) in Ω
u = v = 0 on ∂Ω.

(2)
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A special case of (2) is the Lane-Emden system which was treated by Dalmasso [6].
An other special case of (2) is the usual Laplacian problem as follows{

−∆u = λf (x, u) in Ω
u = 0 on ∂Ω,

(3)

which has received extensive investigations in the past several decades, see, e.g., [7] and references therein.
Several methods have been used to treat quasilinear equations and systems. In the scalar case, weak

solutions can be obtained through variational methods which provide critical points of the corresponding
energy functional, an approach which is also fruitfull in the case of potential systems. However, due to the
lack of variational structure, the treatment of nonvariational system, such as (1), is more complicated and is
based mostly on topological methods, see, e.g [1].

Recently, in [15] the authors discussed (1) in the more general cases without the presence of parameters
to obtain the existence of positive solution under the suitable conditions. The main approach in such papers
is based on the comparison principle and the Schauder Fixed-Point Theorem. In this paper, we adopt these
methods to extend the existence results obtained in [15].

The aim of the present work is to study the existence of positive solutions of the problem (1) under the
above hypothesis and suitable conditions for parameters. We shall show that there exist numbers λ0 and µ0

such that (1) has a positive solution for 0 < λ < λ0 and 0 < µ < µ0. Our paper is organized as follows.
Section 2 provides some preliminaries and notations before stating our main results in Section 3.

2 Preliminaries

We recall some basic results for the p-Laplacian. Let φ (respectively ϕ) be the torsion functions relative
to Ω and to the operator −∆p (respectively −∆q), that is,{

−∆pφ = 1 in Ω
φ = 0 on ∂Ω

and
{
−∆qϕ = 1 in Ω
ϕ = 0 on ∂Ω.

We make the following assumptions:

(H1)f, g : Ω × [0,+∞)× [0,+∞) → [0,+∞) are continuous functions such that
(i) u → f (x, u, v) , u → g (x, u, v) are nondecreasing for every x ∈ Ω and v ≥ 0.
(ii) v → f (x, u, v) , v → g (x, u, v) are nondecreasing for every x ∈ Ω and u ≥ 0.
(H2)

lim inf
z→+∞

F (z, z)
z

= 0, lim inf
z→+∞

G (z, z)
z

= 0,

where F (u, v) := max
x∈Ω

f (x, u, v), G (u, v) := max
x∈Ω

g (x, u, v).

(H3)

lim inf
z→0+

h (z, z)
z

= +∞, lim inf
z→0+

k (z, z)
z

= +∞,

where h (u, v) := min
x∈Ω

f (x, u, v), k (u, v) : = min
x∈Ω

g (x, u, v).

3 Main results

Theorem 1. Assume that (H1)-(H2)-(H3) hold. Then there exist positive numbers λ0 and nµ0 such that (1)
has a positive solution for 0 < λ < λ0 and 0 < µ < µ0.

Theorem 2. Let (H1) holds and λ, µ > 0 and nassume that there exist positive constants r1, r2, s1, s2 such
that for x ∈ Ω

s 7→ f (x, s, t)
sr1

, t 7→ f (x, s, t)
tr2

WJMS email for contribution: submit@wjms.org.uk



World Journal of Modelling and Simulation, Vol. 5 (2009) No. 3, pp. 211-215 213

are nondecreasing, and

s 7→ g (x, s, t)
ss1

, t 7→ g (x, s, t)
ts2

are nondecreasing. If one of the following conditions is satisfied

(i) r1+r2
p−1 < 1 and (r1+r2)s1+s2(p−1)

(p−1)(q−1) < 1,

(ii) s1+s2
q−1 < 1 and (s1+s2)r2+r1(q−1)

(p−1)(q−1) < 1,

(iii) s1+s2
q−1 < 1 and r1+r2

p−1 < 1,

(iv) s1+s2
q−1 < 1 and (r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(p−1)(q−1)2
< 1,

(v) r1+r2
p−1 < 1 and (r1+r2)(q−1)s1+(s1+s2)(p−1)s2

(p−1)2(q−1)
< 1,

(vi) (r1+r2)s1+s2(p−1)
(p−1)(q−1) < 1, and (r1+r2)s1+r2s2(p−1)+r1(p−1)(q−1)

(p−1)2(q−1)
< 1,

then (1) admits at most one positive solution.

In view of (H2), (H3), there exist numbers R > max {‖φ‖∞ , ‖ϕ‖∞} and

min
{

λ
1

p−2 φ
p−1
p−2 , µ

1
q−2 φ

q−1
q−2

}
> ε > 0

such that F (R,R) ≤ R,G(R,R) ≤ R and h(ε, ε) ≥ ε.

Proof. Let

λ0 =
Rp−2

‖φ‖p−1
∞

, µ0 =
Rq−2

‖ϕ‖q−1
∞

.

We now only consider 0 < λ < λ0 and 0 < µ < µ0.
For each (v1, v2) ∈ C

(
Ω
)
× C

(
Ω
)

we define (u1, u2) = Aλ,µ (v1, v2) by
−∆pu1 = λf (x, v1, v2) in Ω
−∆qu2 = µg (x, v1, v2) in Ω
u1 = u2 = 0 on ∂Ω.

(4)

Then Aλ,µ : C
(
Ω
)
× C

(
Ω
)
→ C

(
Ω
)
× C

(
Ω
)

is well-defined, completely continuously and fixed points
of Aλ,µ are solutions of (1). We claim that

Aλ,µ

(
B (ε, R)×B (ε, R)

)
⊆ B (ε, R)×B (ε, R)

where
B (ε, R) =

{
z ∈ C

(
Ω
)
| ε < ‖z‖∞ < R

}
.

Indeed, let v1, v2 in C
(
Ω
)

such that ‖v1‖∞ ≤ R, ‖v2‖∞ ≤ R. By (H1), we have

−∆pu = λf (x, v1, v2) ≤ λf (x,R,R) ≤ λF (R,R) ≤ λR

which implies, by the comparison principle, that

u ≤ (λR)
1

p−1 φ ≤ (λR)
1

p−1 ‖φ‖∞ ≤ R.

Consequently, v ≤ R.
Next, we will show that ‖u‖∞ ≥ ε, ‖v‖∞ ≥ ε. Indeed, let v1, v2 in C

(
Ω
)

such that ‖v1‖∞ ≥ ε,
‖v2‖∞ ≥ ε

−∆pu = λf (x, v1, v2) ≥ λf (x, ε, ε) ≥ λh (ε, ε) ≥ λε.

By the comparison principle, we get:
u ≥ (λε)

1
p−1 φ ≥ ε,

which gives ‖u‖∞ ≥ ε. Consequently, ‖v‖∞ ≥ ε.
By the Schauder Fixed-Point Theorem, Aλ,µ has a fixed point (u, v) with ε ≤ ‖u‖∞ ≤ R, ε ≤ ‖v‖∞ ≤

R. The proof is complete.
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Proof. Let (u, v) . (u1, v1) be positive solutions of (1). We will provide the proof only for the cases (i), (iii)
and (iv). We define

δ = inf
{
ε ≥ 1

∣∣ εu1 ≥ u, εv1 ≥ v in Ω
}

.

We will show that δ = 1. Assume that δ > 1. Let (i) holds, then

−∆pu = λf (x, u, v) ≤ λf (x, δu1, v) ≤ δr1λf (x, u1, v)
≤ δr1λf (x, u1, δv1) ≤ δr1+r2λf (x, u1, v1)

which gives

−∆pu ≤ −∆p

(
δ

r1+r2
p−1 u1

)
,

which yields, by the comparison principle, that

u ≤ δ
r1+r2
p−1 u1. (5)

Using (5) in the equation for v we get:

−∆qv = µg (x, u, v) ≤ µg
(
x, δ

r1+r2
p−1 u1, v

)
≤ δ

r1+r2
p−1

s1µg (x, u1, v)

≤ δ
r1+r2
p−1

s1µg (x, u1, δv1) ≤ δ
r1+r2
p−1

s1+s2µg (x, u1, v1)

which gives

−∆qv ≤ −∆q

(
δ

(r1+r2)s1+s2(p−1)
(p−1)(q−1) v1

)
which yields, by the comparison principle, that

v ≤ δ
(r1+r2)s1+s2(p−1)

(p−1)(q−1) v1, (6)

contradicting the definition of δ due to r1+r2
p−1 < 1 and (r1+r2)s1+s2(p−1)

(p−1)(q−1) < 1.
Let (iii) holds, then

−∆qv = µg (x, u, v) ≤ µg (x, δu1, v) ≤ δs1µg (x, u1, v)
≤ δs1µg (x, u1, δv1) ≤ δs1+s2µg (x, u1, v1) ,

which gives

−∆qv ≤ −∆q

(
δ

s1+s2
q−1 v1

)
which yields, by the comparison principle, that

v ≤ δ
s1+s2
q−1 v1, (7)

In view of inequalities (5) and (7) we have a contradiction with the definition of δ.
Let (iii) holds, then working as (5) and (7) we get

−∆pu ≤ λf(x, δ
r1+r2

p−1 u1, δ
s1+s2

q−1 v1)

≤ δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(q−1)(p−1) λf(x, u1, v1).

Thus,

u ≤ δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(p−1)2(q−1) u1

contradicting the definition of δ.
Thus δ = 1, i.e., v ≤ v1 and u ≤ u1. Similarly, v ≥ v1 and u ≥ u1. Consequently, u = u1 and v = v1.
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4 Some applications

In this section, we will give some examples to demonstate our results.

Example 1. Consider the following problem:

−∆pu = λvα in Ω, −∆qu = µuβ in Ω, u = v = 0 on ∂Ω (8)

where 2 > α, β ≥ 0. Then, there exist numbers λ0, µ0 such that (8) has a positive solution for 0 < λ < λ0

and 0 < µ < µ0.

Example 2. Consider the following problem:

−∆pu = λ
(
uα + vβ

)
in Ω, −∆qu = µ

(
uγ + vδ

)
in Ω, u = v = 0 on ∂Ω (9)

where 1 > α, β, γ, δ ≥ 0. Then, there exist numbers λ0, µ0 such that (9) has a positive solution for 0 < λ < λ0

and 0 < µ < µ0.

Example 3. Consider the following problem:

−∆pu = λuαvβ in Ω, −∆qu = µuγvδ in Ω, u = v = 0 on ∂Ω (10)

where α, β, γ, δ ≥ 0 satisfying α + β < 1 and γ + δ < 1. Then, there exist numbers λ0, µ0 such that (10) has
a positive solution for 0 < λ < λ0 and 0 < µ < µ0.
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