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1. Introduction

In 1938, Iyengar [6] proved the following interesting integral inequality which has received considerable attention from
many researchers.

Theorem 1 (See [6]). Let f be differentiable on [a,b] and |f(x)| £ M. Then

1 b f(@)+f(b)| _ M(b—a) (f(b) - f(a))’
m/af(")dx’ 2 == 4 " aMp-a M

Through the years, lyengar’s inequality (1) has been generalized in various ways. Set

1 /P b—a b—a)y? . )
1= [ foode- 230 +f0) + E 0 -f @),
in [1,4], the following Iyengar-type inequality was obtained.

Theorem 2 (See [1,4]). Let fe C*[a,b] and | f'(x)| < M. Then
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where
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Since then, Theorem 2 was generalized and improved by lots of mathematicians, let us mention the works of Cheng in [3]
and Franjic et al. [5] in the literature. In those papers, the authors tried to estimate the left hand side of (2) by various ways.
In contrast to [3,5], we will generalize the left hand side of (2) into a general form and then obtain some new estimates. Be-
fore stating our main result, let us introduce the following notation. For each i = 1,n, we assume 0 < x; <1, put

Qfixr, . ) = S (b - .
k=1

We are in a position to state our main result.

Theorem 3. Let I C R be an open interval such that [a,b] c I and let f : I — R be a twice differentiable function such that, for all
xelab], y < f'(x) £ T for some positive y and I'. Assume {x;};_; C [0,1) is such that

n
XXyt X = )
and
X2 +X5+ -+ X2 =nq, (4)

where q € [0,1] is a given number. Then the following estimate holds

Ayq(b—a)? _b— /f X)dx — Q(f;X1,Xa, ..., Xn) + (b — a)p(f'(b) — f'(a)) £ B,4(b — a)*, (5)

where p is an arbitrary number and

P T e [ B ST N R R Y
pq = g 9_1> _g9.1
p-q+Hr+4%y, 4-1z20, p-4+1<0,
(P=DI+57, 5-6<0. p-{+5<0,
and
Sy (p+Yr. 4-k20 p-f+iz0
B -7+ (p—-4+%), 4-4<0, p—4+120
) p-g+d)y+En, §-120, p-§+1i<0,
(P-Pr+sl $-§<0, p—{+5<0.

Remark 1. If we take n=2, p =} and x; =0, x, = 1 then by (4) one has q = 1. Thus (5) tells us that

(57 o-ars gty [rwa LOHO Ll Gy piay < (Jr-2y)o-ar

which is nothing but an Iyengar-type inequality of kind (2).

Theorem 4. Let | C R be an open interval such that [a,b] C I and let f:1— R be a thrice differentiable function such that
f"eL'la,b] forsome 1<r<oo. The given set {xy};_, C [0,1) is as in Theorem 3. Then the following estimate holds

3r1

1 ‘b =_ "
'm/f(X)dX—Q(f%Xthw-an)+(b 0(§-5)®) - F@)| <Kuglb - a1, ©®)
where
C1(r=1\T q(r-1\7T (g 1\(r-1\7
KW‘E(H) +§(ﬁ> +<§‘6)<m) :
2. Proofs

Before proving our main theorem, we need an essential lemma below. It is well-known in the literature as Taylor’s for-
mula or Taylor’s theorem with the integral remainder.

Lemma 5. [See [2]]Let f : [a,b] — R and let r be a positive integer. If f is such that f7~1) is absolutely continuous on [a,b],
Xo € (a,b) then for all x € (a,b) we have
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fx) =T1(f, %0, %) + R—1(f, X0, %)

where T,_1(f,Xo,-) is Taylor’s polynomial of degree r — 1, that is,

L0 (x) (x — xo)
Tr—l (fa X07 Z k' )
and the remainder can be given by

X o r-1 (r)
Rr,l(f,xo,x):/x %dt.

By a simple calculation, the remainder in (7) can be rewritten as

O (x—x0— ) 0 (o + )
erl(f7x07x) _A (T—])' dt7

which helps us to deduce a similar representation of f as follows

T]ul(

|
— k!

x+u

fo0( /O ’ (L(‘r‘fi ); FO(x + .

Proof of Theorem 3. Put

- / “f(ode

Applying Lemma 5 to F(x) with x=a and u =b — a and the Fundamental Theorem of Calculus, we get

b 2
[ o= Fi) ~ Fiay = 0 - arta) + 5V i+ [ O pran

Similarly, one has

fla+(b—a)x) =f(a) +

(b u=xy (x—a)
(b— ) + / ((b— @) — wf"(a+wydu""L " f(a) + £ (a)(b — a)x,
b
+/ x2(b —X)f"(1 — x)a + xx)dx.
Thus,
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n
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We can estimate further as follows.

II/\

b w2
/ —ﬂmégézl wzm[F—MMZE%ﬂF—V

while

0> Z/ (b—=x)[f"((1 —x)a + x¢x) —

2[ (b—x)(I' - y)d ]_—%i{

Moreover, if § — ¢ = 0 then

1
6

ogbm@ Q/W

otherwise,
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s b-a(3-1) [ir-ne= (3-D)o-arr -y,

and
—at(p-9+ ) <p- 9 Ny —pan<ob—a(p-941
rb-af(p-5+) b-a(p-5+5) 061 -F@)<ob-a (p-+¢).
provided p —§+1 <0. Thus
1 b
Ap-q(bfa)zgfa/f( )dx Q(f X1,X2, 7x)+(b7a)p(fl(b) fl(a))équ(bfa)zv
where
—3 =) +7(p-§+9), 2620 pP—3+520
a )3T =N+ G-I =N +r(P -3+, 3-6<0 pP-3+520,
eI -3+)), 3-520 p-4+§<0,
ST =N+ G-I =N +T(P—3+5). §-6<0 p—3+5<0
and
sM=N+G-8T=N+T(Pp-5+§), §-§20, p-3+520,
g s =N+I(P—3+g). :75<0 p-3+520
TR+ G-HT D+ -3y, §-§20 p-{+E<O,
Y-y +yp-4+9), 1-1<0, p-i+l<o.

The proof is now complete. [

Proof of Theorem 4. We now apply Lemma 5 to F(x) with x=a and u =b — a, we obtain

(b-a?

3
~Fa) = b - af(@+* 09

fl@+ 2

RS

Similarly, one has

(b—a)xy ((b _ a)Xk

f(@)

fla+(b—ayx) = (b—a)x; +
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Thus,

QU ) = 1) + (b @) 2oy ) 1D g Dt Tyn [P0 0 g1 ama

—— N—— k=1
:% q
n b 43 2
1@+ 5 @ @b —ar + S [ e
and
b
fi(b)~f'(@) = (b—a)f'(@) + / (b — X)f"(x)dx

Then

b
‘b‘lfa /a Fx)dx — Q(f;%1,%2,...,%0) + (b—a) (g_g) (f'(b) — f'(a))
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We can estimate further as follows.

b a3

- bxi(b ) " d gil b* bbi " d
1/a X0 = X)" o4 xk)a+xkx)x+<2 6)( a)/G( X" (x)dx|.
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1
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and

(G-g)o-a [o-xrma = (- Ho-a| [ oo )dxé(%—%)(zrr‘11)” 1",
Thus

b [0 Qi)+ 60 (5-6)® -1 @) <Kualo -1,
where

1 /r-1 7 q/r-1 7 qg 1 r—1\7
1<rﬂ*€<4r_1) +2<3r—1) +(§_€>(2r—1) '
The proof is now complete. O
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