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1. Introduction

In 1938, Iyengar [18] proved the following interesting integral inequality which has received considerable attention from
many researchers [2,8-11,19].

Theorem 1. Let f be a differentiable function on (a,b) and assume that there is a constant M; > 0 such that |f (x)| < M; for x €(a,b).
Then

b 2
[ rwax—506-a¢@-+fo)| < L - ) - r@) 1)

Especially, the authors in [2,11] proved the following inequality involving bounded second-order derivatives.

Theorem 2. Let f e (?[a,b] and |f'(x)| < My. Then

b
| Fodx 56— (@ +£6) + g (b - @) - Fl@)| < 5 ((b -0’ - (1) ) @)
where A =f(a)—2f((a+b)/2) +f(b).

In [12], Franjic et al. proved the following Iyengar-type inequality and show that it is always better than (2).

Theorem 3. Let fe C?[a,b] and |f'(x)| < Ma. Then

Moo+ M2 )< [ S0k L@ ) + S b i) - f@)

<1;Z(b—a)3—1\;12[(T—%>3+<l)2—a””>3}’ >
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where

a3 et

=g (f’(b) oy (azib)) szl

The development of the theory of time scales was initiated by Hilger [13] in 1988 as a theory capable to contain both
difference and differential calculus in a consistent way. Since then, many authors have studied the theory of certain integral
inequalities on time scales. For example, we refer the reader to [1,6,7,15-17,20-22].

and

In the present paper we shall establish some new lyengar-type inequalities on time scales for functions whose second
derivatives are bounded by using Steffensen’s inequality on time scales. Our results (see Theorems 6 and 7) extend the re-
sults in [2,11,12] to arbitrary time scales.

2. Time scales essentials

Now we briefly introduce the time scales theory and refer the reader to Hilger [13] and the books [4,5,14] for further
details.

Definition 1. A time scale T is an arbitrary nonempty closed subset of real numbers.

Definition 2. For t € T, we define the forward jump operator ¢ : T — T by ¢(t) = inf{s € T : s > t}, while the backward jump
operator p : T — T is defined by p(t) =sup{s e T :s < t}.

In this definition, we putinf @ = sup T (i.e. o(t) = tif T has a maximum t) and sup ) = inf T (i.e. p(t) = t if T has a minimum
t), where () denotes the empty set. If g(t) > t, then we say that t is right-scattered, while if p(t) <t then we say that t is left-
scattered. Points that are right-scattered and left-scattered at the same time are called isolated. If ¢(t) =t and t < sup T, then
t is called right-dense, and if p(t) =t and t > inf T, then ¢ is called left-dense. Points that are both right-dense and left-dense
are called dense.

Definition 3. Let t € T, then two mappings p,v: T — [0, +o00) satisfying

p(t) = a(t) —t, V() :=t—p(t)
are called the graininess functions.
We now introduce the set T* which is derived from the time scales T as follows. If T has a left-scattered maximum t, then
T*:=T — {t}, otherwise T* := T. Furthermore for a function f := T — R, we define the function f° : T — R by f°(t) = fla(t))
forall t e T.

Definition 4. Let f : T — R be a function on time scales. Then for t € T¥, we define f* (t) to be the number, if one exists, such
that for all ¢ > 0 there is a neighborhood U of t such that for all s € U

f7(t) = f(s) = fA(t)(a(t) —5)| < &glo(t) —s|.

We say that fis A-differentiable on T* provided f2(t) exists for all t € T*. We talk about the second derivative f** provided f*
is differentiable on T = (T*)" with derivative f4* = (f4)* . T — R,

Definition 5. A mapping f : T — R is called rd-continuous (denoted by C,4) provided if it satisfies

1. fis continuous at each right-dense point or maximal element of T.
2. The left-sided limit lim,_._f(s) = f(t—) exists at each left-dense point t of T.

Remark 1. It follows from Theorem 1.74 of Bohner and Peterson [4] that every rd-continuous function has an anti-
derivative.

Definition 6. A function F : T — R is called a 4-anti-derivative of f : T — R provided FA(t) = f{t) holds for all t € T*. Then the
A-integral of f is defined by

/ " F(O)At = F(b) — F(a).
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Proposition 4. Let f, g be rd-continuous, a, b, c € T and o, § € R. Then

(i) f7 [of (£) + BE(D)]AL = o [ F ()AL + B [ g(t)AL,
(ii) f; f()AL =~ [ f(D)AL,
(iii) [P f()At = [CF()At + [P F(E)AL,
(iv) [, F(Dg (DAL = (fg)(b) — (fe)(a) — [, FA(D)g(a ()AL,
(v) f;f(t)At =0.
(vi) Iff(t) = O for all a < t < b then fff(t)At > 0.

Definition 7. Let h, : T2 — R, k € Ny be defined by
ho(t,s)=1 forall s,teT

and then recursively by
t
hea(t,s) :/ he(t,s)At forall s,teT.
S

Remark 2. It follows from Proposition 4(vi) that if s < t then hy.¢(t,s) = O for all t, s € T and all k € N.

Remark 3. If we let h,f(ns) denote the derivative of hi(t,s) with respect to t for each fixed s, then

hi(t,s) = h_q(t,s), for keN, teT"

The following Steffensen’s inequality on time scales was established in [3].

Theorem 5 (Steffensen’s Inequality). Let a, b € T) and F,G : [a,b] — R be integrable functions, with F decreasing and 0 < G < 1
on [a,b]. Assume /. := ff G(t)At such that b — A, a+ 4 € T. Then

b b a+.
" Foar< / F()G(t)At < / F(t)At. 4)

Throughout this paper, we suppose that T is a time scale, a, b € T with a < b and an interval means the intersection of real
interval with the given time scale.

3. Iyengar-type inequalities on time scales
Our first result is embodied in the following.

Theorem 6. Let a, 2, b e T and f : [a,b] — R be a twice differentiable function and f22 : [a,b] N T — R is bounded, i.e.

—c0<m <A KM < 400, VtelabnT®.
Then

ot n(e+123%) (s3] ) -2

b _
< [ fem =23 @40+ (5,550 )P0 - e (0. 55 0) @

< (M—m) {sgn (x - bz;“) hs (b -4 b) hy (b%b)} - [th (a“zib) ~mh (banr—bH 7 (5)

b—a

2 @ -2 (U50) +r)

such thata+2e€T, b—1€T.

where

A=

Proof. To prove our result, we shall use the Steffensen’s inequality on time scales. For this, let

F(X) — h2 (X, CHi_b> Xe [a7%b)7
“ha(x.558) xe [52.0].
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and

G(x) =

{“Mfﬁf") x € [a,%5%),
Dot xe [50.0].

Thus it holds
0<Gkx) <1

and
i—ﬁ[/fb( —F) / () x] = g @ -2 (B )
Theorem 5 tells us that
X /F X)AX < / F(x)G(x)Ax < /GWF(x)Ax. (8)

o p

Two cases are possible:

(a) fA(a) — 2f*(%L) + f2(b) < 0, and
7

(b) fA(a) — 2f*(%?) +f*(b) > 0.

Case (a). fA(a) — 2f2(%42) + fA(b) < 0 implies 2 < 259 and thus a + 2 < %42 < b — /. The left and right term of inequality (4)
are:

b b a+b b a+b b= a+b
o= [ Flomx= —/th( : )Ax— —/azbhz( : )Ax+/£b hz( : )Ax
b b
- %(b,%) + hs (b 3,552 )

and

atb

a+i a+4 % ab
ﬁ:/ F(x)Ax:/ h2<x,%b>Ax:/ h2< #)Ax—/ h2<x,%b>Ax
a a a a+i
+b +b
:—hz( a2 )+h3( a2 )

Case (b). Here it holds that 4 > 25¢ and thus b — 4 < %2 < a + 4. A similar calculation gives

b b a+b % a+b a+b a+b
o bf'~F(X)AX:/az—bh2< 2 )A’”/,hz( 2 >AX_7h3<b 2 >7h3<b )T>’

and

a+i ab a-+2
ﬁ:/ F(x)Ax:/ h2<x,‘12Lb>Ax—/b h2<x,"2Lb>Ax:—h3<a,%b> —h3<a+a,azib>.

Thus, (8) implies that
(252 n(o-15) m(o232) - [ e
2 2
b- \ b b
> sgn(A—T)m (a—u,%) + hs (a,%). (9)

Now, we only need to calculate the middle term in Stefenssen’s inequality. Obviously,

[— /a'b F(t)G(t)At = ﬁ {/a” hz( a —5 b) (M — f(x))Ax — /al: h, (x’%b) (FA(x) — m)Ax |,
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Using Proposition 4(iv) and Remark 3, we have

aib aib aib
/ hz(x,a;b>(M—fAA(x))Ax:M/ hz(x,”b Ax—/ h, x,agb)fAA(x)Ax

— _Mhs (a,a : b) hy (aazﬂ @)+ / o (x“zﬂ) A ((X)AX.

By using Proposition 4(iv) and Remark 3 again, we obtain

/aa_;bhl(x,azb)fA(o(X)) [ ( a+b) ”— [ ( a+b)} fla(a(x))Ax

= (a5 ) stot@) [ no(x 5P )i

=t (0252 sot@) - [ retenax="3 s ot@) - [ oty

which implies that

7 (e ponme—aa (a20) (2 5+ 5 st — [

Similarly,
_ /; hy (x,%b) (f**(x) — m)A = mhs (h%b) —h, (b, a ; b>fA(b) + ?f(o’(b)) - /;f((ﬂ (X)) AX.

Therefore,
I= /F
S [th( ;b)mz(a,“#’)fﬂuﬂf()
Lol o S s
:—{/f Dax =22 o) 4 o }+hz(b,“;b)fA<b>—hz(a,";b)f (@

o) e
[ om0 @] b (5520 - (0.5 )

) (Mm)/abF(f)G(t)At {Mh3 <a,aT+b> — mhs (bﬂ;bﬂ

which implies that
ol Sl ) )
/f Ax——[f (b)]+h2<ba+b) < ) (a)
< (M- m){sgn( b- )h3(b ;“;b) h3(b“;b)} [Mh3 azb) mh3<b,a;b)},

This proves the theorem. O
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Remark 4. If we apply the inequality (5) to different time scales, we can get some well-known and some new results. We
only give an example of the case T = R here. The interested reader can investigate the case T = Z, T = q"° (see also [15-
17]).

Corollary 1 (Continuous case). Let T = R. Then it is known that
(t _ S)k

k!
forallt, sc Rand all 1 < k € N. Moreover,

hk(t, S) =

=2 e @ -2 (457 o).

m

Thus, (5) reads

b—a .a+b a+b a+b a+b
(M —m)| sgn A—T h3<a+A,T>+h3<a,T> - Mh3<a,T>—mh3<b,T>

1
el ()’ (@b ab? 0.0}

< [ 1w a2 Rl )+ha(6.552) 0 - ke (0. 25 )@

fx) fla)+f(b

) o)

< (M—m)| sgn _¥ h3<b_1,‘12Lb)+h3(b,%b) - M%(a,#) m hs (b M) (11)

1
e ( 1 A)3 (b—a)3 (a-b)3 (b-a)3
a8 a8 a8

which implies

(05 - () < e L

Mom {(b;a) . <M|§m>3 (b’

-3 (M +m). (12)
M-m|/b—a\> ([ |Al \’
6 2 M—-m
which is exactly the inequality shown in Theorem 1 of [11]. We get the inequality (2) in Theorem 2 if we set M = —m = M.
In our next result, we shall generalize Theorem 3 to arbitrary time scales.

Thus we obtain

b _ U _ £ 3
[ s =250 @ + 50 + T D b O sy <

Theorem 7. Let a, 42, b e T* and f : [a,b] — R be a twice differentiable function and f** : [a,b] N T — R is bounded, i.e.
M:= sup [f*(t)| < oc.

t«z[a,b]rﬂ]”‘2

R +b a+b a+b
2M qzﬂi hz( 2 )AX+M|:h3< T)—h3(b7T):|

< /ab;<02<x>> @+ 70+ (052N (0 5 2@

a+/q b
gzz\/l[/ h2< a;b>Ax+/ h2<x,aJ2r—b>Ax +M{h3<a,azib>—h3(b,#>}, (13)
a b—4y

Then
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where

bl (45

zb:$+ﬁ[fﬁ<> fA(Hbﬂ

are such thata+/,€ Tand b — /, € T.

and

Proof. We shall apply Theorem 5 for F(x) = hy (x, %), G(x) :W. We have 0 < G(x) < 1 for each x € [a,b] N T*. So, on
[a, %2 N T**, Theorem 5 tells us that

/ i / F(x / " Fax,

which is equivalent to

ath ath a+/a

oM [T Froax< ZM/TF(X) (OAX < 21\/1/ X)AX, (14)

G_H’_;a

where

Ja :/LI%bG(x)M:Z}w/ﬂ%UAA(X)+M)M:T {A<a+b> —fA(a)}.

The middle term of inequality (14) is

m |  FCuon - /_ (x5 00 + x| T (7)o | K (57 s

a+h

.Y a"bhz( zb)AX+/a_h2<x ib)fM()

a+b

= —Mh; (a,%b) + /_ hy <X ﬂ>fAA( )AX
With the help of Proposition 4(iv) and Remark 3, one has
asb oz asb
R e [ T A

:—hz( “*b)fA() /a%wh(xflzﬁ)fA(a(x))Ax.

Again by Proposition 4(iv) and Remark 3, one obtains
[ (x5 2) o= [ (x5 o] |~ [ [io (252 Feotoronax

—-m (0232 )o@y - [ ho(x 570 o0nmx =25 ot - [ o

a a

atb ath

atb

a+b

M [ Fecione = -mhs (0. 25) ~e (0 500 @ - 230 @ + [ ptoiax

Therefore, we get

a+b

o [ h2<xa42rb>Ax+Mh3< a+b> /f () Ax 77f,,() < a+b>fA()

atb
a+2q
21v1/ hy (x ﬂ)Ax+1\/1h3 (a "ZLb) (15)

M
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On [%2,b] N T*, similar to (14) one has
MJr/b b
2M / <2M / F(x Xx<2M [ F(x)Ax, (16)

where

ib_/a;c(x) ZM/ (F* (x +M)Axfb4 [A() fA<a+b>}

The middle term of inequality (16) is

2M ;F(X)G(X)Ax: /l: hz( a+b> (F* (x) + M)Ax
— Mh; <basz> +hy (bLb> FA(b) - /i (x - a;—b> FA(0(X)AX

2
— Mhs (b a er b) +hy (b,%b)f (b) — %f”(b) + Abf(a2 (X))AX.

Therefore, we have

zm/f“”hz( a;b)Ax Mh3(ba+b) /f x-%fﬂ(buhz( a”’)fA()

b
<2M hz( “;b)Ax MhB(b%b) 17)
b7y

Addition of (15) and (17) implies (13). O

Remark 5. If we apply the inequality (13) to different time scales, we can get some well-known and some new results. For
example, in the special case T = R, we get the inequality (3) in Theorem 3. To be precise, we refer the reader to Corollary 1.
The interested reader can investigate the case T = Z, T = q"o.
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