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1. INTRODUCTION

The following classical integral inequality established by Ostrowski [28] in 1938

has received considerable attention from many researchers [12, 13, 18, 19, 26, 27].

Theorem 1.1. Let f : [a,b] — R be continuous on [a,b] and differentiable on
(a,b) whose derivative function f' : (a,b) — R is bounded on (a,b), i.e., ||f'|lcc =
sup |f'(t)| < oco. Then

te(a,b)
_b2
/f dt‘ ( (I E; )(b_a)Hf/Hooa V€ la,b].

(b—a)?

‘ —a

In the present paper, we will present a generalization of Ostrowski’s inequality
using the time scale theory. And thus, for completeness in the paper, we would like
to give some basic concepts of the time scale below.

A time scale T is an arbitrary nonempty closed subset of real numbers. The
development of the theory of time scales was initiated by Hilger [14] in 1988 as a
theory capable to contain both difference and differential calculus in a consistent

way. Since then, many authors have studied certain integral inequalities or dynamic
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equations on time scales ([1, 10, 11, 15, 16, 29, 31, 32, 33]). We refer the reader to
Hilger’s Ph.D. thesis [14] and the books [5, 6, 17] for details of the (one-variable)
time scales theory. We also refer the reader to [7, 8, 9] for the two dimensional time
scales calculus and the so-call Riemann AA-integrals. The Riemann VV-integrals,
Riemann AV-integrals and Riemann VA-integrals were developed by the present
authors in [24].

In [11], Bohner and Matthews established the following Ostrowski inequality on
time scales which was later generalized by the present authors ([20, 21, 22, 23]).

Theorem 1.2 (See [11, Theorem 3.5]). Let a,b,x,t € T, a <b and f : [a,b] — R be
differentiable. Then

(1.1) - [ rond < 2 (o0 +aten),

where M = sup |f2(x)| (see Definition 1.4 below for hy(-,-)). This inequality is
a<z<b

sharp in the sense that the right-hand side of (1.1) can’t be replaced by a smaller one.

Recently, the present authors [24] generalized the above Ostrowski inequality on

time scales for double integrals and obtained the following result.

Theorem 1.3. Let z,t € Ty, y,s € Ty and f : [a,b] X [¢,d] — R be such that the

Of(t,s) Of(t,s) 0%f(t,s)

A Thss Aosnn €rist and are continuous on [a,b] x [c,d]. Then

partial derivatives

1 b d
‘f(%y)—m/a /C f(o1(t), 02(8)) A1t Ags

M1 M2
<o (o) + ha(,0)) + = (ha(y. ©) + ha(y. )
M
+ m (h2($7 a) + ho(z, b)) <h'2(y7 ¢) + ha(y, d))
for all (x,y) € [a,b] x [c,d]|, where
Of(t, s) Of(t,s) f(t,s)
M, = M, = . My = REAULIAY
! aS<LH<)b Alt ’ 2 c<s<d A2S ° a<t<sl},lcp<s<d A25Alt

In this paper, we shall first derive a new Ostrowski inequality for double integrals
on time scales via AA-integral, then get completely analogous results via VV-, AV-

and VA-integrals. For a general time scale T, we need the following definitions.
Definition 1.4. Let h; : T?> — R, k € Ny be defined by
ho(t,s)=1 forall s,teT

and then recursively by

t
hit (t,s) = / hi (1,8) AT forall s,teT.
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Definition 1.5. Let j;, : T? — R, k € Ny be defined by
Jo(t,s)=1 forall s,teT

and then recursively by

t
Jrt1 (t,8) = / Jr(t,s) VT forall s,teT.

2. MAIN RESULTS

In this section, we suppose that T; is a time scale, a;, b; € T; with b; > a;, hi and

Ji are the generalized polynomial defined on T;, i = 1, 2.

2.1. A new Ostrowski’s inequality for double integrals via AA-integral. We
first derive the following new Ostrowski type inequality for double integrals on time

scales via AA-integral.

Theorem 2.1. Let x,t € Ty, y,s € Ty and f : [a1, b1] X [ag, bs] — R be such that f(-,-)

is integrable on [ay,b1] X [ag, ba], f(z,-) is integrable on [ag, bo] for any x € [ay, bi] and

f(-,y) is integrable on [ay,by] for any y € [az, bo], the partial derivative aAJ;(Alz exists
and is continuous on [ay, by] X [ag, by]. Then
1 by b
o1(t), 09(8))A1tAss
el B RUCOEA OIS
1 b2 1
@h - F (. 72(5)) Bas — f(al( )yt + f(,y)
by — as as by —ay
< (R ) + h;<x,bl>) (H30. ) + 130y, 1))
(by — a1) (b2 — a2)
for all (z,y) € a1, b1] X [ag, bs], where
D?f(t,s)
M = su —— .
a1<t<b1,£<s<b2 AltAzs

For easiness in the proof of our main result Theorem 2.1, we need to prove the
following lemma of which proof is partially motivated by the key idea employed by

Barnett and Dragomir in [4].

Lemma 2.2 (See [30, Lemma 2.3]). Under the assumptions of Theorem 2.1, we have

b1 azf( )
(b —an)( b2 — ) / /a iz, t)pa(y, >A2 At AqtAsgs
b pbo

(bl — al)(bQ — a2 / -f Ul( ) 02( ))AltAQS

1 b2 1 b
f(z,09(5))Ags — flou(t), y) At + f(z,y),

by — as by —ay
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where

t—ay, a <t<ux, s—ag, ay<s<y,
pi(z,t) = p2(y,s) =
t_bla l’gtﬁbl, S—bg, ySSSbQ

If we apply Lemma 2.2 to the discrete and continuous cases, we have the following

results.

Corollary 2.3 (Continuous case). Let Ty = Ty = R. Then our delta integral is the

usual Riemann integral from calculus. Then

/bl/b2 (z,t) s) O s )ddt
(bl — 0,1 bg — ag pl p2 3 dsot

by bo

/ f(t,s)dsdt

1 b 1 b
- ( f(x,s)ds + 7 f(tyy)dt> + f(z,9),

b2 — a2 a9 1— a1 al

:(b1 — CL1) bg — CL2

which is exactly the integral identity shown in [4].

Corollary 2.4 (Discrete case). Let Ty =Ty =7, a1 =0, by =n, ay =0, by = m,

r=1,y= =k, s=1, and f(p,q) = z,y,. Then
1 n m
— > > i bpa(i, DA Ay = szkyz - = szyz — = Zxkyg + 2y;,
k=1 1=1 (i
where
p1(i,0) =0,

m(Lk)=k—n, for1<k<n-1;
pi(n, k) =k, for0<k<n-—1;
k, 0<k<i,
k—n, 1<k<n-—1,

pl(i> k) =

and
p2(4,0) = 0;
pe(l,)=1—n, forl<Ii<m-—1,;
pe(m, ) =1, for0<Il<m-—1;

l, 0<l<y,
l—m, j<Il<m-—1.

p2(.j7 l) =
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Corollary 2.5 (Quantum calculus case). Let Ty = ¢1° and Ty = ¢5° with ¢, > 1 and
g2 > 1. Suppose a; = ¢}, b = q{,ag = q5, by = g, for somei < j and k < 1. Then

—17-1 r+1 s+1 r s+1 r+1 s
5 )~ Flah.as )= ra ™ a5)+f (aha5)
b ( ) a— )pl(qr,q{)m(qg,q;)

r=i s=k

-1 -1
DI
r=ti s=k

7j—1 -1
Z Zq1q2 fla™e™)  Yafate) X aefld e

r=q s:k m n
Z a4 Zk g > q qui

Proof of Theorem 2.1. By applying Lemma 2.2, we can state that

(by — a1)1(b2 — ap) / ya f(o1(t), 02(5)) A1t Ags

1 b2 1 b1
- < f(557<72(5))A23+ f(Ul(t)>?/)A1t) + f(z,y)

bg — a9 bl —
b b2 Pf(t,s)
<
~ () (52—a2 / / pr( Dllpe{y )] Az Art

< ==y ([ o) ([ 1)

for all (z,y) € a1, b1] X [ag, bs]. By a simple calculation we get

by x b1
/ ‘pl(l’,t)‘Alt:/ ‘t—CL1|A1t+/ ‘t—b1|A1t
ai ai T

x b1
= / (t — al)Alt + / (bl — t)Alt = hé(l’, Cll) + h%(l’, bl)

AltAQS

a1l T
and
b2
10,9305 = Bl 02) + 13002
az
Therefore, we obtain (2.1). O

If we apply the new Ostrowski type inequality for double integrals to different

time scales, we will get some well-known and some new results.

Corollary 2.6 (Continuous case). Let Ty = Ty = R. Then our delta integral is the
usual Riemann integral from calculus. Hence,

(t—s)’
ho (t,s) = — forall t,seR.

This leads us to obtain exactly the Ostrowski type inequality for double integrals shown
in Theorem 2.1 of [4].
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Corollary 2.7 (Discrete case). Let Ty =Ty = Z, a; =0, by = n, az =0, by = m,
r=1i,y=j,t==k, s=1 and f(p,q) = xpy,. With these, it is known that

t—
hk(t,s):< ks>, forall t,s€Z.

Therefore,

and

Thus, we have

ZZxkyl — me(k,j) — an(i,l) + mnz;x;
=1

k=1 =1 k=1
2+n2—1  om+1
A 7T

M ( |
S_
mn
M = max 1|A:ckAyl|.

n+1
2

foralli=1,n and j = 1,m, where

Z —
1<k<n—1,1<I<m—

Corollary 2.8 (Quantum calculus case). Let Ty = ¢\ and Ty = ¢b° with q; > 1
and g > 1. Suppose a = ¢¢,b = q{,c =q5,d= ¢, for somei < j and k < 1. In this
situation, one has

he(ts) = [[ L8, forall tseT.

Therefore,

mo__ i m i+l
h;(x,al) _ ((h qi)((h q1 )
+ ¢

m _ J\(,m _ Jt1
hé(x,bl): (Ch 91)(% q1 )

I+aq

Y
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and
120y, ay) = B g5)(a5 — a5 ")
2 1+ ’
Wy = (B~ B )
2 ) 1 ‘l‘ q2
Then
i sty 1 = +1
Y aefat.e ) Ydfath ) Y ef(dtheT)
r=i s=k r=i s=k moan
j—1 -1 - -1 - —1 + fla", 43)
> 4 Zk a > 4 Z_qui
m i m 7 m j m j+1
.M ((ql )" — )+ (@ —a)d —a )
2 qi qus
68— db)(ag — G+ (g5 — @) gy — 5™
1+ ¢ ’
where
Mo s @™ ™) — fla e ™) — fla"™ a5) + fla", a3)
i<m<j—1, k<n<l—1 ((h - 1)(Q2 - 1)(]{71(]51

Remark 2.9. We note that in the special case, if f(x,y) in Theorem 2.1 does not

depend on y, we get back the Ostrowski inequality (1.1) on (one-variable) time scales.

2.2. Ostrowski’s inequality for double integrals via AV-integral. By a com-
pletely analogous method, we can derive the following similar result via AV-integral.
This would be interesting, since the calculus on time scales via V derivatives seem to

have many interesting application [2, 3, 25].

Theorem 2.10. Let z,t € Ty, y,s € Ty and f : [a1,b1] X [ag,bs] — R be such that
f(-,+) isintegrable on [ay, bi| X |ag, bs], f(x,-) is integrable on [az, be] for any x € [ay, b;]
and f(-,y) is integrable on [ay,bi] for any y € [az, be], the partial derivative %

exists and is continuous on [ay, bi] X [ag, bs]. Then

1
(b1 — a1)(by — az)

b1 b
/ flo1(t), p2(s))A1tVas

ba b1
(2.2) _< ! f(x, pa(s))Vas + ! f(al(t),y)Alt)H(x,y)

by — ay as b —ay a1

< G (e + o) (1 (002) + 0.02))

for all (z,y) € [a1, b1] X [ag, bs], where

D% f(t,s)

M= A
SUP AltVQS

a1 <t<bi,a2<s<bz




196 W. LIU, Q. A. NG, AND W. CHEN

In fact, to prove Theorem 2.10, we need the following lemma which can be proved

similarly to Lemma 2.2.

Lemma 2.11. Under the assumptions of Theorem 2.10, we have

ot P (0.9)
x,t) , "2 A\ tVsys
bl — a1 bg - 0,2 / / pl p2 Y9 VQSAlt ! 2
b ba

28 = Gty . L Tl Tas

by — as as

—( ! 2f<x,p2<s>>v2s+ ! 1f(01(t),y)A1t>+f(x,y)-

Proof. We have the following equality:

/L;l /;2 t—a1 S—CL2 vf(tAf)AltVTS
0 e,
/ (t —a) ((y — a) ]Ztty) / 7f(2’?i(s))v28) Aqt

2

~r=n) [ =)D a— [T [t G2 A v

20 =) (- - A f(a(t) )

. /:Qz_al)f(x s / F(or(8) pals >>A1t)v28

=(y—a)(z—a)f — (Y —a / flou(t),y)) At

— (SL’ — al)/ f I,pQ 8 VQS —|—/ / f 0'1 t ,pQ(S))AltVQS.

Also, by similar computations we have

b
? Pt s)
_ — JANYAVA
/ / t a1 S bg v2 1t 1t 28

(2.5) = (b — )z — a)f () — (b — y) / C F(on(t), 9) At
bo T by
=) [ 1wn)Vas+ [ [ 0000207,
/1/2(t—b2)(s—bg)%Altvgs
b1
(2.6) = (b — )b — ) f(ary) — (ba—) [ Flor(t),9)Aut

x
bo

b1 pbe
— (by — ) f(x, pa(s))Vas + / f(o1(t), pa(s))A1tVas

Y
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/bl/ t—bg 8_a2)aV2fS(A t)AltVQS
(2.7) — (g — )b~ ) () — (—a2) [ f(oa(t),y)) At

y b1y
2= o) [ Hap)Vast [ [ 01052095
a9 T as
If we add the equalities (2.4)-(2.7), we can easily get the integral identity (2.3). O

Remark 2.12. The correspondigs of the results in the previous sections can be easily
adopted for VV-integral and VA-integral.
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