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Using variational methods we study the non-existence and multiplicity of
non-negative solutions for a class of quasilinear elliptic equations of p(x)-Laplacian
type with nonlinear boundary conditions of the form

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = 0 in Ω,

|∇u|p(x)−2 ∂u

∂n
= λg(x, u) on ∂Ω,

where Ω is a bounded domain with smooth boundary, n is the outer unit normal to
∂Ω and λ is a parameter. Furthermore, we want to emphasize that
g : ∂Ω × [0, ∞) → R is a continuous function that may or may not satisfy the
Ambrosetti–Rabinowitz-type condition.

1. Introduction

The study of partial differential equations with p(x) growth conditions has received
an increasing amount of research interest in recent decades. The specific attention
accorded to such problems is due to their applications in mathematical physics.
More precisely, such equations are used to model phenomena that arise in elas-
tomechanics or electrorheological fluids. For a general account of the underlying
physics, and for some technical applications, we refer the reader to [11, 15, 17] and
the references therein.

A typical model of an elliptic equation with p(x) growth conditions is

− div(|∇u|p(x)−2∇u) = g(x, u).

The operator div(|∇u|p(x)−2∇u) is called the p(x)-Laplace operator and it is a nat-
ural generalization of the p-Laplace operator in which p(x) = p > 1 is a constant.
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For this reason the equations studied in the case in which the p(x)-Laplace oper-
ator is involved are, in general, extensions of p-Laplacian problems. However, we
point out that such generalizations are not trivial, since the p(x)-Laplace operator
possesses more complicated nonlinearity: for example, it is inhomogeneous.

Let Ω be an open domain in R
N and let N � 3 with a bounded Lipschitz

boundary ∂Ω. In [5], Fan studied the problem

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = 0 in Ω, (1.1)

|∇u|p(x)−2 ∂u

∂n
= g(x, u) on ∂Ω, (1.2)

where p(·) is a measurable real function defined on Ω, g ∈ C0(∂Ω×R), and satisfies
the following conditions:

(P1) 1 < p− := infx∈Ω p(x) � p+ := supx∈Ω p(x) < +∞;

(P2) there exist δ > 0 and γ > N such that p ∈ W 1,γ(Ωδ), where

Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ};

(G1) there exist a positive constant C1 and a function q ∈ C0(Ω) satisfying 1 �
q(x) < p∗(x) for x ∈ ∂Ω such that

|g(x, t)| � C1(1 + |t|q(x)−1) for x ∈ ∂Ω, t ∈ R.

The main results of that paper can be formulated as follows.

Theorem 1.1 (Fan [5, theorem 3.5]). Let Ω be an unbounded domain in R
N with

bounded Lipschitz boundary ∂Ω. Suppose that conditions (P1), (P2) and (G1) are
satisfied.

(i) If q+ < p−, then problem (1.1), (1.2) has a solution that is a global minimizer
of a integral functional on W 1,p(x)(Ω). If, in addition, there exists a positive
constant α < p− such that

lim inf
t→0

G(x, t)
|t|α > 0 uniformly for x ∈ ∂Ω,

then problem (1.1), (1.2) has a non-trivial solution u that is a global minimizer
of an integral functional I with I(u) < 0.

(ii) If the following conditions are satisfied:

(G2) there exist β > p+ and M > 0 such that

0 < βG(x, t) � tg(x, t)

for all x ∈ ∂Ω and all t such that |t| � M ; and

(G3) lim
t→0

G(x, t)
|t|p+ = 0 uniformly in x ∈ ∂Ω,

where
G(x, t) =

∫ t

0
f(x, s) ds,

then problem (1.1), (1.2) has a non-trivial solution u which is a mountain-
pass-type critical point of I with I(u) > 0.
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Motivated by the ideas introduced in [14] and [16], in the first instance we study
the non-existence and multiplicity of solutions for the following problem:

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = 0 in Ω, (1.3)

|∇u|p(x)−2 ∂u

∂n
= λg(x, u) on ∂Ω, (1.4)

when Ω is a bounded domain and n is the outer unit normal to ∂Ω, when λ > 0
is given, when the function g : ∂Ω × [0, +∞) → R is continuous and the following
hypotheses are satisfied:

(G1′) g(x, 0) = 0, −C2t
r(x)−1 � g(x, t) � C3t

p(x)−1 for all t ∈ [0, +∞) and almost
every x ∈ Ω, with some constants C2, C3 > 0, 1 � r(x) � p(x) for almost
every x ∈ Ω;

(G2′) there exist two positive constants t0 and t1 > 0 such that G(x, t) � 0 for
0 � t � t0 and G(x, t1) > 0;

(G3′)

lim sup
t→+∞

G(x, t)
tp+ � 0 uniformly in x.

It is worth recalling that in [16] Perera deals with quasilinear elliptic equations of p-
Laplacian type, while in [14] Mihăilescu and Rădulescu deal with the corresponding
Dirichlet problem of p(x)-Laplacian. It turns out that essentially similar techniques
on boundary trace embedding theorems for variable exponent Sobolev spaces [5]
can help us to obtain some results on the non-existence and multiplicity of solutions
for (1.3), (1.4). The first results of this paper are given by the following theorems.

Theorem 1.2. Under hypotheses (P1), (P2) and (G1′), there exists a positive con-
stant λ such that, for all λ ∈ (0, λ), problem (1.3)–(1.4) has no positive solution.

Theorem 1.3. Under hypotheses (P1), (P2), (G1′) and (G3′), there exists a posi-
tive constant λ̄ such that, for all λ � λ̄, problem (1.3)–(1.4) has at least two distinct
non-negative, non-trivial weak solutions provided that

p+ < min
{

N,
(N − 1)p−

N − p−

}
.

One can easily see that theorem 1.2 is new and that theorem 1.3 is different
from theorem 1.1: in theorem 1.3, Ω is a bounded domain and in theorem 1.1 Ω is
unbounded. We also do not require the Ambrosetti–Rabinowitz-type condition as
in (G2). Moreover, we obtain at least two distinct non-negative, non-trivial weak
solutions instead of one, as is the case in theorem 1.1(ii).

Next, we study problem (1.3), (1.4) in the case when

λg(x, t) = A|t|a−2t + B|t|b−2t

with A, B > 0 and

1 < a < p− < p+ < b < min
{

N,
(N − 1)p−

N − p−

}
.
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More specifically, we consider the degenerate boundary-value problem

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = 0 in Ω, (1.5)

|∇u|p(x)−2 ∂u

∂n
= A|u|a−2u + B|u|b−2u on ∂Ω. (1.6)

We then conclude with the following result.

Theorem 1.4. There exists λ� > 0 such that, for any A ∈ (0, λ�) and any B ∈
(0, λ�), problem (1.5), (1.6) has at least two distinct non-trivial solutions.

The above problems will be studied in the framework of variable Lebesgue and
Sobolev spaces, which will be briefly described in the following section. For a good
survey of related problems, see [1, 3, 6, 7, 10,13,15,19] and the references therein.

2. Preliminaries

In what follows, we recall some definitions and basic properties of the generalized
Lebesgue–Sobolev spaces Lp(x)(Ω) and W 1,p(x)(Ω), where Ω is an open subset of
R

N . In that context, we refer the reader to [6, 8, 9, 12,15].
Set

L∞
+ (Ω) =

{
h; h ∈ L∞(Ω), ess inf

x∈Ω
h(x) > 1

}
.

For any h ∈ L∞
+ (Ω), we define

h+ = ess sup
x∈Ω

h(x) and h− = ess inf
x∈Ω

h(x).

For any p(x) ∈ L∞
+ (Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{

u : a measurable real-valued function

such that
∫

Ω

|u(x)|p(x) dx < ∞
}

.

We recall the following so-called Luxemburg norm on this space defined by the
formula

|u|p(x) = inf
{

µ > 0;
∫

Ω

∣∣∣∣u(x)
µ

∣∣∣∣
p(x)

dx � 1
}

.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces, the Hölder inequality holds and they are reflexive
if and only if 1 < p− � p+ < ∞. An important role in manipulating the generalized
Lebesgue–Sobolev spaces is played by the modular of the Lp(x)(Ω) space, which is
the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

If u ∈ Lp(x)(Ω) and p+ < ∞, then the following relations hold:

|u|p
−

p(x) � ρp(x)(u) � |u|p
+

p(x)
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provided that |u|p(x) > 1, while

|u|p
+

p(x) � ρp(x)(u) � |u|p
−

p(x),

provided that |u|p(x) < 1 and

|un − u|p(x) → 0 ⇐⇒ ρp(x)(un − u) → 0.

We also define the variable Sobolev space

X := W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.

On X we may consider the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x).

A simple calculation shows that the above norm is equivalent to

‖u‖ = inf
{

µ > 0;
∫

Ω

(∣∣∣∣∇u(x)
µ

∣∣∣∣
p(x)

+
∣∣∣∣u(x)

µ

∣∣∣∣
p(x))

dx � 1
}

.

Proposition 2.1 (Fan and Zhang [7, proposition 2.5]). There is a constant C > 0
such that

|u|p(x) � C|∇u|p(x) for all u ∈ W 1,p(x)(Ω).

By the result of the above proposition, we know that |∇u|p(x) and ‖u‖ are equiva-
lent norms on X. For all u ∈ X, the following well-known inequalities are important
for our argument:

‖u‖p− �
∫

Ω

(|∇u|p(x) + |u|p(x)) dx � ‖u‖p+

provided that ‖u‖ > 1, while

‖u‖p+ �
∫

Ω

(|∇u|p(x) + |u|p(x)) dx � ‖u‖p−

provided that ‖u‖ < 1. We write

p�(x) =

⎧⎨
⎩

Np(x)
N − p(x)

if p(x) < N,

+∞ if p(x) � N.

Finally, we recall some embedding results regarding variable exponent Lebesgue–
Sobolev spaces. For the continuous embedding between variable exponent Leb-
esgue–Sobolev spaces, we refer the reader to [9].

Proposition 2.2 (Fan et al . [9, theorem 1.1]). If p : Ω → R is Lipschitz contin-
uous and p+ < N then, for any q ∈ L∞

+ (Ω) with p(x) � q(x) � p∗(x), there is a
continuous embedding X ↪→ Lq(x)(Ω).

For issues regarding the compact trace embedding we refer to [5].



264 N. T. Chung and Q.-A. Ngô

Proposition 2.3. (Fan [5, corollary 2.1, theorem 2.2]). Suppose that conditions
(P1) and (P2) are satisfied. Then there is a continuous boundary trace embedding
X ↪→ Lq(x)(∂Ω) for q ∈ L∞(∂Ω) satisfying the condition

1 � q(x) � (N − 1)p(x)
N − p(x)

for all x ∈ ∂Ω.

Moreover, the embedding X ↪→ Lq(x)(∂Ω) is compact if q ∈ L∞(∂Ω) satisfies the
condition

1 � q(x) + ε � (N − 1)p(x)
N − p(x)

for all x ∈ ∂Ω,

where ε is a positive constant.

3. Proofs

Proof of theorem 1.2. We observe that in [5, p. 1408], Fan has studied the following
eigenvalue problem:

− div(|∇u|p(x)−2∇u) + |u|p(x)−2u = 0 in Ω, (3.1)

|∇u|p(x)−2 ∂u

∂n
= λ|u|p(x)−2u on ∂Ω. (3.2)

Fan then obtains that problem (3.1), (3.2) has a first positive eigenvalue λ1, given
by

λ1 = min
u∈X\W

1,p(x)
0 (Ω)

∫
Ω

(|∇u|p(x) + |u|p(x)) dx∫
∂Ω

|u|p(x) dσ
, (3.3)

where dσ is the boundary measure. So, if u is a positive solution of problem (1.3)–
(1.4), then multiplying (1.3)–(1.4) by u, integrating by parts and using (G1′) gives∫

Ω

(|∇u|p(x) + |u|p(x)) dx = λ

∫
∂Ω

g(x, u)u dσ � C3λ

∫
∂Ω

|u|p(x) dσ,

and hence we can choose λ = λ1/C3. The proof is complete.

We consider the functional Φλ : X → R given by

Φλ(u) = I(u) − λJ(u), (3.4)

where

I(u) =
∫

Ω

(
1

p(x)
|∇u|p(x) +

1
p(x)

|u|p(x)
)

dx, (3.5)

J(u) =
∫

∂Ω

G(x, u) dσ. (3.6)

By (P1), the Banach space X is reflexive and the functional I ∈ C1(X, R). By
(P2), (G1) and proposition 2.3, we know that there is a compact trace embedding
X ↪→ Lq(x)(∂Ω). Furthermore, the functional J is of C1(X, R) with

〈J ′(u), v〉 =
∫

Ω

g(x, u)u dσ for all u, v ∈ X.
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Definition 3.1. We say that u ∈ X is a weak solution of problem (1.3)–(1.4) if
and only if∫

Ω

|∇u|p(x)−2∇u∇v dx +
∫

Ω

|u|p(x)−2uv dx − λ

∫
∂Ω

g(x, u)v dσ = 0

for all v ∈ X.

Next we set g(x, t) = 0 for t < 0 and consider the C1-functional Φλ : X → R

given by (3.4).

Lemma 3.2. If u is a critical point of Φλ then u is non-negative in Ω.

Proof. Observe that if u is a critical point of Φλ, denoting by u− the negative part
of u, i.e. u−(x) = min{u(x), 0}, we have

0 = 〈Φ′
λ(u), u−〉

=
∫

Ω

(|∇u|p(x)−2∇u · ∇u− + |u|p(x)−2u · u−) dx − λ

∫
∂Ω

g(x, u)u− dx

= ‖u−‖X . (3.7)

It is easy to see that if u ∈ X, then u+, u− ∈ X so, from (3.7), we have u � 0 in Ω.
Thus, non-trivial critical points of the functional Φλ are non-negative, non-trivial
solutions of problem (1.3)–(1.4).

The above lemma shows that we can prove theorem 1.3 by using critical point
theory. More precisely, we first show that, for sufficiently large λ > 0, the functional
Φλ has a global minimizer u1 � 0 such that Φλ(u1) < 0. Next, by using the
mountain-pass theorem, a second critical point u2 with Φλ(u2) > 0 is obtained.

Lemma 3.3. The functional Φλ is bounded from below, coercive and weakly lower
semi-continuous on X.

Proof. By (G1′) and (G3′), there exists a constant Cλ = C(λ) > 0 such that

λG(x, t) � λ1

2p+ |t|p(x) + Cλ for almost every x ∈ ∂Ω, t ∈ R.

Hence,

Φλ(u) =
∫

Ω

(
1

p(x)
|∇u|p(x) +

1
p(x)

|u|p(x)
)

dx − λ

∫
∂Ω

G(x, u) dσ

� 1
p+

∫
Ω

(|∇u|p(x) + |u|p(x)) dx −
∫

∂Ω

(
λ1

2p+ |u|p(x) + Cλ

)
dσ

� 1
2p+ ‖u‖X − Cλ|∂Ω|N−1.

Since ∂Ω is bounded, the functional Φλ is bounded from below and coercive on
X. On the other hand, by (P1), (P2) and (G1′)–(G3′), Φλ is weakly lower semi-
continuous on X.
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Lemma 3.3 implies, by applying the minimum principle in [18], that Φλ has a
global minimizer u1 and, by lemma 3.2, u1 is a non-negative solution of problem
(1.3)–(1.4). The following lemma shows that the solution u1 is not trivial provided
that λ is sufficiently large.

Lemma 3.4. There exists a constant λ̄ > 0 such that, for all λ � λ̄, we have
infu∈X Φλ(u) < 0. Hence, u1 
≡ 0, i.e. solution u1 is not trivial.

Proof. Let u0 be a constant function in X such that u0 = t0, where t0 is as in (G2′).
We have

Φλ(u0) =
∫

Ω

(
1

p(x)
|t0|p(x)

)
dx − λ

∫
∂Ω

G(x, t0) dσ < 0

for all sufficiently large λ � λ̄. This completes the proof.

The main difference in the arguments occurs at this point. As mentioned before,
we can prove by a truncation argument that these two solutions are ordered. To
this end, we first fix λ � λ̄ and set

ĝ(x, t) =

⎧⎪⎨
⎪⎩

0 for t < 0,

g(x, t) for 0 � t � u1(x),
g(x, u1(x)) for t > u1(x),

(3.8)

and

Ĝ(x, t) =
∫ t

0
ĝ(x, s) ds.

Define the functional Φ̂λ : X → R by

Φ̂λ(u) =
∫

Ω

(
1

p(x)
|∇u|p(x) +

1
p(x)

|u|p(x)
)

dx − λ

∫
∂Ω

Ĝ(x, u) dσ. (3.9)

With the same arguments as those used for functional Φλ, we can show that Φ̂λ is
continuously differentiable on X and that

〈Φ̂′
λ(u), ϕ〉 =

∫
Ω

|∇u|p(x)−2∇u∇ϕ dx +
∫

Ω

|u|p(x)−2uϕ dx − λ

∫
∂Ω

ĝ(x, u)ϕ dσ

for all u, ϕ ∈ X.

Lemma 3.5. If u ∈ X is a critical point of Φ̂λ then u � u1. So u is a solution of
problem (1.3)–(1.4) in the order interval [0, u1].

Proof. If u is a critical point of Φ̂′
λ, then u � 0 as before. Moreover,

0 = 〈Φ̂′
λ(u) − Φ̂′

λ(u1), (u − u1)+〉

=
∫

Ω

(|∇u|p(x)−2∇u − |∇u1|p(x)−2∇u1)∇(u − u1) dx

+
∫

Ω

(|u|p(x)−2u − |u1|p(x)−2u1)(u − u1)+ dx

− λ

∫
∂Ω

(ĝ(x, u) − g(x, u1))(u − u1)+ dσ
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=
∫

u>u1

(|∇u|p(x)−2∇u − |∇u1|p(x)−2∇u1)∇(u − u1) dx

+
∫

u>u1

(|u|p(x)−2u − |u1|p(x)−2u1)(u − u1)+ dx

�
∫

u>u1

(|∇u|p(x)−1 − |∇u1|p(x)−1)(|∇u| − |∇u1|) dx

+
∫

u>u1

(|u|p(x)−1 − |u1|p(x)−1)(|u| − |u1|) dx,

which implies u � u1.

Lemma 3.6. There exist a constant ρ ∈ (0, ‖u1‖) and a constant α > 0 such that
Φ̂λ(u) � α for all u ∈ X with ‖u‖ = ρ.

Proof. Let u ∈ X be fixed, such that ‖u‖ < 1 and set

Γu = {x ∈ ∂Ω : u(x) > min{u1(x), t0}}.

By (G2′) and (3.8) we have Ĝ(x, u(x)) � 0 on ∂Ω \ Γu. Then

Φ̂λ(u) � 1
p+ ‖u‖p − λ

∫
Γu

Ĝ(x, u) dσ.

Since p+ < min{N, (N − 1)p−/(N − p−)}, it follows that p+ < p�(x) for all x ∈ Ω̄.
Then there exists q ∈ (p+, (N − 1)p−/(N − p−)) such that X is continuously
embedded in Lq(Ω). Thus, there exists a positive constant C > 0 such that |u|q �
C‖u‖ for all u ∈ X. By (G1′), Hölder’s inequality and proposition 2.3,

∫
Γu

Ĝ(x, u) dσ � C3

∫
Γu

|u|p(x) dσ � C3|Γu|1−p+/q
N−1 ‖u‖p+

.

Hence,

Φ̂λ(u) � ‖u‖p+
(

1
p+ − λC3|Γu|1−p+/q

N−1

)
.

It is sufficient to show that |Γu| → 0 as ‖u‖ → 0. Indeed, let k = min{min∂Ω u1, t0},
where t0 as in (G2′). Then

‖u‖p+ � C

∫
∂Ω

|u|p(x) dσ �
∫

Γu

|u|p(x) dσ � Ckp+ |Γu|N−1.

This ends the proof of the lemma.

Proof of theorem 1.3. The argument used for Φλ shows that Φ̂λ is also coercive,
so every Palais–Smale sequence of Φ̂λ is bounded and hence contains a convergent
subsequence. Then all assumptions of the mountain-pass theorem in [2] are satisfied.
We set

c = inf
γ∈Γ

sup
u∈γ([0,1])

Φ̂λ(u) > 0,



268 N. T. Chung and Q.-A. Ngô

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u1} is a class of paths joining the
origin to u1. We obtain the second solution u2 and u2 
≡ u1, since

Φλ(u1) < 0 < Φ̂λ(u2) = Φλ(u2).

To prove theorem 1.4, we consider the energy functional Ψλ : X → R correspond-
ing to problem (1.5), (1.6) as follows:

Ψλ(u) =
∫

Ω

(
1

p(x)
|∇u|p(x) +

1
p(x)

|u|p(x)
)

dx − A

a

∫
∂Ω

|u|a dσ − B

b

∫
∂Ω

|u|b dσ.

Similar arguments as those used above assure us that Ψλ ∈ C1(X, R) with

〈Ψ ′
λ(u), ϕ〉 =

∫
Ω

(|∇u|p(x)−2∇u∇ϕ dx + |u|p(x)−2uϕ) dx

− A

∫
∂Ω

|u|a−2uϕ dσ − B

∫
∂Ω

|u|b−2uϕ dσ

for all u, ϕ ∈ X. Thus, the weak solutions of problem (1.5)–(1.6) are exactly the
critical points of Ψλ. Therefore, our idea is to prove that the functional Ψλ possesses
two distinct critical points using the mountain-pass theorem in [2] and Ekeland’s
variational principle in [4].

Lemma 3.7. The following assertions hold:

(i) there exist three positive constants ρ, λ� and α such that Ψλ(u) � α for all
u ∈ X with ‖u‖X = ρ and all A, B ∈ (0, λ�);

(ii) there exists ψ ∈ X such that limt→+∞ Ψλ(tψ) = −∞;

(iii) there exists ϕ ∈ X such that ϕ � 0, ϕ 
≡ 0 and Ψλ(tϕ) < 0 for all sufficiently
small t > 0.

Proof. (i) Since

1 < a < p− < p+ < b < min
{

N,
(N − 1)p−

N − p−

}
,

using proposition 2.3 we find that X is continuously embedded in La(∂Ω) and in
Lb(∂Ω). Thus, there exist two positive constants c1 and c2 such that∫

∂Ω

|u|a dx � c1‖u‖a and
∫

∂Ω

|u|b dx � c1‖u‖b

for all u ∈ X. Therefore, for any u ∈ X with ‖u‖ = 1 we have

Ψλ(u) =
∫

Ω

(
1

p(x)
|∇u|p(x) +

1
p(x)

|u|p(x)
)

dx − A

a

∫
∂Ω

|u|a dσ − B

b

∫
∂Ω

|u|b dσ

� 1
p+ − A

a
c1 − B

b
c2.



Quasilinear elliptic equations of p(x)-Laplacian type 269

Then, taking

λ∗ = min
{

a

4p+c1
,

b

4p+c2

}

we obtain, for all A, B ∈ (0, λ∗), that

Ψλ(u) � 1
2p+ = α

for all u ∈ X with ‖u‖ = 1.

(ii) Let ψ ∈ X be a constant function and let ψ � 0, ψ 
≡ 0 and t > 1. We have

Ψλ(tψ) =
∫

Ω

(
1

p(x)
|∇(tψ)|p(x) +

1
p(x)

|tψ|p(x)
)

dx

− A

a

∫
∂Ω

|tψ|a dσ − B

b

∫
∂Ω

|tψ|b dσ

� tp
+

p−

∫
Ω

(|∇ψ|p(x) + |ψ|p(x)) dx − B

b
tb

∫
∂Ω

|ψ|b dx.

Since b > p+ we deduce that limt→+∞ Ψλ(tψ) = −∞.

(iii) Let ϕ ∈ X be a constant function, let ϕ � 0, ϕ 
≡ 0 and t ∈ (0, 1). We have

Ψλ(tϕ) =
∫

Ω

(
1

p(x)
|∇tϕ|p(x) +

1
p(x)

|tϕ|p(x)
)

dx

− A

a

∫
∂Ω

|tϕ|a dσ − B

b

∫
∂Ω

|tϕ|b dσ

� tp
−

p−

∫
Ω

(|∇ϕ|p(x) + |ϕ|p(x)) dx − A

a
ta

∫
∂Ω

|ϕ|a dx < 0

for all t < δ1/(p−−a) with

0 < δ < min
{

1,
(A/a)p+

∫
Ω

|ϕ|a dx∫
Ω

|∇ϕ|p(x) dx

}
.

It follows that (iii) is proved.

Lemma 3.8. Ψλ satisfies the Palais–Smale condition on X.

Proof. Let λ∗ be defined as above, and let A ∈ (0, λ∗) and B ∈ (0, λ∗) be fixed.
Assume that {un} is a Palais–Smale sequence in X, i.e.

|Ψλ(un)| � c̄ and Ψλ(un) → 0 in X�. (3.10)

We first prove that {un} is bounded in X. Indeed, assume by contradiction that
{un} is not bounded in X. Then, passing eventually to a subsequence, still denoted
by {un}, we assume that ‖un‖ → ∞ as n → ∞. Thus, we may consider that
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‖un‖ > 1 for any integer n. We have, for sufficiently large n,

c̄ + 1 + ‖un‖

� Ψλ(un) − 1
b
〈Ψ ′

λ(un), un〉

=
∫

Ω

(
1

p(x)
|∇un|p(x) +

1
p(x)

|un|p(x)
)

dx − A

a

∫
∂Ω

|un|a dx − B

b

∫
∂Ω

|un|b dx

− 1
b

∫
Ω

(|∇un|p(x) + |un|p(x)) dx +
A

b

∫
∂Ω

|un|a dx +
B

b

∫
∂Ω

|un|b dx

�
(

1
p+ − 1

b

) ∫
Ω

(|∇un|p(x) + |un|p(x)) dx + A

(
1
b

− 1
a

) ∫
∂Ω

|un|a dx

�
(

1
p+ − 1

b

)
‖un‖p−

+ A

(
1
b

− 1
a

)
c1‖un‖a.

From the inequality above we know that {un}n is bounded in X since p+ < b. Thus,
there exists u1 ∈ X such that, passing to a subsequence, still denoted by {un}, it
converges weakly to u1 in X. We know from proposition 2.3 that there is a compact
trace embedding X ↪→ Lq(x)(∂Ω). It follows that {un}n converges strongly to u1 in
La(∂Ω) and Lb(∂Ω). On the other hand, relation (3.10) yields

〈Ψ ′
λ(un), un − u1〉 = 0.

Using the above information, we find that

lim
n→∞

∫
Ω

|∇un|p(x)−2∇un∇(un − u1) dx = 0. (3.11)

Relation (3.11) and the fact that un converges weakly to u1 in X enable us to
apply [19, proposition 2.6] in order to obtain that un converges strongly to u1 in
X. This completes the proof.

Proof of theorem 1.4. Following from the proof of lemma 3.8, and since Ψ is of class
C1 and relation (3.10) holds true, we conclude that

Ψ ′
λ(u1) = 0, Ψλ(u1) = c̄.

It follows that u1 is a non-trivial weak solution of problem (1.5)–(1.6).
We prove now that there exists a second weak solution u2 ∈ X such that u2 
= u1.

By lemma 3.7(i) it follows that, on the boundary of the unit ball centred at the
origin in X and denoted by B1(0), we have

inf
∂B1(0)

Ψλ > 0.

On the other hand, by lemma 3.7(iii), there exists ϕ ∈ X such that Ψλ(tϕ) < 0 for
all sufficiently small t > 0. Moreover, for any u ∈ B1(0), the inequality

Ψλ(u) � 1
p+ ‖u‖p+ − A

a
c1‖u‖a − B

b
c2‖u‖b
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holds and we deduce that

−∞ < c := inf
B1(0)

Ψλ < 0.

Now let
0 < ε < inf

∂B1(0)
Ψλ − inf

B1(0)
Ψλ.

Applying Ekeland’s variational principle for the functional Ψλ : B1(0) → R, there
exists uε ∈ B1(0) such that

Ψλ(uε) < inf
B1(0)

Ψλ + ε, (3.12)

Ψλ(uε) < Ψλ(u) + ε‖u − uε‖, u 
= uε. (3.13)

Since
Ψλ(uε) < inf

B1(0)
Ψλ + ε < inf

B1(0)
Ψλ + ε < inf

∂B1(0)
Ψλ,

it follows that uε ∈ B1(0). Now we define M : B1(0) → R by M(u) = Ψλ(u) +
ε‖u − uε‖. It is clear that uε is a minimum point of M and thus

M(uε + tν) − M(uε)
t

� 0

for a small t > 0 and ν in the unit sphere of X. The above relation yields

Ψλ(uε + tν) − Ψλ(uε)
t

+ ε‖ν‖ � 0.

Letting t → 0, it follows that

〈Ψ ′
λ(uε), ν〉 + ε‖ν‖ > 0

and we infer that ‖Ψ ′
λ(uε)‖ � ε. We deduce that there exists {un} ⊂ B1(0) such

that Ψλ(un) → c and Ψ ′
λ(un) → 0. Using the fact that Ψλ satisfies the Palais–Smale

condition on X, we deduce that {un} converges strongly to u2 in X. Thus, u2 is a
weak solution for the problem (1.5)–(1.6) and, since 0 > c = Ψλ(u2), it follows that
u2 is non-trivial. Finally, we point out the fact that u1 
= u2 since

Ψλ(u1) = c̄ > 0 > c = Ψλ(u2).

The proof is complete.
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