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Abstract

This article mainly concerns with the non-existence, existence, and multiplicity results for positive
solutions to the Einstein-scalar field Lichnerowicz equation on closed manifolds with a negative conformal-
scalar field invariant. This equation arises from the Hamiltonian constraint equation for the Einstein-scalar
field system in general relativity. Our analysis introduces variational techniques to the analysis of the
Hamiltonian constraint equation, especially those cases when the prescribed scalar curvature-scalar field
function may change sign. To our knowledge, such a problem remains open.
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1. Introduction

Along with the rapid development in general relativity, physicists pose many challenging
problems to mathematicians, for example, the initial value problems, the well-posedness
problems, the global stability problems, etc. Among these problems, the initial value problem
turns out to be the most interesting problem from the mathematical point of view. When solving
the initial value problems, one needs to solve the so-called constraint equations which can be
formulated via the following system of equations defined on a Riemannian manifold (M, g)
without the boundary of dimension n > 3,

Scalg — [K |2 + (tracegK)* — 2p =0,

_ — (L.D)
Vg - K — VgtracegK — J =0,

where all quantities of (1.1) involving a metric are computed with respect to g, an induced metric
of g when embedded in a spacetime (V, g), K the second fundamental form, Scalg the scalar
curvature of g, p a scalar, J a vector field on M, and T a tensor of the sources; see [6,7,9].
Since the constraint equations form an under-determined system, they are in general hard to
solve. However, it was remarked in [6] that the conformal method can be effectively applied in

the constant mean curvature setting, that is to look for the metric g of the form un%g where
g is fixed. To be precise, when the conformal method is applied in this setting, the constraint
equations (1.1) are easily transformed to the so-called Hamiltonian and momentum constraints.
In the literature, the momentum constraint is a second-order semilinear elliptic equation that can
be easily solved if we are in the constant mean curvature setting. The most difficult part is to solve
the Hamiltonian constraint which can be formulated by a simple partial differential equation,

a

Aguthu = fur '+ o, >0, (1.2)
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where A, = —divg(V,) is the Laplace-Beltrami operator, 2* = ,,zTnz is the critical Sobolev

exponent, and %, f, a > 0 are smooth functions. Throughout this paper, equations of the form
(1.2) are called the Einstein-scalar field Lichnerowicz equations.

While, as we have noted, the conformal method can be effectively applied for solving the
Einstein constraint equations (1.1) in most cases, it should be pointed out that there are several
cases for which either partial result or no result was achieved, especially when gravity is coupled
to field sources. To see this more precise, we assume the presence of a real scalar field ¢ on the
space time (V, g) with a potential U being a function of i, the Hamiltonian constraint equation
then take the form of (1.2) with!

h=c, (5ca1g — |v¢|2) . a=c (Io +DW? + 712) , (1.3)
and
n—1,
f=—cn r— —20) ). (1.4)
where ¢, = 4(",1;_21), T is the mean curvature of M computed with respect to g, o is a transverse

and traceless tensor, and the operator D is the conformal Killing operator relative to g. Based
on the division in [8], one can observe that there are two cases corresponding to either 4 < 0
or h = 0 with sign-changing f, for which no result was achieved. This is basically due to the
fact that the method of sub- and super-solutions does not work, thus forcing us to develop a new
approach.

In view of the discussion above, it is worth understanding the solvability of the constraint
equations in those cases left in [8]. As a step toward achieving the full answer, the main purpose
of this study was to search for some sufficient conditions for the solvability of the Einstein-scalar
field constraint equations in those cases left in [8]. As such, in the current study, we face not only
the presence of both the critical exponent and the negative exponent as mentioned above, but
also the sign-changing problem. In order to overcome those difficulties, in our study, a careful
and deep analysis of the constraint equations was developed to suit for the analysis. Besides,
due to the limit of the length, this work was limited to the case of negative Yamabe-scalar field
conformal invariant, namely, 7 < 0, and when f may change sign. The case & = 0, which creates
some new phenomena and needs some new ingredients, will be treated in a separated paper [17].
We assume hereafter that @ > 0 and [, adv, > 0 in M. This assumption implies no physical
restrictions since we always have a > 0 in the original Einstein-scalar field theory.

Concerning the solvability of (1.2), by using the variational method [2,21], Hebey et al. in [12]
recently proved some non-existence and existence results for the case of positive Yamabe-scalar
field conformal invariant, namely # > 0. The advantage of their setting is that the first eigenvalue
of the operator A, + h is strictly positive, and thus, various good properties of the theory of
weighted Sobolev spaces can be applied.

~ 4 .
According to [8, Proposition 1], if we consider a new metric, say ¢ = v—2 g, the function Az
with respect to the metric g verifies

n+2
Agv + hgv = hzvn—z,

Lt is worth noticing that the coefficient of U () in the expression of f is 2 instead of 4 in the original paper, we
would like to thank Prof. Pollack for confirming this in [18].
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The method of sub- and super-solutions [13] applied to the above equation says that we can
select some function v > 0 such that h3 is a negative constant. By a well-known regularity
result [13, Lemma 2.6], we see that v is smooth. Therefore, and thanks to the conformally
covariance property of the Einstein-scalar field Lichnerowicz equations [8, Proposition 2], we
can freely choose a background metric g such that / is a negative constant and by normalization
we are still able to assume that the manifold M has unit volume.

In the first part of the present paper, we mainly consider the case when the function f takes
both positive and negative values. The first main theorem can be stated as follows.

Theorem 1.1. Let (M, g) be a smooth compact Riemannian manifold without the boundary of
dimension n > 3. Assume that f and a > 0 are smooth functions on M such that |, y fdvg <0,
sup f > O, fM advg > 0, and |h| < Ay where Ay is given in (2.1) below. Let us also suppose
that the integral of a satisfies

/ J 1 <n—1 n—l |h| / J 135)
e s ) T 1~ 1dvg |/ ldve. '

where [~ is the negative part of f. Then there exists a number C > 0 to be specified such that if

supf
Ju 177 ldvg

Eq. (1.2) possesses at least two smooth positive solutions.

C, (1.6)

To be precise, the constant C appearing in (1.6) is given in (4.22) below; see also Remark 4.5.
Roughly speaking, for the existence part, the constant C depends only on the negative part of f.
However, for the multiplicity part, C also depends on the positive part of f. The question of
whether we can find an explicit formula for C turns out to be difficult, even for the prescribed
scalar curvature equation, for interested readers, we refer to [4].

If we assume that f does not change sign in the sense that f < 0 in M, we obtain necessary
and sufficient solvability conditions as pointed out by Choquet-Bruhat et al. [8] in the case of
(1.3) and (1.4). That is the content of our next result.

Theorem 1.2. Let (M, g) be a smooth compact Riemannian manifold without the boundary of
dimension n > 3. Let h < 0 be a constant, f and a be smooth functions on M with a > 0 in
M, f < 0 but not strictly negative. Then Eq. (1.2) possesses one positive solution if and only if
|h] < Ay

One can easily observe that Eq. (1.2) is closely related to the Yamabe problem which was
completely solved through [23,22,20,3] and the prescribing scalar curvature problem which has
been studied for years by many great mathematicians. Let us mention, among others, several
typical works such as [13,20,11,19,3,5]. Recently, several aspects of solutions of the Einstein-
scalar field Lichnerowicz equations have been studied and achieved, we list here some works
such as [10,15,14,16,17]. We should also point out that the idea of our approach was based on
Rauzy [19]. However, the analysis in this work is much more involved than that used in [19]. To
see the difference, let us mention the strategy used in this work. As a first step to tackle (1.2), we
look for solutions of the following subcritical problem:

Agtt+ hu = flul?2u + — (1.7)
(uz + 8)§+]
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Our main procedure is to show that the limit exists as first ¢ — 0 and then ¢ — 2* under various
assumptions.

Before closing this section, let us briefly mention the organization of the paper and highlight
some techniques used. Section 2 consists of two parts. First, we set up some notations and prove
basic properties, including a non-existence result and regularity, for positive solutions of (1.2).
Then, we derive two necessary conditions for the solvability of (1.2): [, fdv, < Oand s > |A|.
It is worth noticing that those conditions were first observed in the case of prescribing scalar
curvature. In our study, thanks to a > 0, while the first condition can be proved by a simple
use of integration by parts, the second condition needs some new observation. The proof we
provided here is new and simple which can also be applied to the prescribing scalar curvature
case. Then in Section 3, a careful analysis of the energy functional is presented by proving the
various properties involving the asymptotic behavior of the energy functional that is needed in
later parts. Again, it should be mentioned that the basic idea underlying the presented analysis
was borrowed from [19]. The last part of the section is devoted to the proof of the Palais—Smale
condition. To the best of our knowledge, there is no such a result in the literature since our
energy functional contains both critical and negative exponents that cause a lot of difficulty.
Having these preparation, we spend Section 4 to prove Theorem 1.1 and Section 5 to prove
Theorem 1.2.

2. Notations and basic properties for positive solutions

We now set up notations. First, as they have already appeared in the previous section,
throughout this paper, we use f~ and f7T to indicate the negative and positive parts of f,
respectively, that is, f~ = min(f, 0) and f T = max(f, 0). Following in [19], we define

_ fy |VulPdv,
IMI 8 i £,
W B @1
400, if o7 =0,
where
gf:{ueHl(M):ugo,u¢o,f |f_|udvg=0}. (2.2)
M

Functions in &7 are to be thought of as functions that vanish on the support of f~. Obviously,
Ay = 0. Let H?(M) be the usual Sobolev space equipped with the standard norm. By K; and
Ay, we mean the best positive constants for the Sobolev embedding of H'(M) into L% (M), that
is, for all u € H' (M), there holds

lull? e < K IVul7 + Ar llull, .
We also denote by 2” the average of 2 and 2*, that is, 2° = % Throughout this paper, we
always assume g € (2°,2*).

2.1. A lower bound for positive solutions

Our purpose here was to derive a lower bound for a positive C2 solution u of Eq. (1.7).

Lemma 2.1. Let u be a positive C* solution of (1.7) with h a negative constant. Then, there
holds
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minu > min - ,1¢ >0 2.3)
M inf f

forany q € (2°,2*) and any & > 0.

Proof. Let us assume that u# achieves its minimum value at xo. For the sake of simplicity, we
denote u(xp), f(x0), and a(xg) by uo, fo, and ag respectively. Notice that uy > 0 since u is a
positive solution. We then have A,uly, < 0;in particular,

aollo
((ug)? + )3+
h

Consequently, we get fo < 0 and thus 0 < T < (u0)?~? which immediately implies

. ho\ir ho\73
minu > | - > min - 1
M inf f inf f

for any ¢ € (2°,2*) and any & > 0. This proves our lemma. [J

hug > f()(uo)qi1 + = fO(MO)qil'

2.2. Regularity for weak solutions

This subsection is devoted to the regularity of weak solutions of (1.7). We continue to assume
that & < O is constant, ¢ > 0 is fixed, f and a > 0 are smooth.

Lemma 2.2. Assume that u € H'(M) is almost everywhere non-negative weak solution of
Eq. (1.7). Then we have the following.

(@) If € > 0, thenu € C®(M).
b)If e=0andu™" € LP(M) forall p > 1, then u € C®(M).

Proof. We first rewrite (1.7) as
Agu +b(x)(1 +u) =0

with

bx) = u(x) h a(x) i
THu " @@? + o2

By the Sobolev embedding, we know that u € L9(M) for any ¢ € (2°,2*]. This and the
conditions in both cases (a) and (b) imply

- f<x>|u<x>|q—2> : (2.4)

a
W +e)s*!

Notice that, from g < 2*, there holds qZZ > % We now use the Brezis—Kato estimate [21,
Lemma B.3] to conclude that u € L*(M) for any s > 0. Thus, the Caldéron—Zygmund
inequality implies that u € HP(M) for any p > 1. The Sobolev embedding again implies
that u is in C%*(M) for some « € (0, 1). Thus, by (2.4) we know from the Schauder theory
that u € C>*(M) for some o € (0, 1). In particular, u has a strictly positive lower bound by
means of Lemma 2.1. Since u stays away from zero, we can iterate this process to conclude
ueC®M). O

— flut™% e LT (M).
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2.3. A necessary condition for f

The purpose of this subsection was to derive a necessary condition for | u fdvg so that (1.7)
admits positive smooth solution. Our argument was motivated from the well-known prescribing
scalar curvature problem.

Proposition 2.3. The necessary condition for f so that Eq. (1.7) admits positive smooth solution
is |, v Jdvg < 0. In particular, the necessary condition for (1.2) to have positive smooth solution

is [ fdvg <O.

Proof. We assume that u > 0 is a smooth solution of (1.7). By multiplying both sides of (1.7)
by u!~7 and integrating over M with a notice that 4 < 0, we arrive at

2—q
/(Agu)ul_qdvg >/ fdvg+/ SR
M M M (u? +g)2t!

By the divergence theorem, one obtains
/ (Aguyu'~1dv, = / Vu - V' ™)dv, = (1 - q)/ u™|Vu|*dv,.
M M M

This and the fact that ¢ > 2 deduce that

/ fd / a0
Vo + —Fdv, < 0.
YRR YRTOC I S R

Obviously, f I fdvg < Oasclaimed. [

2.4. A necessary condition for h

In this subsection, we show that the condition || < Ay is necessary if Ay < +00 in order
for (1.2) to have a positive smooth solution. In the light of the condition a > 0, one may go
through [19, Section III.3] to conclude this necessary condition. Here we provide a different
proof which is shorter than the proof in [19, Section III.3]. Our argument depends on a Picone
type identity for integrals [1] whose proof makes use of the density. We believe that such an
identity has its own interest.

Lemma 2.4. Assume v € H'(M) with v > 0 and v % 0. Suppose that u > 0 is a smooth
function. Then we have

Au v\ |2
Voltdv, = [ ZLod / 2’v v ) dv,.
/M| v|“dvg /M L vidvg + Mu (u> Vg

We now provide a different proof for the necessary condition |2| < A .

Proposition 2.5. If Eq. (1.2) has a positive smooth solution, it is necessary to have |h| < Ay.

Proof. We only need to consider the case Ay < oo since otherwise it is trivial. We let v € &/
arbitrary and assume that u is a positive smooth solution to (1.2). Using Lemma 2.4 and (1.2),
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we find that

Au v\ |2
Volldve = | ZLe2d /Z‘V—‘d
/Ml v[“dvg /M ” vidvg + Mu <u) Vg
= |h|/ vzdvg—i—/ fuz*_zvzdvg
M M
av? 2
-l-/ 2*+2dvg / ‘V( )‘ dvg
> |h|/ v2dv, +/ (—)( dv,.

In other words, there holds

Juu | ()| dvg 2.5)

In particular, A s > || > 0 by taking the infimum with respect to v. Notice that

[ |V )P, [y |9 (&) vy
Sy vdve Juw? (%)zdvg

. 2 .
. <1nfu>2fM\V(%)! e s, (m)z
sup u fM( ) dvg sup u

since % € /. Having this, we can check from (2.5) that

Vo dv infu \?
fM—zg > |h| + iy )
[y v2dug sup u

By taking the infimum with respect to v, we obtain

infu \?
Ap =z |hl+ Ay sup )

This and the fact that A y > 0 give us the desired result. [J

2.5. The non-existence of smooth positive solutions of finite H'-norm
Let u be a smooth positive solution of (1.2). The main aim of this subsection was to derive

a necessary condition for a such that ||u|| 51 is bounded by a given constant. Such a result is
basically due to Hebey—Pacard—Pollack [12]. By integrating (1.2) over M, we get

2*_1 a
/M hudvg = /M fu dvg + /M deg. (2.6)

Letg = %}_1 With an easy computation, we obtain through the Holder inequality the following

a ﬁ * 17ﬁ
/ aﬁdvg < (/ o dvg) (/ u? dvg> . 2.7
M MU M
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The second term on the right hand side of (2.6) can be bounded as

[ —erdvg = / hudv, —/ fu¥ v, < / F1u® g, (2.8)
MU M M M
while the first term can be controlled again by the Holder inequality as
1 21
/ e dvg < (fiy 1P dvg) ™ (fyy ¥ dvg) T 2.9)
M

Combining (2.6)—(2.9), we get

B 1—-£
* 2* * 2*
/ aPdv, < (/ Lf 12 dvg> (/ u? dvg> : (2.10)
M M M

Summarizing those estimates, we can state our main result of this subsection.

Proposition 2.6. Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3.
Let also a, f be smooth functions on M with a > 0in M and h a negative constant. If

-2
on 4n? 8n2 p $i=3
a’sn—2 dvg > (]Cl _|_Al)(1172)(5n—2)A(n—Z)(Sn—Z) |f | dvg
M M
for some A > 0, then the Einstein-scalar field Lichnerowicz equation (1.2) does not possess
smooth positive solutions with |ul| ;1 < A.

Proof. Let u be a smooth positive solution of (1.2) such that ||ul|;1 < A. By the Sobolev

inequality and the fact that 1 — 4 = 2223 7 We have

. 1-£ (22 2042
(f u? dvg) < (K1 + AD R u] 27
M

This and (2.10) imply

e 20242 22*l+1
/ a2+ dv, < (K1 + Al)zz'“/lzz'“ </ | f1? d”g) . (2.11)
M

Thus, (2.11) and the fact that 55— = =5 2 prove the proposition. [

+1

Remark 2.7. This Proposition implies that it is reasonable and necessary to have some control
on the integral || y advg as what we did in Theorem 1.1.

3. The analysis of the energy functionals

3.1. Functional setting

For each g € (2°,2*) and k > 0, we introduce PBy.,q a hyper-surface of H L(M) which is
defined by

Frg = ue H'O : fullpo =k} G.1)

1
Notice that for any k > 0, our set %y , is non-empty since it always contains k7. Now we
construct the energy functional associated to problem (1.7). For each ¢ > 0, we consider the
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functional Fqg : HY(M) — R defined by

1 h 1 a
F¢ (u) = —/ |Vul’dv, + = / u*dv, — —/ flu|?dv, + / —dv .
‘ 2 Jm £l ‘ S PRI

By a standard argument, F, ; is continuously differentiable on H'(M) and thus weak solutions of
(1.7) correspond to critical points of the functional F, qg . Now we set

£ = inf F€ u
K q e (u) .

By the Holder inequality, it is not hard to see that F, ; | %, , 1s bounded from below by —k sup f +

2 e . . . 1
%kq and thus ,ui g > —® if k is finite. On the other hand, using the test function u = k¢, we
get

h2 1
W, < oki - —/ Fdvg + — f — v, (3.2)
M (ka 4 g)2

which concludes 1}, g < too. Our aim was to find critical points of functional F ; .
3.2. ,ui’q is achieved

The purpose of this subsection was to show that, if k, g, and ¢ are fixed, then ,ui’ q is achieved
by a smooth positive function, say u.. The proof is standard and is based on the so-called direct
methods in the calculus of variations. Let {u ;} ; C % 4 be a minimizing sequence for s, 7 . Since
F? g uj) = Fg(luj |), we may assume from the beginning that u; > 0 for all j. By the Holder

inequality, we easily get |Ju |2 < < k. Now for j sufficiently large such that Fy (u;) < ui ,+1,
one can obtain

L e _h2 Kk .
3 MI ujl Vg < Mg~ 5 "+58upf+ .

These estimates tell us that {u ;}; is bounded in H L. Being bounded, we can assume that, up
to subsequences, there exists u, € H' (M) such that

uj —ug in Hl(M), uj — ug strongly in L1(M), uj — u; ae.in M.

1 .
This shows that u, > 0 almost everywhere, and |lu;||r¢ = k4. In particular, u, € %y ,. Now
we notice that the function a7 is of class LY (M); making use of the Lebesgue Dominated

Convergence Theorem, we obtain fM((uj)2+8)’%advg — fM((ug)z—l—s)’%advg as j — +oo.
Since the part

1/ ) hf 1
- |Vui|“dv +—/ usdv ——/ Sflui|ldv
2 M J 8 2 M J 8 q M J 8

is weakly 1ower' semi—c.ontinugus, we get ,ui)q =limj 100 F; (“/) > Fq‘9 (ug). This and the fact
that u, € %y 4 immediately give uy g = Fqs (ug).
It leaves out to prove the smoothness and positivity of u,. Using the Euler-Lagrange equation
for functional F qg with the constraint (3.1), we know that u, solves
aug

Ajug + hu, = + A q—2u + 3.3
ghe B (f Nue| 3 ((us)2+8)%+] (3.3)
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in the weak sense for some constant A. The regularity result, Lemma 2.2(a), developed in
Section 2 can be applied to (3.3). It follows that u, € C*°(M) and u, > 0 in M. The Strong
Maximum Principle [3, Proposition 3.75] can be applied to conclude that either u, = 0 oru, > 0
in M. Since fM (ug)ldvg = k # 0, we know that u, # 0. Thus, u, is a smooth positive solution
of (3.3) and the claim follows.

3.3. Asymptotic behavior of ui’ q

In this subsection, we investigate the behavior of ,u? 4 when both k and ¢ vary. In contrast to
Rauzy [19], we prove the following.

2
Lemma 3.1. There holds limy_, o ka = +o00. In particular, there is some k. sufficiently small

and independent of both q and € such that u,k > 0 forany ¢ < k,.
Proof. The way that ¢ comes and plays immediately shows us that Mi is strictly monotone

2
decreasing in ¢ for fixed k and ¢. For any ¢ < k< and 1 < % < 22 , and similar to (2.7), we can

estimate the integral involving a. To be precise, for any u € %y ,, we have

.\ %
/ﬁdvg < (f —qdvg> (/ (u2+e)‘édvg>
M M (u?+¢e)2 M
%
<2Z\/%</ quvg> ’
M (u>+¢)?

where we have used the fact (12 + 8)% < 2%-1 (Jul? + k). Squaring both sides, we get

/quv/ (/ fdvg>.
M (u?+¢)2 25k

This helps us to conclude

Fg(u) kqﬁ—ésupf—i— (/ fdvg>
2 ¢q 22qk

2
which proves that uk — 400 as k — 0+4. It is a simple task to find some small k, < 1

independent of both g and ¢ such that
2h ok, 1 2
kq———supf—i— (/ ﬁdvg> > 0,
q 2 2 qk* M
for example, one can choose k, as
2 —1
1 adv h "
k., = min = (fM\/_ g),( 1A ) ,1¢.
25 —lgx (sup f 4 |h]) "\ [}, |f~Idvg

2
For such a choice of k,, we notice that k, < k. The proof follows. [
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We now investigate the behavior of ,ui’ q 38 k — +o0. A direct use of constant functions as
in (3.2) gives us nothing since f changes its sign. To avoid this difficulty we need to construct a
new suitable test function, to this end we have to control f~ by using a suitable cut-off function
which is supported in the positive part of f.

Lemma 3.2. There holds Mi’q — —ooask — 4ooif sup f > 0.

Proof. We first choose a point, say xo € M, such that f(xp) > 0. For example, one can choose
xo such that f(xg) = maxys f. By the continuity of f, there exists some rg > 0 sufficiently
small such that f(x) > 0, for any x € B,,(xo) and f(x) > O for any x € Boy,(xo). Let
¢ : [0, 4+00) — [0, 1] be a smooth non-negative function such that

1, 0<r<rg,

o) = {o, e

For small r, the function ¢ is clearly smooth. We then define
w(x) = p(dist(x, xo)z), xeM

and set
g(t) :/ fedvg, teR.
M

Obviously, g is continuous and g(0) < 0 by the assumption | u fdvg < 0. For arbitrary ¢, we
have

gt) > | min f* f e“"dvg+/ fre™dv,
Bro (x0) BrO (x0) M

> ( min f+> vol(By, (xop))e' —/ | £~ |dvg.

Bry (x0) M\ Bay, (x0)

Thus, there exists some 7y sufficiently large such that g(#9) > 1. The monotonicity property of g,
that can be seen from

g :/ fwe™dv, :/ frwe™dvg > 0,
M BZro(x())

allows us to conclude that g(t) > 1 forany ¢ > 9. We now take a positive function v € C! (M) of
the form ce®®™) x € M, where c is a positive constant chosen in such a way that f u vidv, = 1.
By our construction above, the function ) is independent of both ¢ and &. Therefore,

/ fvldvg = cg(qty) > clg(1p) > 0. (3.4)
M
1
Since k4 v € %y 4, a direct computation leads us to
1 2 -2 1 q
Al ) 2ot [ aan,
( L L q M ¢ q M ¢

1
F; (k1v) < Ek
1
With the help of (3.4) we deduce F; (kiv) — —oo by sending k — o0 in the preceding
inequality, thus proving our claim. [

_ o
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We are going to show that there exists kg such that ,uio g < 0 and pup, ¢ 0 for some k > k.
These results together with Lemmas 3.1 and 3.2 give us a full description of the asymptotic
behavior of 4} p First we prove the existence of such a k.

Lemma 3.3. There exists ko > 0 independent of ¢ such that ;L,io’ g S 0 for any ¢ > 0 provided

q+2
2 h a2 |h
/advg<< +q WA ) g -2 (35)
M 4 fM|f |dvg 4

In particular, ko > ky.

Proof. By removing the negative term involving 7, we know from (3.2) that
1 h 2 k 1
Fé(ka) < =k« +—/ |~ |dv +—/ adv,.

1 2 q.J/m gk Sy

Clearly, the non-positivity of the right hand side of this inequality is equivalent to
|hlg  a+2 2 _
advg < —k 7 —k | f~ Idvg. (3.6)
M 2 M

By a simple calculation, at

q

(2+6] 7] )"‘2
ko =
4 [y 1fldvg

the right hand side of (3.6) is equal to
24q A\
=
( 1 — ) Tg-2).
4 [y |f " |dvg 4

Thus, by definition, we claim that “20, q < 0 provided f M adv, satisfies (3.5). The fact that
ko > k, can be seen from Lemma 3.1. [

Now we have the following remark which also plays some role in our argument.

Remark 3.4. It follows from g € (2°, 2*) that

min <L>n_l 1% <k
Tulf—ldvg) 7 =7

since % > 1 and the function qu is monotone decreasing. Moreover, if we keep the term

involving f7 in the proof of Lemma 3.3, we immediately see that

1 ko
F8<k")§——/ ftdv,.
AN q Jm ¢

Thus, we can easily control the growth of p.io g 38 below

PSP TERTER L A o
Hio.g S % fM If—ldvg ’ Iy 4 .
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for any ¢ > 0. Keep in mind that the right hand side of (3.7) is strictly negative and is independent
of both ¢ and ¢ provided sup f > 0 which is always the case in this section. Furthermore, from
the choice of k, as in the proof of Lemma 3.1 we have k, < k.

Since the right hand side of (3.5) depends on g, its behavior for g near 2* is needed in future
argument. In fact, under the condition (3.8) below, we show that it is monotone increasing.

Lemma 3.5. As a function of q,
2+4+¢q |7 &5 |h
- 7 2)
4 Julf " ldvg

is monotone increasing in (Zb, 2*) provided
2*|h| _
< [ 15 1au (3:8)
2 M

Proof. This is elementary. Let
q+2 244 |h] |hl
Blg )— Og( + log —(q 2)
-2 4 fM | f~ldvg
Our condition (3.8) implies that
4 24g¢ |h| 2
B'(q) =— IOg( ) + >0,
(g —2)? 4 [ylf-ldvg) q-2

if ¢ > 2. The conclusion follows. [

Remark 3.6. The preceding proof shows that ’(g) is non-negative for any g € (2°, 2*). Also, a
simple calculation shows that the term on the right hand side of (1.5) equals limg_, > eP@ since
%:"’% = n — 1. This suggests that a good condition for fM adv, could be (1.5).

Notice that, so far our estimate on [Lk is still not enough for our purpose. We need finer
estimates. We prove that, as a function of k where k > ko, /Lk is bounded from above by a

constant independent of g € (2°,2*) and & > 0.

Lemma 3.7. Assume that (1.5) holds. Then there exists some constant yu independent of q and
& such that /Jcli’q <pforanye > 0,q € (2°,2%) and k > ko. In other words, Mi,q has an upper
bound when k is large.

Proof. Thanks to the proof of Lemma 3.2, we can conclude our lemma by taking a positive
function v of the following form v(x) = ce®” ™), x € M where c is a positive constant chosen
so that [, v9dv, = 1. Since h < 0, we first have

1 2 ) k 1 _
Fg(kqv) <3 q/M|Vv| dvg—E/M fv"dvg—f-q—k/Mav Ydv,.

Observe that

-1
/ fvldvg = cg(qto) > (/ ezitou’dvg) .
M M
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For the term qu f u av~?dvg, using the fact that v? > ¢9, we get

1 . 1 e
q—k/Mav Tdvg < % </Me 'Owdvg) (/M advg> .

We still have to analyze the last integral but thanks to ¢ < 1 this is trivial. Putting all the estimates
together, we conclude
V( t()w)||2 _ E 2*lowd -
e 2= x\, e Vg

M (/ ez'fowdvg> (/ advg> : (3.9)

As a function of k and with k > ko, it is clear that the right hand side of (3.9) achieves its

maximum, say u due to % < 1. This helps us to complete the proof. [J

1 1 2
Fi(kiv) < S+ D7

In order to take the limit as ¢ — 2*, we still need to control L7-norm of the mountain pass
solutions. Since our mountain pass solutions have non-negative energy, what we really need is to
show that there is an upper bound k,, > max{ko, 1} independent of & and ¢ such that ,ugiy q < 0
for any k > k.. This is done by the following lemma.

Lemma 3.8. There is some k.. sufficiently large and independent of both q and & such that
,ui,q < O forany k > kyy.

Proof. From the proof of Lemma 3.7, it is easy to see that the right hand side of (3.9), being
considered as a function of k, is continuous and independent of g and €. Again, thanks to 22—b <1,
we know that the function on the right hand side of (3.9) goes to —oo as k — 4-00. Consequently,
there is some k., > max{ko, 1} sufficiently large and independent of both ¢ and ¢ such that
,u;q < Oforany k > k., andany e > 0. [

Before completing this subsection, we prove another interesting property of 1 q saying that
y, q is continuous with respect to k for each ¢ fixed. The idea of the proof given here followed
the same lines as in [19].

Proposition 3.9. For & > 0 fixed, i}, g 'S continuous with respect to k.

Proof. Since u,ﬁ is well-defined at any point k, we have to verify that for each k fixed and for
any sequence k; — k there holds ,u,ij g ey g 3 Jj — +oo. This is equivalent to showing that

there exists a subsequence of {k;};, still denoted by k;, such that ,uij g wy g 35 j — +oo.
We suppose that 4 , and /VL}’;J_’ g are achieved by u € By 4 and uj € Ay, 4 respectively. Keep in
mind that u and u ; are positive smooth functions on M. Our aim was to prove the boundedness
of {uj}; in H'(M). 1t then suffices to control IVujll 2. Asin (3.4), we have

h 2 k;
[M |Vuj|2dvg <2 (,uim — Ek]" + ;] sup f) . (3.10)

Thus, we have to control uj g By the homogeneity we can find a sequence of positive numbers
]
2 2
{tj}; such that rju € P, q. Since k; — k as j — o0 and k]‘.’ = |ltjulle = tjk, we
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immediately see that 1; — 1 as j — +00. Now we can use ?;u to control ,uz/_ 4- Indeed, using
the function 7;u we know that '

1 h
Hiq S 7 (5 /M \Vu|*dvg + 3 /M u2dvg>

1 1
——tj/ fu"dvg+—/ %dug. (3.11)
q’ Jm q Jm ((tju)®> +¢)2

Notice that u is fixed and #; belongs to a neighborhood of 1 for large j. Thus, {y,,ij q }; is bounded

which also implies by (3.11) that {||Vu; | ;2}; is bounded. Hence {u;}; is bounded in HY(M).
Being bounded, there exists # € H'(M) such that, up to subsequences, u j —> u strongly in

2
LP(M) for any p € [1,2*). Consequently, lim;_, ;o [lttjllpa = |[#llpe = k<, thatis, u € By 4.
In particular, F, qs u) < F, ; (u). We now use weak lower semi-continuity property of F ; to deduce
that

FP(u) < F(w) < liminf FS (u;).

We now use our estimate for u,i,_ q above to see that lim SUP;j_, 400 “’i/ q < F; (u). This is due

to the Lebesgue Dominated Convergence Theorem and the fact that t; — 1 as j — -oo.
Therefore, lim;_, /L]ij g = y, P which proves the continuity of i} - O

The following subsection is basically due to Rauzy [19]. Here we just relax some conditions
in the Rauzy arguments for future benefit. It is worth to reproduce several parts in order to make
the paper to be self-contained.

3.4. The study of A s, 4

At the beginning of the section we temporarily leave our equation to study another minimizing
problem. The proof of our main result depends on Ay, , which will be defined below. This
quantity was first introduced by Rauzy [19]. To be precise, we introduce o7 (1, ¢), another
subspace of H'(M), which is defined as the following

A (n,q) = {u e H' (M) : lullq = 1,/ Lf ™~ lul?dvg = 77/ |f_|dvg}~ (3.12)
M M
We assume for a moment that .27 (1, ¢) is not empty which will be mentioned later after proving
Lemma 3.10 below. We define the number
IVul?,

in 5
ues (n,9) ||u||L2

Afag = (3.13)

We are going to prove the following result.

Lemma 3.10. As a function of 1, A 1, 4 is monotone decreasing.

In the present case, it is hard to consider the equality sign, nevertheless we study the following
problem first

2
Va2,

Mep .= in ,
14 wedt gy lull?,
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where
' (n,q) = {u e H' (M) : ullpe = L/M |f ulfdv, < n/M |f|dvg}.

With g and n being fixed, the set &’ (1, ¢) is not empty since it includes the set of functions
u € H'(M) such that ||lu]| ;4 = 1 and with supports in the set

fxeM: f(x)>0}C {x eM,|f |(x) < nfM|f|dvg}.

As can be seen form the definition, if n; < n then &' (n1,q) C & (m, q); thus proving
)L’f ma S )‘/f na . This amounts to saying that )L’f na is monotone decreasing. We are going to

prove A, ¢ = Mfn.g- For that reason, it suffices to prox//e Moo, q

trivial. The fact that 7’ (17, ¢) is not empty implies that A I 1s ﬁmte We are now in a position
to prove Lemma 3.10.

> Af.n.q since the reverse is

Proof of Lemma 3.10. We first prove that )‘Tf,n,q is achieved. Let {v;}; C «/'(n,q) be a
minimizing sequence for )‘/f,n, g Obviously the sequence {|v;}; is still a minimizing sequence in
</'(n, q) and therefore we can assume from the beginning that v; > 0 in M. We can prove with
arguments already used many times that {v;}; is bounded in H 1(M). Then up to subsequences,

there exists v € H!(M) such that
vj = v inHl(M), vj > v strongly in LY (M), v; > v ae.in M.

With arguments that already used before, it is not hard to show that v € &/’(n, g). Then by weak
lower semi-continuity of the norm, one can show that ||Vv|| 12 vl L22 < )Jf . Thus, )Jf
achieved by v. Using [3, Proposition 3.49], we may assume v > 0, 0therw1se We just replace v
by |v|. Now we assume by contradiction that v & 27 (1, ¢), then there exists a positive constant
k such that

/ 1f 71 @+ 1) dvg = n/ £ Idvg.
M M

Now we notice that from (v + «)||v + /<||Z[,1 € ' (n, q) we have
2

HV< v+ > vtk |7 V@40l _ IVll3,
o+ kllze /2 v + K1l 2a lv+ %, oIl
which gives us a contradiction. Hence, v € %/ (1, q) which also proves )”/f,n, ¢ = Mg

Consequently, A 7, 4 is decreasing as a function of . [

Remark 3.11. The fact that <7(n, g) is not empty is a direct consequence of the proof of
Lemma 3.10.

Our next lemma describes a comparison between A 7, , and A 7. Intuitively, &/ is smaller than
/' (n, q), thus making A s, 4 < A r. We now prove this affirmatively.
Lemma 3.12. For each g € (2°,2*) and n > 0 fixed, if sup f > 0, then Afng S Af.

Proof. We pick u € o arbitrarily. From the definition of <7 and the fact that sup f > 0 we must
have

/ uldvg > 0, / |f " luldvg =0
M M
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We now choose ¢ > 0 such that fM(su)qdvg = 1. This amounts to saying that su € <7’ (n, q)
which helps us to write

Ny g IV leull 3 = IVull, lull 3.

Since the preceding inequality holds for any u € <7, we may take the infimum on both sides
with respect to u to arrive at A/ < Ay. The proof follows easily since we have seen that
Ming =*rng U

It is worth noticing that for each g fixed one can show that A ¢, , — A as n — 0. However,
since we are interested in the critical case, that is equivalent to sending g to 2*, we do not need
that result. Instead, we prove the following.

fing

Lemma 3.13. For each § > 0 fixed, there exists ny > 0 such that for all n < no, there exists
€ (2°,2*) so that Afng = Ay — 8 forevery q € (qy,2%).

Proof. We assume by contradiction that there is some dp > 0 such that for every 19 > 0, there
exist n < mo and a monotone sequence {g;}; converging to 2* so that A s, 4, < Ay — & for
every j. We can furthermore assume that A 7, 4, is achieved by some vy 4, € (1, q;). We then
immediately have

[V0n4; 152 [eng, 12 < 2r =0

for any j. With arguments already used many times we can prove that there exists v, € H N07))
such that

Upg; — Up2+ In H'(M), Uy,q; — Up2+  strongly in L2(M).
From the preceding inequality, the following estimate

”V”n 2%

L2 H”nZ* <Ap—do

holds by sending j — oo. Besides, the Holder inequality implies 1 < |lvy,g; | 2+ for each j.
Using this and the Sobolev inequality applied to vy 4,, we get

L2

2

Vv, .

| < <,c1_“” "”f”! . Al) ons |2 < (61Ghs = 89+ A1) [ona |
Un,q;

which yields (/i ¢ + AN~ < lvy,g; ||i2 for each j. Passing to the limit as j — oo, we obtain
Kiry + A~ < llvy, 2,||2 For every qj = 2", by the Holder inequality and the fact that
Vg, € (1, q;) one has [ vy 4,17 "dv, < 1and

b

2 1-2
_ b _ , 4 3 T
/ 1 vy, P dvg < (f o ||v,,,q_,.|q"-fdvg) ] (/ \f |dvg) ’
M M M
= 77”’/ lf~ |dvg

By the Fatou lemma and the fact that vol(M) = 1, we deduce that

b
/ |vg 2+ |* dvg < 1
M
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and
— 2b bid —
Lf ™ Hog2+ " dog <2 | | f7 |dvg.

M M
Now we let 59 — 0, then clearly n — 0. The boundedness of vy, >+ in H L(M) implies that there
exists v € H' (M) such that up to subsequences

Up2x — v in HI(M), vp2x — v strongly in L2(M), vp2r — v ae.in M.
Before giving out contradiction, we notice that

IVoll3, < (A —80) llvll3 - (3.14)

Then it is enough to see

_ b . _ b
o</ 1ol dvg < hm/ oy 2 dvg
M n—0Jpm

b
< lim (;ﬁ/ |f_|dvg) = 0.
n—0 M

In other words, we would have [, |f’||v|2bdvg = 0. In particular, [, |f~|lvldv, = 0. The
strong convergence v, o« — v in L%(M) also implies (1A f + AN~ < Ivliz. Therefore,
v # 0, and thus |v| € &7. By the definition of A 7, we know that

Ap vl < IV, = [IVoll3, (3.15)

The inequalities (3.14) and (3.15) obviously provide us a desired contradiction. This proves the
lemma. [

With the information of Ay, , studied in previous lemmas, let us go back to our energy
functional. Here we prove that, for any ¢ > 0 and for some k > ko, uj, g > 0. A similar
result was studied in [19, Proposition 2].

Proposition 3.14. Suppose that |h| < Ly and sup f > 0. Then there exists no > 0 sufficiently
small and its corresponding qy, sufficiently close to 2* such that

A h 3
5= Mma TR S, L (3.16)
2 8
forany q € (qy,, 2*). For such a §, we denote
n . 8 |h| }
C, = — min L=t . 3.17
17 4)n) {(Al + 2K (|h| +268))" 2 @17

m
If
S e,
Ja 1 f ™ 1dvg

then there exists an interval I, = [k1 4, k2,41 5o that for any k € 1,, any e > 0, and any u € By 4,

(3.18)

2
there holds an (u) > %mka. In particular, ui’q > 0 forany k € I; and any ¢ > Q.
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Proof. It follows from Lemma 3.13 that there exist some 0 < no < 2 and its corresponding

@y € (2°,2%) such that

1
O0<Ap—2Afng < Z()tf —|hl)

for any g € (gy,, 2*). This immediately confirms (3.16). We now let

q
h q-2
k],q=< ||q_d ) '
no [y |/~ ldvg

We may see without any difficulty kg < k1,4,. We assume from now on that k >

Fyw =Gy~ [ a4 [ ——

M (u? + 8)2dvg

where
Gy (u) = IIVMIIL2+ |Iu||L2+ /If [lu|?dvg.

Then there are two possible cases.

Case 1. Assume that

/|f*||u|qczvg>nok/ £~ ldvg.
M M

In this case, the term G, can be estimated from below as follows

nok
Gy () > || ||Lz+— |f |dvg
§ @kg 1 vz
2 lhlgq
>2
> W,
2

where in the last inequality we have used the fact that k > k; ; and (3.19).

Case 2. Assume that

/ Lf 7 ul?dvg < nok/ If ™ Idvg.
M M

(3.19)

ki,4. We write

(3.20)

1
Under this condition, it is clear that K 4u € 2/’ (59, q) which implies ||Vu||i2 ||u||zz2 = Afinog

by the definition of A 7, ;. Therefore, we can estimate G4 (u) as follows

1
Gy (u) > (kfn0q+h lull?, + / | £~ ul?dv,.

Clearly,

2, = = ( 1Vull2, 1/ f llul9dvg — G ())
u = — — u — u Vo — u .
L2 || q Ju &£
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Now if we write 8||u|| 7288 ) ||u||L2 =(a+p) ||u||%2 where o = % and o + B = §, we then
get

28 1 _
Gy ) = alully, + T ( IVull?, 5/le llul?dvg — G (u))

1 _
+—/ |f " lul?dvg
q Jm

2
> o llull}, + Vﬁ( IVull?, Gq(u)>

which gives

(1 + f,ﬁ) Gy () > % (|v ull2, +L lu ||iz).
Using Ky ||Vu|| + Aj lull? 2=k % and the fact that “lhl EC' one easily obtains
IVal? + % 2, > 2%
Since 8 = 7{%, we therefore have
B ki 28\~ 5 2
Go ) > MICT(HW) = ALK h 62D

It now follows from (3.17), (3.20) and (3.21) that G, (u) > mk‘i Thus, we obtain

2k
Fy(u) > mkq — —sup f.
q

q

< 2
If we let k < (zéﬁg f)q * we then get Fy(u) > %mkfl > 0. Since

sup f < C / |/ dvg = /|f v,
one has, by (3.19), the following

_4q_ 49 _
( mq ) 5 <2q—lhl> — 2,
2sup f 00 Jyr 1/~ Idvg

Hence, if we set kp 4 = Z%kl,q, then for arbitrary k € [k; 4, k2 4] we always have qu (u) >

2
%mki In other words, ;L,‘i g 0 for arbitrary k € [k; 4, k2 4] which completes the proof. [J

Remark 3.15. It is natural to ask whether ,u; ¢ > 0 still holds when k is large under the case
when sup f < 0. We shall consider this situation in the last section.

3.5. The Palais—Smale condition

This subsection is devoted to the proof of the Palais—Smale compactness condition. To our
knowledge, there is no such a result in the literature since our energy functional contains both
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critical and negative exponents that cause a lot of difficulty. In addition, the negative constant h
also raises several difficulties.

Proposition 3.16. Suppose that the conditions (3.16)—(3.18) hold. Then for each ¢ > 0 fixed, the
functional F, q‘s (+) satisfies the Palais—Smale condition.

Proof. Let ¢ > 0 be fixed. Suppose that {v;}; C H 1(M) is a Palais—Smale sequence for F?,
that is, there exists a constant C such that

Fi(vj) — C, I8F; pllg-1 — 0 in H™'(M)as j — oo.

As the first step, we prove that, up to subsequences, {v;}; is bounded in H (M). Without loss of
generality, we may assume that ||v;| ;1 > 1 for all j. By means of the Palais—Smale sequence,
one can derive

1 a
_v h _ / aq /f_____d =C+o(1) 3.22)
[Vj72 nmm Tildvet G ) o 1t ’

and

/ij-Vé;'dvg+h/ ngdvg—/ flvjl972v;Edv,
M M M

- / IS gy, = oD (3.23)
M ((v)?+e)2T!
forany £ € HY(M). By letting & = v; in (3.23), we obtain
5 5 . av’
[Vvil|72+h v — fM flvjl?dv, — fM md% =o()||lvjllg. (3.29)

For the sake of simplicity, let us denote

kj 2/ |vj|qdvg.
M

There are two possible cases.

Case 1. Assume that there exists a subsequence of {v;};, still denoted by {v;};, such that

/ [f1lvjl?dvg Znokj/ | £~ |dv,.
M M
Using (3.17) and (3.18), we get that

Fy(vj) > %k§+"°—]€j/ |f_|dUg_l/ ST 1vjl"dvg
>§é+“k/vh%—5ww
>§é+“kafwg—i@/ﬁfu%

C“ £ 1w )ﬁ—@f
q
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This and the fact that F, ; (vj) — C imply that {k;} ; is bounded. In other words, {v;}; is bounded
in L9(M). Hence, the Holder inequality and (3.22) imply that {v,}; is also bounded in H L.

Case 2. In contrast to Case 1, for all j sufficiently large, we assume that
[ 177 dv < ok [ 157 1a
M M
Using (3.22) and (3.24), we obtain

1 2
_;/M Slvjltdve = _6] _ZC+0(1)||UJ||H1 + o(1)

1 / av p

+ v

q=2Ju (2 +e)itt ¢
2 a

+ dv,.
4@ =2 Ju (vj)2+et °
Therefore, we may rewrite F; as follows
. 1 2 h 2 2
Fywp >3 IV + > lvil 2 — mc +o(D)[v;ll g +o(1) + Aj, (3.25)
where
1 N2
Aj = f a@v;) Z dvg+/ %dvg .
q=2\Ju (v))? + )2 M ()% +¢)?
Dividing (3.25) by ||vjll;2 and using the equivalent norm to [|v;|l g1 = [Vvjll;2 + [lvjll;2, one
obtains

Fiop 9,

1 h
> ~IVo; i z+o<1>)+— v
lojll2 = ljll2 (2 I 2 loile
2 o(1 A;
- C+o() + O S
(@ —Dllvjl2 il llvjlle

(3.26)

Observe that, from the definition of A f,; 4, there holds HVU I ||iz = Afno.g “v I ||iz Therefore,
from (3.26) and for j large enough, there holds

FS(j))  Afpoog+h
40 > PR Ty o+ 0Dy A g
lvjll 2 2
2 o(1) Aj
——C+o()+ .
(g =2 lvjll2 il llvjllz2

If Jvjll,2 — 400 as j — oo, then we clearly would reach a contradiction by taking the limit
in the previous equation as j — o0 since Afyoq +h > 0 and A; > 0 as we notice that
FE)) v ||;21 — 0as j — oc. Thus, {v;}; is bounded in L?(M). This and (3.25) also imply
that {Vv;}; is bounded in L?(M). Consequently, {v;}; is bounded in H'(M). Combining Cases
1 and 2 above, we conclude that there exists a bounded subsequence of {v;}; in H LM, still
denoted by {v;};. This completes the first step.
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Being bounded, there exists v € H'(M) such that up to subsequences
v —~v in HI(M), v —> v stronglyian(M), v; > v ae.inM.

We now prove that v; — v strongly in H 1(M). Using (3.23) with & replaced by v j — v, we get

/ij~V(vj—v)dvg+h/ vj(vj — v)dvg
M M

- / Flv;19720; (v; — v)dvg —f — (v — v)dvg — 0 (3.27)
M M ()2 +e)zt!

as j — oo. It is not hard to show that the limit of the second term and the fourth term vanishes
as j — oo. For the third term, the limit also vanishes as one can use the Holder inequality and

o*

the fact that v; — v strongly in L2*~@=D (M). Therefore, we would obtain
fM Vv; - V(vj —v)dvy — 0 as j — oo.
The preceding limit, the following identity
/ Vv — Vv|2dvg = / Vv; - (Vvj — Vu)du, —/ Vv - (Vv — Vu)dug
M M M

and the fact that v; — v strongly in L%*(M) and Vv; — Vv weakly in L2(M) prove thatv; — v
strongly in H'(M). This completes the proof of the Palais—Smale condition. [J

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. This can be done through three steps. First, because of
Lemma 3.5, we need to make use of the condition (3.8) in order to guarantee the existence of the
first solution. This is the content of Proposition 4.1. Next we show that if, in addition, sup f can
be controlled by some positive number, then (1.2) has at least two positive solutions. In the last
step, we remove the condition (3.8) by using a scaling argument.

4.1. The existence of the first solution

In this subsection, we obtain the existence of the first solution of (1.2). Notice that, we require
(3.8) to hold. This restriction will be removed by using a scaling argument later.

Proposition 4.1. Let (M, g) be a smooth compact Riemannian manifold without the boundary
of dimension n > 3. Let h < 0 be a constant, f and a > 0 be smooth functions on M with
Sy advg >0, [, fdvg <O, and sup f > 0. We further assume that (3.8) holds and

/adv < ! <n_1>n_1( |h| )n/ |f_|dv
v f n=2\n-2 Juy 1 fldve ) Ju &

Then there is a positive number Cy given by (4.1) below such that if

sup f
Ju 1S~ 1dvg

then (1.2) admits at least one smooth positive solution.

<(Cy,
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Proof. Since our proof is quite long, we divide it into several claims for the sake of clarity.

Claim 1. There exists a qo € (2°, 2*) such that for all q € (qo, 2*) and some sufficiently small ,
there will be ko and k, with the following properties: ko < k. and /L]‘io q < 0 while uv,th > 0.

Proof of Claim 1. We observe that, from Lemma 3.5, the condition (3.8), and Remark 3.6,
there is some qog € (2°,2*) such that the condition (3.5) holds for all q € (qo,2%). Hence,
by Lemma 3.3, there exists a kp > 0 small enough such that '““k q S 0. Notice that 2> > 2
for any n > 3. The existence of such a ky makes it possible for us to select some k, such that
ke < min{ko, 1} and I’Lk*,q > 0 for any ¢ < k,. This settles Claim 1. [

Claim 2. Eg. (1.7) with ¢ replaced by 0 has two positive solutions, say uy 4 and us 4.

Proof of Claim 2. By using Proposition 3.14, we have 5o and its corresponding g,, € (2°,2%)
such that § = %()‘flno,q + h) > %(Af + h) for any g € (gy,,2*). Thanks to Lemma 3.12, one

has %(A F+h) <8< %()L £+ h). This amounts to helping us to have a lower bound for C,; given
by (3.17). Indeed, a simple calculation shows that C, > C; where

m . [3 rp+h k|
—min{-————, —
4| 8 Al +2K1As 2

Note that C; is independent of ¢ and thus never vanishing for any g € (g, 2*). Observe that

C = “.1)

2 bl \? . .
lim kj g = —F———) =¢, lim ky 4 = 22¢.
q—>2* 1o fM |f |dvg

By Proposition 3.14, there exists an interval I, = [k1 4, k2 4] such that “i,q > 0 forany k € I,.
Recall that k, < ko < k1,4, where k, is given as in Claim 1. [J

The existence of uf q with energy . v We first define the number
, 0

&€ : &€
W = inf F! (u),
ki.q ueDy 4 g

Trg = [ue H'OD ke < lully <kig)

Due to the monotonicity of &y 4, we know that ||u||’£q < £ for any u € 4. It follows from
Section 3.1 and Lemma 3.3 that ;. g is finite and non-positive. Similar arguments to those used
1 £

in Section 3.2 show that 7. p is achieved by some positive smooth function u§ 4 In particular,
1’ s
,ui?q is the energy of uf 4 Obviously, uf q is a solution of (1.7). It is not hard to verify that
any minimizing sequence for iy, p is bounded in H'(M). Now the lower semi-continuity of
f

H'-norm implies that flu§ q | ;1 is bounded with the bound independent of g and ¢. If we denote
||u‘i’q ||qu = ki we immediately have k] € (K, kyx).

The existence of uy,4 with strictly negative energy i, 4. In what follows, we let {¢;}; be a

sequence of positive real numbers such thate; — 0 as j — oo. For each j, let uijq be a smooth
positive function in M such that

Agu +hui! = fau '+ 4.2)
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in M. Being bounded, there exists u; , € H (M) such that up to subsequences
uf{q —~ uy4 in H' (M), ui{q — uy, strongly in L*(M), uf{q — uj4 ae.in M.

Using Lemma 2.1, the Lebesgue Dominated Convergence Theorem can be applied to conclude
that [}, (u1,4) " Pdvy is finite for all p. Now sending j — oo in (4.2), we get that u; 4 is a weak
solution of the following subcritical equation

Aguy g +huyg = flury)? '+ (4.3)

(1)t
Thus, the regularity result, Lemma 2. 2(b) developed in Section 2 can be applied to (4.3). It
follows that u;,, € C*°(M). Since ”1 — uy,q strongly in LY9(M) as j — oo, if we denote

1,4 ||Lq = k1, we still have k1 € (k,, k“). Consequently, there holds u , # 0. With Lemma 2.1
and the Strong Minimum Principle in hand, it is easy to prove that uy,q4 is strictly positive. From

Remark 3.4 and the fact that u’ 1 has strictly negative energy ,u F , by passing to the limit as

l
J — 0o, we know that u; 4 also has strictly negative energy (i, 4. Thus, we have shown that uy 4

is a smooth positive solution of (4.3) as claimed. Keep in mind that we still have [lu; 4 ||%q < ks
since we have a strong convergence.

The existence of uj g with energy iy = Let k* be a real number such that
) £

Mi*,q = max {,ui’q tkig <k < kz,q} )

Obviously, u. , > 0. Now we choose ki € (ko.ki4) and k> € (k2 4, ku) in such a way that
,u% .= ,u% = 0. The existence of k; is guaranteed by Proposition 3.9. Notice that M% .
1 2 1

and /L%z . have been proved to be achieved, say by U, g and ug, q respectively. We now set

r={yecqo.1: B M)y © = ug, . v() = ug, , |

Consider the functional £(v) = F ; (u;l’ q + v) for any non-negative real valued function v with

1

q

lvll = (/ |ukl’q+v|qdvg> .
M

1
First we have E(0) = 0. Let p = (k*)4. If ||v|| = p, then set u = Ug, g T U then
[y lul?dvg = k*. Hence

E(Ww) = F (n) > Mk* > 0.
— 1
Next we set v| = ug, ¢ " UE g0 then clearly E(v;) = 0 and ||v{|| = (k2)¢ > p. Notice that our

functional E satisfies the Palais—Smale condition as we have shown for F ; . Thus, Theorem 6.1
in [21, Chapter II] can be applied to E to conclude that the number

¢, = inf max E(y(t) — uz
Mkz’ yel 0<r<1 = kl’q)

is a critical value of the functional E. Clearly, ,uig ¢ > 0. Thus, there exists a Palais—Smale
27

sequence {u;}; C H'(M) for the functional Fqg at the level g, 7 Since Fqg(uj) = Fqs(lujl)

for any j, we can assume u; > O for all j. Consequently, Proposition 3.16 implies that, up to
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subsequences, u; — ugq strongly in H'(M) for some ugq € H'(M) as j — oo. Therefore,
the function u5 4 with positive energy fig. q satisfies the following equation
; 5

&
auzyq

Agus 4+ hu = fuh ) ——
8724 24 =Sy ((u;q)z-i-e)%“

4.4)
in the weak sense where we denote ||u§, 4 ||'£,, = k5. The non-negativity of {u;}; implies that
us q > 0 almost everywhere, and thus the regularity result, Lemma 2.2(a), can be applied to
(4.4). It follows that u, g € C°°(M) which also implies u5 q > 0in M. To see uj q is not
identically zero, thanks to Lemma 3.7 we first know that /1,5 q < < oo. Now, if ui ¢ = 0,

then we have %8_% fM adv, = ,u;,q < 0 < oo which is impossible if € is small enough. Thus,
u;q > 0 on M if ¢ is sufficiently small which we will always assume from now on. In view of
Lemma 3.8, we know that k; > 0 is bounded from above by k., independent of both ¢ and g.

The existence of ua 4 with positive energy jix, 4. We now let {g} ; be a sequence of small positive
real numbers such that ; — 0 as j — oo. For each j, let u;’q be a smooth positive function in

M such that
&j
auy,

Aguy +huy = f(ugj =t 4
872, 2, 2, £j q
q q q ((szq)Z +£j)2+1

4.5)

in M. The boundedness of {k;j }; tells us that sequence {u;j p }; is bounded in H L(M), hence,
there exists uz 4 € H (M) such that up to subsequences

Ej . 1 £j . 2 Ej .
Uy, = Uz4 in H (M), Uy, = U2g strongly in L“(M), Uy, —> Uzq ae.in M.

Consequently, up ; > 0 almost everywhere in M. We now denote |u2 4 ||Zq = k. Since the
sequence {u;j q} j is bounded from below by means of Lemma 2.1, the Lebesgue Dominated
Convergence theorem can be applied to conclude that (uz,q)’1 € LP(M) for any p > 0. By
letting j — oo in (4.5), we get that u3 4 is the second weak solution of the following subcritical
equation
a

(”2,q)q+1 .
Now the regularity result, Lemma 2.2(b), can be applied to (4.6). It follows that u» , € C*(M)

and thus u; , > 0in M. Since u;jq has positive energy M;, , by passing to the limit as j — oo,
, 4
we know that the energy of us 4 is still non-negative, i.e., ti, 4 > 0, thus proving u1 4 # uz 4

by means of (3.7). Note that & is still bounded from above by k,, independent of both ¢ and g.
This completes the proof of Claim 2.

Agun g+ huz g = fluzg)?" + (4.6)

Claim 3. Eq. (1.2) has at least one positive solution.

Proof of Claim 3. Recall that py, 4 are the energy of u; , found in Claim 2, i.e.,

Whig = 5 ; |Vuiq|” dvg + 3 M(ui,q) dvg
1

1 / a
—— | fuig)idv +—/ ———dv,.
qgJu” 8 g Sy wig)t f
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Keep in mind that by k; we mean ||u; , ||‘£q = k;. We now estimate (g, 4 and p, 4. We have
noticed that g, 4 < 0 < fg,,q < p. Since ky € (ky, k1,4) and h < 0, we obtain

1 1 h 2
2 ”V"‘Lq”i2 S Mg + g /M flurg)dvg — Equ

which concludes that the sequence {uj 4}, remains bounded in H '(M). Similarly, from
Lemma 3.7 and the following estimate
2

1 2 1 g h 2
) H V”Zq”m S kg T 5 y Juz,g)?dvg — Ekz
ko h 2
< —S - _kq 5
n+ p up f 22

we know that the sequence {u3 4}, is also bounded in H 1(M). Combining these facts, we get

2 2k; :

||Mi,q||H1 <2u+ 7 sup f + (1 = h)k;/.

Thanks to k., > 1 and ¢ > 2, if we denote

2
A= (2p 4 (sup fkuw + (1 — DKL )?

we then see that ||u; ¢ || ;1 < A fori =1, 2. Thus, up to subsequences, there exists u; € H' (M)
such that

Ujg — u; in Hl(M), ujq — u; strongly in LZ(M), ujg —> u; ae.inM

as g — 2*. Notice that u; , verify

/ Vui‘q-Vvdvg—i-h/ uj qvdvg —/ fui ) vdvg
M M M

a
— /M Wvdvg =0 (47)

for any v € H'(M). We have already seen in the proof of the Palais—Smale condition that
/ (Vu,-,q — Vui) - Vudv, — 0, / (u,‘,q — ui) vdvy > 0 asq — 2*.
M M

A strictly positive lower bound for u; 4 helps us to conclude that

a a Y
/M (ui,q)q+1 vdvg — fM —(u,-)z”rl vdv, asq — 27.

So far, we can pass to the limit every terms on the left hand side of (4.7) except the term involving
f. Since u; ; — u; almost everywhere, (ui,q)q_1 — (u)* 1 almost everywhere as ¢ — 2*.
By the Holder inequality, one obtains

P

q—1 2*

Jwngy™| 2 < (/M (u,»,q)z*dvg)z” = Juig | (43)

-1
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Making use of the Sobolev inequality, we further obtain

Jwia™] e <K+ AT g9

which proves the boundedness of (u; q)q Lin L2* I (M). According to [3, Theorem 3.45], we

have (u;,4)7~ U )2* I weakly in L2* 2*~1(M). Thanks to the embedding HY (M) — L¥ (M),
we have v € LY (M) which also implies fv € LY (M) since f is smooth. Therefore, by the
definition of weak convergence, there holds

/ f(ui,q)qflvdvg—>/ f(ui)z*flvdvg as g — 2*.
M M

With this convergence in hand, we are now in a position to send ¢ — 2* in (4.7) thus proving that
u; are weak solutions to (1.2). Using Lemma 2.2(b) we conclude that u; € C*°(M) and u; > 0
inM. O

So far we have just shown that u; are solutions of (1.2). However, we have no information
enough to guarantee that these solutions are distinct even that lim, 2+ (F, qo (u1,9)—F, ;) (u2,4)) # 0.
Therefore, we have here only the existence part. In the next subsection we show that u; are in
fact different provided sup f is sufficiently small, thus proving Theorem 1.1. [J

4.2. The existence of the second solution

We wish to compare FZO* (u1) and F2O, (u2). Recall that

1 h ! . ! -
0 2 2 2
Fo ) = E/M Vuildvg + 5 /M(”") e = 3 /M S dve 5, /M @z

Here we introduce a trick without using any concentration-compactness principle. This can be
done once we can show that lim,_, o« F[?(u,-,q) = Fg (u;) for i = 1, 2. If we carefully look at the

formula for F, (? (i 4), the only difficult part is to show that

/f(ui,q)qdvga/ fw¥dv, asq — 2*.
M M

In contrast to the previous subsection, the bigger exponents generally make us impossible to
guarantee such a convergence. To avoid this difficulty, we have to make sup f sufficiently small.
Intuitively, such a small f is equivalent to saying, for example, that f (u; 4)9 ~! behaves exactly
the same as f(u; 4)?. We first prove that following.

Proposition 4.2. There holds |Vu; 4|2 — [IVu;ll 2 as g — 2.

Proof. This is elementary. It suffices to prove that Vu; , — Vu; strongly in L?(M). Using (4.7)
with v replaced by u; , — u;, we arrive at

/ Vuig-Vuig — u,-)dvg +h/ uig(Ujg — ui)dvg
M M

-1 a
- /M flui) (uig —up)dvg — /M W(ui,q —uj)dvg = 0. 4.9
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From (4.9) by a similar argument use in the proof of the Palais—Smale condition it is easy to
show that

/ Vujq-Vuig —uj)dve — 0 asqg — 2%
M
Using this the fact that Vu; ; — Vu; weakly in L*(M), we obtain
/ IV (ujq — u,-)|2dvg —0 asg — 2",
M

In other words, Vu; , — Vu; strongly in L2(M). O

Now we conclude that [,, f(u;¢)?dve — [,, f(u;)* dvg as g — 2*. We prove the following
proposition.

Proposition 4.3. We assume that all requirements in Proposition 4.1 are fulfilled. We further
assume that f verifies

sup f < Ca,

where the number Cp > 0 is given in (4.14) below. Then

/f(u,‘,q)qdvg—>/ f(u,')z*dvg asq — 2.
M M

Proof. In (4.7), we choose v = (ui,q)l”‘s for some § > O to be determined later, we arrive at

l+28[ 2 /‘ 2
Vw; 4|°dv, = |h w; q)°dv
e | 1V wialdve = 1l | @ig)dv,

+ / f(wi,q)z(”i,q)q_zdvg + / L%dvg,
M m Uig)d~
where w; 4 = (u l-,q)H“S. This and the Sobolev inequality applied to w; 4 tell us that

) (1+96)2 2
ool < (1St A ) o

1+ 68)2

We now use the Holder inequality one more time

2 1-2
. 2% (g=2)2* 2%
fM(wi,q>2(ui,q>q—2dvg < ( /M (Wi q)* dvg) ( | (wig) T dvg> :

Notice that (quz)zz < q so long as ¢ < 2*. Again, by the Holder and Sobolev inequalities, one
gets

+ K1

q—2
(q:2)2* o* 2*-2
(uig) 72 dvg < (uig)” dvg
M M
2*(q=2)

2g-2) 2
< (K1 + AN |u; g ”Hl .
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Therefore,
N2 (s )2 2 S s 972
M(wl’q) (ujg)* "dvg < HWWHL? (Ki +Ap) 2 ”“w”yl :

Using (4.10) and our calculation above, it is obvious that

) (1+9)? 2
gl < (15 b1+ 41 ) o
+ 2
+’C1(1+ ) (sup f) (KC1 + Ap) 7 ””tq| leq”LZ*
(1+98)2 a
+ K1 7725 /M (ui’q)q_%dvg. 4.11)

We wish to impose the condition of sup f so that
(1+6) 1
< —_—
1426 2

fulfills. This can be done for a suitable choice of small § > 0 that will be fixed provided sup f
verifies

K1 (sup f) (1 + K1 + AT A2 (4.12)

1
KiGsup £) (1 + K + AT A% 2<5. (4.13)

Notice that A also contains sup f, therefore a straightforward calculation shows us that it is
enough for (4.13) to assume sup f < C, where

2*-2
2\ "2
C> = min —(1+/C1 +A1) (2/L+k**+(1 h)kff) ,1q. 4.14)
In view of (4.11), we get from (4.12) that
2 (1+8)> (1+8)? a
” ww“L? S <]C1 |h| + Al) ” Wi ‘I”LZ + 2K 1425 Ju (i )72 dvg

By the choice of § satisfying (4.12) and 1 + § < 5, we can verify that

144 144

)2 = ||Mi,q”Lz<1+8> < ”“i,q”LZ* .

[wiagll 2 = i
This and the Sobolev inequality imply that || w,-,q|| 12 can be controlled by some constant
depending on A. On the other hand, [}, a(u;,q) 972 dv, is bounded from above since g —28 >
0 and u; 4 has a strictly positive constant lower bound independent of g. All discussion above
shows that {|wj 4 ”L2*}q is bounded, that is, {|uiq| LZ*(1+6)}q is bounded. We are now in a
position to make use of [3, Theorem 3.45]. First, by the Holder inequality as in (4.8), one obtains
|| (ujg)? HL"*'5 < H“i»q ||(22*<1+5), that means (u; 4)9 is bounded in L3 (M). This and the fact
that (u; 4)? — (u;)? almost everywhere in M imply (u;4)? — u)?¥ weakly in L (M.

Therefore, by the definition of weak convergence and the fact that LH% (M) is the dual space of
L3 (M), there holds
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/ fluig)?dvg — / fui)? dv, asq — 2~
M M

since f € L1+%(M). O

Proposition 4.4. We assume that all requirements in Proposition 4.3 are fulfilled. Then
Eq. (1.2) possesses at least two smooth positive solutions, one has strictly negative energy and
the other has positive energy.

Proof. It suffices to compare the energies of u;. Using Propositions 4.2 and 4.3, we can send
g — 2* in the preceding equalities to reach lim,_, F(? (i g) = FZO* (u;i), i = 1, 2. In view of
(3.7), there holds FZO, (1) <0< FZO* (u7). Thus, u; have different energies. This completes the
proof. [

4.3. The scaling argument

In this subsection, we use the scaling technique to complete the proof of Theorem 1.1 by
removing the condition (3.8) mentioned in Proposition 4.1. We first observe that under the
variable change i = %, where c is a suitable constant to be determined later, Eq. (1.2) becomes

1 a
2L

Agli+ bl = &2 fa? 1 ¢ (4.15)

We wish to find a suitable constant ¢ > 0 such that our new coefficients f~ and @ verify the
conditions in Propositions 4.1 and 4.2 where

a

PR (4.16)

~ . -
F=cr2y 5=

Clearly, once u is a solution of Eq. (4.16), cu will solve Eq. (1.2) accordingly. Obviously, the
coefficient 4 remains unchanged after the scaling and we also have Ay = A 7 since ¢ > O.
Therefore, the following conditions ‘

k| <27, a>0, /fdvg<0, sup £t >0
M

are fulfilled. Besides, it is obvious to see that

sup f _ sup f
Sl ldvg [y 1f 7 ldvg
We now wish to remove (3.8) but still keep other conditions. In other words, we have to choose
a suitable ¢ so that the following conditions

2*|h ~
2||</ 17 dvg. 4.17)
M
and
sup f < (O, (4.18)
and

/5dv o] (”_1)H 2| f 7l 4.19)
S a2\ =2 [ 17 1dvg ) Ju ¢ '
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hold. Indeed, (4.17) and (4.19) can be rewritten as the following

25k s _
<c |/~ |dvg (4.20)
2 M

and

n—1 n
1 / . 1 (n—1 Ih| 2*_2/ e, (42D
—— | adv, < — c ve. (4.
22, T hn—2\n=-2 2 [ 1 f " |dvg I, 8

Notice that (2* — 2)n = 22*, this is about to say that again the right hand side of (4.21) can be
rewritten as

) ) [
crt2p—2\n-2 Sy 1f " |dvg &

By canceling the factor 2* —5, one can easily see that the condition (1.5) is invariant under the
variable change. In view of (4.18), we can choose

_( 21| >2]_2
2 [y 1fldvg '

It suffices to prove that this particular choice of ¢ and the condition (1.6) are enough to guarantee
(4.18). Notice that

=y ()2 e

2 [y 1fldvg) 2 o 1l

Therefore, if we assume

sup f 2 c
< 2’
Sy | f7ldvg — 2%1h]

then the condition (4.18) holds. In conclusion, if the constant C in the statement of Theorem 1.1
equals

2
inCi, ——C 4.22
mm{ e 2} (4.22)
we know that Eq. (1.2) has at least two positive smooth solutions. This finishes the proof of
Theorem 1.1.

Remark 4.5. Before finishing the proof of Theorem 1.1, it is important to note that the existence
of the constant C; depends only on the negative part of f and the set {x € M : f(x) > 0}, thus, is
independent of sup f. To see this, let us notice from the definition of the sets 27 and .7 (1), ¢) that
Ay and Ay, 4 depend only on f~. This ensures that the existence of C; given by (4.1) depends
only on f~. Now one can observe that the condition

-1
(sup f) ( /M |f—|dvg> <C
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actually makes sense and therefore we do have the existence part. However, since the constant
C, depends on p and k., it is hard to check whether or not the condition

1 >
(sup /) ( /M |f—|dvg) < o€

actually holds but we believe that an example for this case exists. We hope that we will soon see
some responses on this issue.

5. Proof of Theorem 1.2

According to [8, Proposition 4], if we restrict ourselves to f < 0 but not strictly negative, the
solvability of (1.2), where k, f, and a take the form (1.3) and (1.4), is equivalent to solving the
so-called prescribing scalar curvature-scalar field problem

Agu + hu = fu* =1, (5.1)

The proof of this fact depends heavily on the conformal covariance property of all these
coefficients, that cannot be true for general 4, f, and a. Concerning (5.1), Rauzy provided,
among other things, necessary and sufficient conditions for the solvability of (5.1) in the general
form, that is, for any f < 0,a > 0 and 2 < 0 a constant. Based on this point, in this
section, we prove that there is a natural extension of the Rauzy result for the prescribing scalar
curvature equation (5.1) to (1.2) which also provides for necessary and sufficient conditions for
the solvability of (1.2). Notice that we have already proved necessary conditions.

5.1. Asymptotic behavior of /Li’ q

It is not hard to see that we can go through Lemma 3.1 without any difficulty, that is, for small
g, M,i’q — 400 as k — 0. Now we want to study the behavior of Mi’q for k — +00. As can be
seen from Section 3 that if f has zero value somewhere in M, then in order to control ,u; 4 for
large k, we must study A 7, 4. Depending on how large the set { f = 0} is, there are two possible
cases.

Case 1. Suppose that sup f = 0 and f{ =0} 1dvg > 0. A careful study shows that all results from
Section 3.5 remain hold. So we omit it here.

Case 2. Suppose that sup f = 0 and f{ =0} ldvg = 0. In this context, one may still define A 7, 4
as in (3.13) for each n # 0. We notice that from the set <7 is empty we would have A ; = 4o00.
Furthermore, it remains true that A 7, , is decreasing as a function of n whose proof is exactly the
same as the proof of Lemma 3.10. Our next lemma gives a full description for A 7, , similarly to
those proved in Section 3.

We now prove an analogous version of Lemma 3.13.

Lemma 5.1. There exists no such that for all n < no, there exists q, € (2°,2*) so that
Afuq > |hl for every q € (gqy,2%).

Proof. We assume by contradiction that for every ng, there exist < 19 and a monotone
sequence {g;}; converging to 2* so that Asy 4, < || for any j. We assume furthermore
that Ay, 4 is achieved by some v, € &/(1,q;). Then the following estimate holds
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||Vv,7,qj||i2||v,,,qj||zz2 < |h| for any j. As in the proof of Lemma 3.13, there exists vy, o« €
H'(M) such that

Upgj = Up2* strongly in LZ(M), Up,g; = Up2+ ae. in M

as j — 00. Thus | Vvyo+ |2, llvg2 177 < 1Al and (Kilhl + A~ < [lug.+ |12, For every
qj > 2", by the Holder inequality and the fact that Uyq; € # (1, q;) one has

2b
|v,,,q,.| dvg < 1
u .
and

2b
- 2 7 —
/ 1 vn.g,| dvg<n%/ £ dvg.
M M

Followed by the proof of Lemma 3.13, we obtain

b
/ lug.2+|* dvg < 1
M

and
_ b 20 _
f 1 llog e P dvgsnz*f £ ldvg.
M M

Now let  — 0 and being bounded, there exists v € H'!(M) such that up to subsequences
Up2x — v in H' (M), vy2x — v strongly in L2(M), Vp2x — v ae.in M.

Clearly, ||Vv||i2 < A ||v||%2. With a similar argument used in Lemma 3.13 we conclude
f ulf _||v|2bd vg = 0. Therefore, v = 0 almost everywhere since f < 0 almost everywhere.

The strong convergence v, »» — v in L?(M) also implies that lim;, 2+ [[vy2+]l ;2 = O which
provides us a desired contradiction since [v;,2«|| ;2 has a strictly positive lower bound. [

Remark 5.2. As can be seen from this proof, a stronger form of Lemma 5.1 can be obtained
where |h| is replaced by any given positive constant. However, we do not need that strong one.
Besides, unlike the argument used in the proof of Lemma 3.13, in the case sup f > 0 function v
satisfying |, ulf- ||v|2*dvg = 0 may not be zero as it could be concentrated in the positive part

of f.

We are now in a position to study the behavior of ,ui q for k — 400 when sup f = 0.

Proposition 5.3. Suppose sup f = 0. If
o cither [ ;_q, 1dvg =0or
. f{f:O} ldvg > 0 and Ay > |h|
holds, then ,u; q — Tooas k — o0 for any ¢ > 0 sufficiently small and any q sufficiently

close to 2* but all are fixed.

Proof. We begin to prove that there is some 19 > 0 sufficiently small and its corresponding
dny € (2", 2*) sufficiently close to 2* such that §y = %O‘f,nqu + h) > 0forany g € (gq,, 2%).
We consider two cases separately.
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Case 1. Suppose that sup f = 0 and f{ f=0) ldve, = 0. Under this case, there holds f < 0
almost everywhere which implies that the set .7 is empty, therefore A ; = +o0. Since /4 is fixed,
we know from Lemma 5.1 that we can find some 15 sufficiently small and its corresponding
qny € (2°, 2*) such that A fino.g > 0forall g € (gy,,2"), and thus proving the positivity of
8.

Case 2. Suppose that sup f = 0 and f{ y—oy 1dvg > 0. Under this case, A is well-defined
and finite. Notice that Ay + & > 0. Since all results in Section 3.5 still hold, as in the proof
of Proposition 3.14, there exist some 7o < 2 and its corresponding g;, € (2°,2*) such that
0<Af—Afnq <3Oy — |h]) forany g € (gy,, 2*). Therefore, 8o > 3 (A s + h).

Now having the strictly positivity of 6o we can easily go through the proof of Proposition 3.14;
hence we get G, (1) > mké where m is given as in (3.17) which implies that F; (n) > mk%
due to sup f = 0. Since &g has a strictly positive lower bound, so does m. The proof now follows
easily. O

5.2. Proof of Theorem 1.2 completed
From now on, we restrict ourselves to the case g € (gy,, 2*). Let us first do some calculation.
By solving the following equation
h 2 k
—ka — —/ fdvg =0,
2 qJm

we easily see that

1
Mio’q < %/Madvg,

where

L (q h >qq2
0=\ .
2 [y, fdvg

It is then easy to bound ko, say k1 < ko < ko with ko > 1 where k; are independent of both
& and g. We are now in a position to prove Theorem 1.2 whose proof is similar to the proof of
Theorem 1.1, therefore we just sketch it and omit in details.

Proposition 5.4. If sup f = O, then Eq. (1.2) admits a positive solution u.

Sketch of proof. From the study of the behavior of u}’;’ 4> We can prove the existence of k, and
k.« independent of ¢ and g with k, < k; < ko < ky < ks such that uio’ g < min{,uib - ey

}.
>
Then we define

& : &
. = inf F’(u
/"Lki q ue_@kvq q ( )

for each ¢ and ¢ fixed, where

Dig = {u e H'M) ko < ]y <kao].

&
q
smooth solution to (1.7). Since IIMZIILq is uniformly bounded, by using a sequence {e;}; of

positive real numbers such that ¢; — 0 as j — oo we can prove, up to subsequences, that

It then turns out that uj. q is achieved by a smooth positive function u’ which is exactly the
0,
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uf/ —ugin H 1(M) as j — oco. We then show that 1y is a smooth positive solution to (1.7) with
¢ replaced by 0. Finally, we send ¢ — 2* and do the same argument to claim that (1.2) admits a
smooth positive solution. [

In order to make the paper unique, let us mention here the case sup f < 0 although this has
been done in [8] by using the method of sub- and super-solution. Suppose sup f < 0. It suffices
to study the asymptotic behavior of u,i p for large k. Clearly, for any u € %y 4,

FE @) > (2 k' sup £ ) k3
w2\ -+ — su .
q 2 o p

It is then immediate to deduce that ,u; g — tooas k — +oo since 1 — 2 > 0. Hence we can
easily prove the existence of at least one positive smooth solution to (1.2). More precisely, we

prove

Proposition 5.5. If sup f < O, then Eq. (1.2) admits a positive smooth solution u.

Sketch of proof. The proof of this proposition is similar to the proof of Proposition 5.4. The
way to find k, is exactly the same as in the proof of Proposition 5.4. The existence of k., can be
found as in the proof of Proposition 5.4. Having the existence of k, and k., independent of ¢ and
g we can go through the proof of Proposition 5.4 to reach the existence of smooth solution to our
Eq.(1.2). O
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