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This is the fifth and last in our series of notes concerning some classical inequalities such as
the Ostrowski, Simpson, Iyengar, and Ostrowski–Grüss inequalities in R. In the last note,
we propose an improvement of the Ostrowski–Grüss inequality which involves 3n
knots where n = 1 is an arbitrary numbers. More precisely, suppose that
fxkgn

k¼1 � ½0;1�; fykg
n
k¼1 � ½0;1�, and fakgn

k¼1 � ½0;n� are arbitrary sequences withPn
k¼1ak ¼ n and

Pn
k¼1akxk ¼ n=2. The main result of the present paper is to estimate
1
n

Xn

k¼1

akf aþ ðb� aÞykð Þ � 1
b� a

Z b

a
f ðtÞdt � f ðbÞ � f ðaÞ

n

Xn

k¼1

ak yk � xkð Þ
in terms of either f 0 or f 00. Unlike the standard Ostrowski–Grüss inequality and its known
variants which basically estimate f ðxÞ �

R b
a f ðtÞdt

� �
=ðb� aÞ in terms of a correction term

as a linear polynomial of x and some derivatives of f, our estimate allows us to freely re-
place f ðxÞ and the correction term by using 3n knots fxkgn

k¼1; fykg
n
k¼1 and fakgn

k¼1. As far
as we know, this is the first result involving the Ostrowski–Grüss inequality with three se-
quences of parameters.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

It is no doubt that one of the most fundamental concepts in mathematics is inequality. However, as mentioned in a recent
notes by Qi [23], the development of mathematical inequality theory before 1930 are scattered, dispersive, and unsystem-
atic. Loosely speaking, the theory of mathematical inequalities has just formally started since the presence of a book by
Hardy et al. [7]. Since then, the theory of mathematical inequalities has been pushed forward rapidly as a lot of books for
inequalities were published worldwide.

Although the set of mathematical inequalities nowadays is huge, inequalities involving integrals and derivatives for real
functions always have their own interest. Within this kind of inequalities, the one involving estimates of

R b
a f ðtÞdt by bounds

of the derivative of its integrand turns out to be fundamental as it has a long history and has received considerable attention
from many mathematicians.

Not long before 1934, at the very beginning of the history of mathematical inequalities, in 1921, Pólya derived an inequal-
ity which can be used to estimate the integral

R b
a f ðtÞdt by bounds of the first order derivative f 0. His inequality basically says

that the following holds
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1
b� a

Z b

a
f ðtÞdt

�����
����� 5 b� a

4
f 0k k1; ð1:1Þ
for any differentiable function f having f ðaÞ ¼ f ðbÞ ¼ 0 and kf 0k1 ¼ supx2½a;b�jf 0j. Later on, in 1938, Iyengar [15] generalized
(1.1) by showing that
1
b� a

Z b

a
f ðtÞdt � f ðaÞ þ f ðbÞ

2

�����
����� 5 b� a

4
f 0k k1 �

f ðbÞ � f ðaÞð Þ2

4ðb� aÞ f 0k k1
ð1:2Þ
for any differentiable function f. Here the only difference is that the condition f ðaÞ ¼ f ðbÞ ¼ 0 is no longer assumed in (1.2).
Apparently, (1.2) provides a simple error estimate for the so-called trapezoidal rule.

Also in this year, Ostrowski [21, page 226] proved another type of the Pólya–Iyengar inequality (1.2) which tells us how to

approximate the difference f ðxÞ �
R b

a f ðtÞdt
� �

=ðb� aÞ for x 2 ½a; b�. More precisely, he proved that
f ðxÞ � 1
b� a

Z b

a
f ðtÞdt

�����
����� 5 1

4
þ

x� aþb
2

� �2

ðb� aÞ2

 !
ðb� aÞkf 0k1 ð1:3Þ
for all x 2 ½a; b�. As we have just mentioned, unlike (1.1), the inequality (1.3) provides a bound for the approximation of the
integral average

R b
a f ðtÞdt

� �
=ðb� aÞ by the value f ðxÞ at the point x 2 ½a; b�.

Similar to the inequality (1.2), the Simpson inequality, which gives an error bound for the well-known Simpson rule, has
been considered widely which is given as follows
1
b� a

Z b

a
f ðtÞdt � 1

6
f ðaÞ þ 4f

aþ b
2

� �
þ f ðbÞ

� ������
����� 5 C� c

12
ðb� aÞ; ð1:4Þ
where C and c are real numbers such that c < f 0ðxÞ < C for all x 2 ½a; b�.
In recent years, a number of authors have written about generalizations of (1.1)–(1.4). For example, this topic is consid-

ered in [2,3,5,14,16,17,20,19,22,26,29]. In this way, some new types of inequalities are formed, such as inequalities of
Ostrowski–Grüss type, inequalities of Ostrowski–Chebyshev type, etc.

The present paper is organized as the following. First, still in Section 1, let us use some space of the paper to mention
several typical generalizations of (1.1)–(1.4). Later on, we shall review our recent works considering as generalizations of
(1.1)–(1.4) which aims to propose a completely new idea in order to generalize these inequalities. In the final part of this
section, we state our main result of the present paper whose proof is in Section 2.
1.1. Generalization of the Ostrowski inequality (1.3)

In the literature, there are several ways to generalize the Ostrowski inequality (1.3).
The first and most standard way is to replace the term kf 0k1 on the right hand side of (1.3) by kf 0kq for any q = 1 where,

throughout the paper, we denote
kgkq ¼
Z b

a
jgðtÞjqdt

 !1=q

;

for any function g. Within this direction, Theorem 1.2 in a monograph by Dragomir and Rassias [4] is the best as they were
able to derive the best constant, see also [12, Theorem 2]. To be completed, let us recall the inequality that they proved
f ðxÞ � 1
b� a

Z b

a
f ðtÞdt

�����
����� 5 ðb� aÞ1=p

ðpþ 1Þ1=p

x� a
b� a

� �pþ1
þ b� x

b� a

� �pþ1
 !1=p

f 0k kq
with 1=pþ 1=q ¼ 1.
The second way to generalize the Ostrowski inequality (1.3) is to consider the so-called Ostrowski–Grüss type inequality.

The only difference is that the term ðx� aþb
2 Þ

f bð Þ�f að Þ
b�a will be added to control f ðxÞ �

R b
a f ðtÞdt

� �
=ðb� aÞ. Within this type of gen-

eralization, let us recall a result due to Dragomir and Wang in [5, Theorem 2.1]. More precisely, they proved the following
f xð Þ � 1
b� a

Z b

a
f ðtÞdt � x� aþ b

2

� �
f bð Þ � f að Þ

b� a

�����
����� 5 1

4
ðb� aÞðC� cÞ ð1:5Þ
for all x 2 ½a; b� where f 0 is integrable on ½a; b� and c 5 f 0ðxÞ 5 C, for all x 2 ½a; b� and for some constants c;C 2 R.
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Recently in [26], by using f 00 instead of f 0 and replacing C� c by kf 00k2, Ujević proved that the following inequality holds
f xð Þ � 1
b� a

Z b

a
f ðtÞdt � x� aþ b

2

� �
f bð Þ � f að Þ

b� a

�����
����� 5 ðb� aÞ3=2

2p
ffiffiffi
3
p f 00k k2: ð1:6Þ
for all x 2 ½a; b� provided f 00 2 L2ða; bÞ.

1.2. Generalization of the Iyengar inequality (1.2)

Concerning the Iyengar inequality (1.2), by adding the term f 0ðbÞ � f 0ðaÞð Þðb� aÞ=8 to the left hand side of (1.2), in [6, Cor-
ollary 1], the following Iyengar type inequality was obtained
1
b� a

Z b

a
f ðtÞdt � f ðaÞ þ f ðbÞ

2
þ b� a

8
f 0ðbÞ � f 0ðaÞð Þ

�����
����� 5 M

24
ðb� aÞ2 � 1

b� a
jDj
M

� �3
 !

; ð1:7Þ
for any f 2 C2½a; b� with jf 00ðxÞj 5M and D ¼ f 0 að Þ � 2f 0 ðaþ bÞ=2ð Þ þ f 0 bð Þ. Other generalizations for (1.2) can also be found in
the literature, for example, in [1].

1.3. Generalization of the Simpson inequality (1.4)

Regarding to the Simpson inequality (1.4), there are three types of generalization.
First, using higher order derivatives of f as in [18, Corollary 3], the following Simpson–Grüss type inequalities for

n ¼ 1;2;3 have been proved
Z b

a
f tð Þdt � b� a

6
f að Þ þ 4f

aþ b
2

� �
þ f bð Þ

� ������
����� 5 Cn Cn � cnð Þ b� að Þnþ1

; ð1:8Þ
for any function f : ½a; b� ! R such that f ðn�1Þ is an absolutely continuous function and cn 5 f ðnÞðtÞ 5 Cn for some real con-
stants cn and Cn and where C1 ¼ 5=72;C2 ¼ 1=62, and C3 ¼ 1=1152.

Second, we can estimate the left hand side of (1.4) by using the Chebyshev functional associated to f. To be exact, the fol-
lowing inequality holds� �
Z b

a
f tð Þdt � b� a

6
f að Þ þ 4f

aþ b
2

� �
þ f bð Þ

� �����
���� 5 b� að Þ3=2

6

ffiffiffiffiffiffiffiffiffiffiffi
r f 0ð Þ

q
; ð1:9Þ
where the operator r is given by rðf Þ ¼ kfk2
2 � kfk

2
1=ðb� aÞ.

Third, we can generalize (1.4) by using different points rather than a; ðaþ bÞ=2, and b. In fact, the following inequality was
proved in [25, Theorem 3]
Z b

a
f ðtÞdt � b� a

2
f

aþ b
2
� 2�

ffiffiffi
3
p� �

b� að Þ
� �

þ f
aþ b

2
þ 2�

ffiffiffi
3
p� �

b� að Þ
� �� ������

����� 5 7� 4
ffiffiffi
3
p

8
f 00k k1 b� að Þ3; ð1:10Þ
for any twice differentiable function f such that f 00 is bounded and integrable. Another generalization that follows this idea
was obtained in [24, Theorem 7] by considering kf 00k2 instead of kf 00k1. This leads us to the following result
Z b

a
f ðtÞdt � b� a

2
f

aþ b
2
� 3�

ffiffiffi
6
p

2
b� að Þ

 !
þ f

aþ b
2
þ 3�

ffiffiffi
6
p

2
b� að Þ

 ! !�����
����� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49
80
�

ffiffiffi
6
p

4

s
f 00k k2 b� að Þ5=2

: ð1:11Þ
In the following subsection, we summarize our previous works concerning to some generalizations of all inequalities
mentioned above. Our aim is to highlight the main idea that has been used through these works and that probably is the
source of our inspiration to write this paper.

1.4. Our previous works

Several years ago, we initiated a new research direction which aims to propose a completely new way to treat inequalities
of the type (1.1)–(1.4). Before briefly reviewing our results, let us recall some notations that we introduced in [8] for the first
time.

For each k ¼ 1;n, we choose a knot xk for which 0 5 xk < 1. We then put
Q f ;n; x1; . . . ; xnð Þ ¼ b� a
n

Xn

k¼1

f aþ ðb� aÞxkð Þ
and Z b
Iðf Þ ¼
a

f ðtÞdt:
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The basic idea of our research direction is to approximate Iðf Þ by Qðf ;n; x1; . . . ; xnÞ under suitable choices of the knots xk.
Our mission started in 2009 with a generalization of the inequality (1.10), see [8, Theorem 4]. In fact, by assuming further

that our knots xk satisfy the following system of algebraic equations
x1 þ x2 þ � � � þ xn ¼ n
2 ;

� � �
xj

1 þ xj
2 þ � � � þ xj

n ¼ n
jþ1 ;

� � �
xm�1

1 þ xm�1
2 þ � � � þ xm�1

n ¼ n
m ;

8>>>>>><
>>>>>>:
we were able to prove that
jI fð Þ � Qðf ;n; x1; . . . ; xnÞj 5
1

m!

1
mqþ 1

� �1=q

þ 1
m� 1ð Þqþ 1

� �1=q
 !

kf mð Þkp b� að Þmþ1=q
; ð1:12Þ
for any mth differentiable function f such that f ðmÞ 2 Lpða; bÞ and where q is chosen in such a way that 1=pþ 1=q ¼ 1.
Surprisingly, except for the constant appearing on the right hand side of (1.12) which is not optimal, however, as far as we

know, all generalizations of either (1.4) and (1.10) or (1.11) always take the form of (1.12) by selecting suitable xk, see [8] for
some examples. Moreover, our inequality (1.12) provides a new way to generate new inequalities of the form (1.10) and
(1.11).

Following this research direction, in 2010, we found a new generalization for (1.8) which basically gives us the following
estimate
jIðf Þ � Qðf ;n; x1; . . . ; xnÞj 5
2mþ 5

4
ðb� aÞmþ1

mþ 1ð Þ! S� sð Þ ð1:13Þ
for any mth differentiable function f : ½a; b� ! R where S :¼ supa 5 x 5 bf ðmÞðxÞ and s :¼ infa 5 x 5 bf ðmÞðxÞ, see [9, Theorem 2].
Here the sequence fxkgk is assumed to satisfy a new system of equations given by
x1 þ x2 þ � � � þ xn ¼ n
2 ;

� � �
xj

1 þ xj
2 þ � � � þ xj

n ¼ n
jþ1 ;

� � �
xm�1

1 þ xm�1
2 þ � � � þ xm�1

n ¼ n
m ;

xm
1 þ xm

2 þ � � � þ xm
n ¼ n

mþ1 :

8>>>>>>>><
>>>>>>>>:
As can be seen, the estimate (1.13) allows us to freely use derivatives of any order of f. In addition, the set of points
fa; ðaþ bÞ=2; bg which appears in the original estimate (1.8) is now replaced by our knots fxkgk.

Later on, also in the year 2010, by keeping the sequence fxkgk which satisfies (1.14) above, we obtained the following gen-
eralization for (1.9)
jI fð Þ � Qðf ;n; x1; . . . ; xnÞj 5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 1
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m� 1
p

� �
b� að Þmþ1=2

m!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðf mð ÞÞ

q
ð1:14Þ
for any m-times differentiable function f : ½a; b� ! R such that f ðmÞ 2 L2ða; bÞ, see [10, Theorem 3]. Again, as in (1.13), the esti-
mate (1.14) allows us to use derivatives or any order of f and the set of point fa; ðaþ bÞ=2; bg is now the set fxkgk.

Finally, in 2010, we announced a generalization for (1.7). Our generalization has two folds. First we replace the term
f ðaÞ þ f ðbÞð Þ=2 by the term Q as in the previous works. Second, we replaced f 00 by f 000 to get a new estimate. Precisely, we

proved in [11, Theorems 3 and 4] the following
Ap;qðb� aÞ3 5 Iðf Þ � Qðf ;n; x1; . . . ; xnÞ þ ðb� aÞ2pðf 0ðbÞ � f 0ðaÞÞ 5 Bp;qðb� aÞ3 ð1:15Þ
and
Iðf Þ � Qðf ;n; x1; . . . ; xnÞ þ ðb� aÞ2 q
2
� 1

6

� �
ðf 0ðbÞ � f 0ðaÞÞ

����
���� 5 Kr;qðb� aÞ4�1=r f 000k kr ð1:16Þ
where the constant Kr;q depends only on q and r while the constants Ap;q and Bp;q depend on p; q; infa5 x5 bf 0ðxÞ, and
supa 5 x 5 b f 0ðxÞ. Besides, the sequence fxkgn

k¼1 � ½0;1Þ is now chosen in such a way that
x1 þ x2 þ � � � þ xn ¼ n
2 ;

x2
1 þ x2

2 þ � � � þ x2
n ¼ nq;




for some q 2 ½0;1=2�.
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While the optimal constants for (1.12), and (1.14)–(1.16) remain unknown, the optimal constant for (1.13) has been re-
cently found. For a detail of the progress of finding the optimal constants, we refer the reader to [27,31,28], especially the
work [30, Theorem 2.3]. It is worth noticing that in [30], a beautiful connection between the optimal constant for (1.13)
and the well-known Bernoulli polynomials has been established. From our point of view, this could be led to optimal con-
stants for the others inequalities such as (1.12), and (1.14)–(1.16). We hope that we shall soon see some responses on this
issue.
1.5. Our main result

In the last paper of the series, our purpose is to make some improvements of Ostrowski type inequalities such as (1.5) and
(1.6). In order to see the idea underlying our generalization, let us take a look at the inequalities (1.5)–(1.11). The main dif-
ference between the inequalities (1.5) and (1.6) and the others is the presence of f ðxÞ. A prior to this work, what we have
already done is to keep the integral

R b
a f ðtÞdt fixed but freely prescribed the value of f at certain points using our knots. In

this work, we make a further step by replacing f ðxÞ in (1.5) and (1.6) by something which is new and depends on more than
one parameter. A simple choice that one could think about is to replace f ðxÞ by a set of new knots.

Our present work has three folds. First, we generalize (1.5). Before doing so, let us further introduce some notation. Let
ai = 0 be satisfied
a1 þ a2 þ � � � þ an ¼ n: ð1:17Þ
For each i ¼ 1;n, we assume 0 5 yi 5 1. Instead of using f mentioned above, we then use the following quantity
Q f ; y1; . . . ; ynð Þ ¼ b� a
n

Xn

k¼1

akf aþ yk b� að Þð Þ: ð1:18Þ
We note that this new Q given in (1.18) is different from the previous one by the weights ak. Besides, Qðf ; y1; . . . ; ynÞ=ðb� aÞ
goes back to f ðxÞ if one sets n ¼ 1; a1 ¼ 1, and y1 ¼ ðx� aÞ=ðb� aÞ. We are now in a position to state our main result for this
generalization.

Theorem 1.1. Let I � R be an open interval such that ½a; b� � I and let f : I ! R be an differentiable function. We also let
C ¼ supx2½a;b�f

0ðxÞ and c ¼ infx2½a;b�f 0ðxÞ. Then the following estimate holds
1
b� a

Q f ; y1; y2; . . . ; ynð Þ � Iðf Þð Þ � f ðbÞ � f ðaÞ
n

Xn

k¼1

ak yk � xkð Þ
�����

����� 5 9
4
ðb� aÞðC� cÞ ð1:19Þ
for arbitrary sequences fxkgn
k¼1 � ½0;1� and fykg

n
k¼1 � ½0;1� with n=1 and
a1x1 þ a2x2 þ � � � þ anxn ¼
n
2
:

Clearly, the estimate in (1.19) still makes use of f 0 on the interval ½a; b�. However, the term f ðxÞwhich appears in (1.5) had
been changed to Q f ; y1; y2; . . . ; ynð Þ=ðb� aÞ. In order to see the difference, let us now consider a very special case of (1.19). By
choosing n ¼ 1 and a1 ¼ 1 we see that we have no choice for x1 but x1 ¼ 1=2. If we choose y1 ¼ ðx� aÞ=ðb� aÞwhere x 2 ½a; b�
then, by changing variables, (1.19) tells us that
��������
f xð Þ � 1

b� a

Z b

a
f tð Þdt � f bð Þ � f að Þð Þ x� a

b� a
� 1

2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f bð Þ�f að Þ
b�a x�aþb

2ð Þ

�������� 5
9
4

b� að ÞðC� cÞ
which is nothing but an Ostrowski–Grüss type inequality of the form (1.5).
Second, we generalize (1.6). Unlike the previous approach, for simplicity, we shall use kf 00kp instead of kf 00k2. We prove the

following result.

Theorem 1.2. Let I � R be an open interval such that ½a; b� � I and let f : I ! R be an twice-times differentiable function such that
f 00 2 Lpða; bÞ; 1 5 p 51. Then we have
1
b� a

Q f ; y1; y2; . . . ; ynð Þ � Iðf Þð Þ � f ðbÞ � f ðaÞ
n

Xn

k¼1

ak yk � xkð Þ
�����

����� 5 9
4
ðb� aÞ2�1=p f 00k kp ð1:20Þ
for arbitrary sequences fxkgn
k¼1 � ½0;1� and fykg

n
k¼1 � ½0;1� with n = 1 and
a1x1 þ a2x2 þ � � � þ anxn ¼
n
2
:
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As an immediate application of Theorem 1.2, we also obtain
f ðaþ ðb� aÞxÞ � 1
b� a

Z b

a
f ðtÞdt � ðf ðbÞ � f ðaÞÞ x� 1

2

� ������
����� 5 9

4
ðb� aÞ2�1=pkf 00kp
for any x 2 ½a; b� and any 1 5 p 51.
In the last part of the present paper, we slightly improve (1.12) and (1.13) with weights ak. Concerning (1.13), we prove

the following result theorem.

Theorem 1.3. Let I � R be an open interval such that ½a; b� � I and let m = 2 be arbitrary. We also let f : I ! R be a mth
differentiable function and denote S ¼ supx2½a;b�f

ðmÞðxÞ and s ¼ infx2½a;b�f ðmÞðxÞ. Then we have
jIðf Þ � Qðf ; x1; . . . ; xnÞj 5
2mþ 5

4
ðb� aÞmþ1

ðmþ 1Þ! ðS� sÞ; ð1:21Þ
for arbitrary sequences fxkgn
k¼1 � ½0;1� with n = 1 and
a1x1 þ a2x2 þ � � � þ anxn ¼ n
2 ;

� � �
a1xj

1 þ a2xj
2 þ � � � þ anxj

n ¼ n
jþ1 ;

� � �
a1xm

1 þ a2xm
2 þ � � � þ anxm

n ¼ n
mþ1 ;

8>>>>>><
>>>>>>:

ð1:22Þ
Regarding to (1.12), we prove the following result.
Theorem 1.4. Let I � R be an open interval such that ½a; b� � I and let f : I! R be a mth differentiable function with m = 2 such
that f ðmÞ 2 Lpða; bÞ; 1 5 p 51. Then the following estimate holds
jIðf Þ � Qðf ; x1; . . . ; xnÞj 5
1

m!

1
mqþ 1

� �1=q

þ 1
ðm� 1Þqþ 1

� �1=q
 !

ðb� aÞmþ1=qkf ðmÞkp; ð1:23Þ
for arbitrary sequences fxkgn
k¼1 � ½0;1� satisfying
a1x1 þ a2x2 þ � � � þ anxn ¼ n
2 ;

� � �
a1xj

1 þ a2xj
2 þ � � � þ anxj

n ¼ n
jþ1 ;

� � �
a1xm�1

1 þ a2xm�1
2 þ � � � þ anxm�1

n ¼ n
m ;

8>>>>>><
>>>>>>:

ð1:24Þ
and 1=pþ 1=q ¼ 1.
Before closing this section, we would like to mention that due to the restriction of the technique that we use, inequalities

(1.19), (1.20), (1.23), and (1.21) are not sharp. However, the presence of the paper [30] strongly proves that there could be
some possibility to get optimal constants for all these inequalities. Besides, it turns out that the right hand sides of (1.19),
(1.20), (1.23), and (1.21) do not depend on n but the regularity of the function f. This is because we want to unify all the
number of (interpolation) points appearing in all known inequalities mentioned at the beginning of the present paper by
n, see (1.8)–(1.11).

Finally, it is worth noting that rather than the classical inequalities mentioned above, other classical inequalities such as
the Fejér and Hermite–Hadamard inequalities have also been studied, for example, see [13].

2. Proofs

We spend this section to prove Theorems (1.1)–(1.4). First, we prove Theorem 1.1.

Proof of Theorem 1.1. By using the Taylor formula with the integral remainder, it is not hard to check that
f aþ ðb� aÞykð Þ ¼ f ðaÞ þ
Z ðb�aÞyk

0
f 0 aþ tð Þdt ¼ f ðaÞ þ

Z ðb�aÞ

0
ykf 0 aþ yktð Þdt ¼ f ðaÞ þ

Z b

a
ykf 0 a 1� ykð Þ þ yktð Þdt:
Therefore, by taking the sum for k from 1 to n, we get
Xn

k¼1

akf aþ ðb� aÞykð Þ ¼ nf ðaÞ þ
Xn

k¼1

ak

Z b

a
ykf 0 a 1� ykð Þ þ yktð Þdt

 !
;

which can be rewritten using our notation as
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1
b� a

Qðf ; y1; y2; . . . ; ynÞ ¼ f ðaÞ þ 1
n

Xn

k¼1

ak

Z b

a
ykf 0 a 1� ykð Þ þ yktð Þdt

 !
:

Similarly, we obtain
1
b� a

Qðf ; x1; x2; . . . ; xnÞ ¼ f ðaÞ þ 1
n

Xn

k¼1

ak

Z b

a
xkf 0 a 1� xkð Þ þ xktð Þdt

 !
: ð2:1Þ
Hence, by subtracting, we arrive at
Qðf ; y1; y2; . . . ; ynÞ
b� a

� Qðf ; x1; x2; . . . ; xnÞ
b� a

� f ðbÞ � f ðaÞ
n

Xn

k¼1

ak yk � xkð Þ
�����

�����
¼ 1

n

Xn

k¼1

akyk

Z b

a
f 0 a 1� ykð Þ þ yktð Þ � f ðbÞ � f ðaÞ

b� a

� �
dt � 1

n

Xn

k¼1

akxk

Z b

a
f 0 a 1� xkð Þ þ xktð Þ � f ðbÞ � f ðaÞ

b� a

� �
dt

�����
�����

5
1
n

Xn

k¼1
akyk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

5 n

Z b

a
ðC� cÞdt þ 1

n

Xn

k¼1
akxk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼n=2

Z b

a
ðC� cÞdt 5

3
2
ðb� aÞðC� cÞ; ð2:2Þ
where we have used the fact that f 0 and f ðbÞ � f ðaÞð Þ=ðb� aÞ belong to ½c;C�. From the estimate (2.2), it is necessary to control
Qðf ; x1; x2; . . . ; xnÞ. This can be done if we use

R b
a f ðtÞdt. This is the content of the next part of the proof. Indeed, thanks to
Z b

a
f ðtÞdt ¼

Z b

a
ðb� tÞf 0ðtÞdt þ ðb� aÞf ðaÞ
and (2.1), some easy calculation first shows that
Z b

a
f ðtÞdt � Qðf ; x1; x2; . . . ; xnÞ

�����
����� ¼

Z b

a
ðb� tÞf 0ðtÞdt � 1

b� a

Z b

a
ðb� tÞdt

 ! Z b

a
f 0ðtÞdt

 !�����
þ 1

b� a

Z b

a
ðb� tÞdt

 ! Z b

a
f 0ðtÞdt

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

� b� a
n

Xn

k¼1

ak

Z b

a
xkf 0 1� xkð Þaþ xktð Þdt

  

� 1
b� a

Z b

a
akxkdt

 ! Z b

a
f 0 1� xkð Þaþ xktð Þdt

 !!!

�b� a
n

Xn

k¼1

1
b� a

Z b

a
akxkdt

 ! Z b

a
f 0 1� xkð Þaþ xktð Þdt

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N

���������
:

Clearly, M ¼ ðb� aÞ f ðbÞ � f ðaÞð Þ=2 which implies
1
2
ðb� aÞ2c 5M 5

1
2
ðb� aÞ2C:
For the term N, it is clear that
N ¼ 1
n

Xn

k¼1

Z b

a
akxkdt

 ! Z b

a
f 0 1� xkð Þaþ xktð Þdt

 !
¼ 1

n

Xn

k¼1

ðb� aÞakxk

Z b

a
f 0 1� xkð Þaþ xktð Þdt

 !
which yields
1
n

Xn

k¼1
ðb� aÞakxk

Z b

a
cdt

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cðb�aÞ2=2

5 N 5
1
n

Xn

k¼1
ðb� aÞakxk

Z b

a
Cdt

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cðb�aÞ2=2

:

Therefore, the difference M � N is now easy to handle as follows
jM � Nj 5 1
2
ðb� aÞ2ðC� cÞ:
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For the remaining terms in the expansion of
R b

a f ðtÞdt � Qðf ; x1; x2; . . . ; xnÞ above, one may consult the Grüss inequality.
Indeed, we can estimate further as follows
Z b

a
ðb� tÞf 0ðtÞdt � 1

b� a

Z b

a
ðb� tÞdt

 ! Z b

a
f 0ðtÞdt

 !�����
����� 5 1

4
ðb� aÞ2ðC� cÞ:
We note that
Xn

k¼1

ak

Z b

a
xk f 0 1� xkð Þaþ xktð Þdt � 1

b� a

Xn

k¼1

Z b

a
akxkdt

 ! Z b

a
f 0 1� xkð Þaþ xktð Þdt

 !
¼ 0:
Hence, all in one, we arrive at
1
b� a

Z b

a
f ðtÞdt � Qðf ; x1; x2; . . . ; xnÞ

�����
�����

5
1

b� a

Z b

a
ðb� tÞf 0ðtÞdt � 1

b� a

Z b

a
ðb� tÞdt

 ! Z b

a
f 0ðtÞdt

 !�����
�����

þ 1
b� a

jM � Nj

5
1

b� a
ðb� aÞ2

4
ðC� cÞ þ 1

2
ðb� aÞ2ðC� cÞ

 !

¼ 3
4
ðb� aÞðC� cÞ: ð2:3Þ
Having (2.2) and (2.3) yields
Q f ; y1; y2; . . . ; ynð Þ
b� a

� 1
b� a

Z b

a
f ðtÞdt � f ðbÞ � f ðaÞ

n

Xn

k¼1

akðyk � xkÞ
�����

�����
5

Qðf ; y1; y2; . . . ; ynÞ
b� a

� Qðf ; x1; x2; . . . ; xnÞ
b� a

����
� f ðbÞ � f ðaÞ

n

Xn

k¼1

akðyk � xkÞ
�����þ 1

b� a

Z b

a
f ðtÞdt � Qðf ; x1; x2; . . . ; xnÞ

�����
�����

5
9
4
ðb� aÞðC� cÞ:
The proof is now complete. h

We now prove Theorem 1.2 whose proof is basically based on Theorem 1.1. The idea is to control C� c from the above in
terms of f 00.

Proof of Theorem 1.2. To prove the theorem, we observe from the Hölder inequality that, for all u;v 2 ½a; b� satisfying u 5 v ,
there holds
jf 0ðuÞ � f 0ðvÞj ¼
Z v

u
f 00ðtÞdt

����
���� 5

Z v

u
jf 00ðtÞjpdt

� �1=p

ðv � uÞ1=q
5 kf 00kpðb� aÞ1=q

;

where 1=pþ 1=q ¼ 1. Thanks to C ¼ supx2½a;b�f
0ðxÞ; c ¼ infx2½a;b�f 0ðxÞ, we immediately have
C� c 5 kf 00kpðb� aÞ1=q
:

Making use of this and Theorem 1.1, we obtain
1
b� a

Q f ; y1; y2; . . . ; ynð Þ � Iðf Þð Þ � f ðbÞ � f ðaÞ
n

Xn

k¼1

ak yk � xkð Þ
�����

����� 5 9
4
ðb� aÞ1þ1=qkf 00kp;
which now completes the proof because 1þ 1=q ¼ 2� 1=p. h

To prove Theorem 1.3, we follow the same idea and method used in [9] and refer the reader to [9] for details.

Proof of Theorem 1.3. By applying the Taylor formula with the integral remainder to the function
R x

a f ðtÞdt, we arrive at
Iðf Þ ¼
Xm�1

k¼0

ðb� aÞkþ1

ðkþ 1Þ! f ðkÞðaÞ þ
Z b�a

0

ðb� a� tÞm

m!
f ðmÞðaþ tÞdt: ð2:4Þ
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For each 1 5 i 5 n, applying the Taylor formula with the integral remainder again to the function f ðxÞ, we now get
f ðaþ xiðb� aÞÞ ¼
Xm�1

k¼0

xk
i ðb� aÞk

k!
f ðkÞðaÞ þ

Z xiðb�aÞ

0

ðxiðb� aÞ � tÞm�1

ðm� 1Þ! f ðmÞðaþ tÞdt

¼
Xm�1

k¼0

xk
i ðb� aÞk

k!
f ðkÞðaÞ þ

Z b�a

0

xm
i ðb� a� tÞm�1

ðm� 1Þ! f ðmÞðaþ xitÞdt:
Then by summing up and thanks to the first m� 1 equations in (1.22), we deduce that
Xn

i¼1

aif ðaþ xiðb� aÞÞ ¼ n
Xm�1

k¼0

ðb� aÞk

ðkþ 1Þ! f ðkÞðaÞ þ
Xn

i¼1

Z b�a

0

aixm
i ðb� a� tÞm�1

ðm� 1Þ! f ðmÞðaþ xitÞdt:
In other words, we have proved that
Qðf ; x1; . . . ; xnÞ ¼
Xm�1

k¼0

ðb� aÞkþ1

ðkþ 1Þ! f ðkÞðaÞ þ b� a
n

Xn

i¼1

Z b�a

0

aixm
i ðb� a� tÞm�1

ðm� 1Þ! f ðmÞðaþ xitÞdt: ð2:5Þ
Combining (2.4) and (2.5) gives
Iðf Þ � Qðf ; x1; . . . ; xnÞ ¼ I
ðb� �Þm

m!
f ðmÞ

� �
� b� a

n

Xn

i¼1

I
aixm

i ðb� �Þ
m�1

ðm� 1Þ! f ðmÞðð1� xiÞaþ xi�Þ
 !

:

Observe that
ðb� aÞm

ðmþ 1Þ! ðf
ðm�1ÞðbÞ � f ðm�1ÞðaÞÞ ¼ 1

b� a
I
ðb� �Þm

m!

� �
:I f ðmÞ
� �

:

Therefore, we can write
jIðf Þ � Qðf ; x1; . . . ; xnÞj ¼
ðb� aÞm

ðmþ 1Þ! ðf
ðm�1ÞðbÞ � f ðm�1ÞðaÞÞ þM � b� a

n
N � P

n

����
����;
with
M ¼ I
ðb� �Þm

m!
f ðmÞ

� �
� 1

b� a
I
ðb� �Þm

m!

� �
I f ðmÞ
� �

;

N ¼
Xn

i¼1

I
aixm

i ðb� �Þ
m�1

ðm� 1Þ! f ðmÞðð1� xiÞaþ xi�Þ
 ! !

� 1
b� a

I
aixm

i ðb� �Þ
m�1

ðm� 1Þ!

 !
I f ðmÞðð1� xiÞaþ xi�Þ
� �

;

m m�1
 !
P ¼ I
aixi ðb� �Þ
ðm� 1Þ! I f ðmÞðð1� xiÞaþ xi�Þ

� �
:

Making use of the Grüss inequality, see [9, Lemma 5], gives that
jMj 5 1
4
ðb� aÞmþ1

m!
ðS� sÞ
and that
jNj 5 1
4

Xn

i¼1

ðb� aÞmaixm
i

ðm� 1Þ! ðS� sÞ ¼ n
4

ðb� aÞm

ðmþ 1Þðm� 1Þ! ðS� sÞ:
For remaining terms, it is clear that
ðb� aÞmþ1

ðmþ 1Þ! s 5
ðb� aÞm

ðmþ 1Þ! ðf
ðm�1ÞðbÞ � f ðm�1ÞðaÞÞ 5 ðb� aÞmþ1

ðmþ 1Þ! S;
while a direct calculation shows
P ¼
Xn

i¼1

aixm
i ðb� aÞm

m!
I f ðmÞðð1� xiÞaþ xi�Þ
� �

:

Consequently, thanks to
Pn

k¼1akxm
k ¼ n=ðmþ 1Þ and here is the only place we make use of the last equation in (1.22), there

holds
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nðb� aÞmþ1

ðmþ 1Þ! s 5 P 5
nðb� aÞmþ1

ðmþ 1Þ! S:
In other words, we have proved that
ðb� aÞm

ðmþ 1Þ! f ðm�1ÞðbÞ � f ðm�1ÞðaÞ
� �

� P
n

����
���� 5 ðb� aÞmþ1

ðmþ 1Þ! ðS� sÞ:
Thus, Theorem 1.3 follows by using the triangle inequality. h

We now prove Theorem 1.4. To this purpose, we follow the same idea and method used in [8] and we refer the reader to
[8] for details.

Proof of Theorem 1.4. From the proof of Theorem 1.3 and using the triangle inequality, we obtain
jIðf Þ � Qðf ; x1; . . . ; xnÞj 5
ðb� �Þm

m!
f ðmÞ

����
����

1
þ b� a

n

Xn

i¼1

aixm
i ðb� �Þ

m�1

ðm� 1Þ! f ðmÞðð1� xiÞaþ xi�Þ
�����

�����
1

: ð2:6Þ
Thanks to [8, Eq. (10)], the first term sitting on the right hand side of (2.6) can be estimated as follows
ðb� �Þm

m!
f ðmÞ

����
����

1
5

1
m!

ðb� aÞmqþ1

mqþ 1

 !1=q

kf ðmÞkp: ð2:7Þ
For the second term, we also note from [8] that
xikf ðmÞðð1� xiÞaþ xi�Þkp 5
xikf ðmÞk1; if p ¼ 1;
kf ðmÞkp; if 1 5 p <1:

(

Thanks to xi 2 ½0;1�, we can write xikf ðmÞðð1� xiÞaþ xi�Þkp 5 kf ðmÞkp in any case. Making use of the Hölder inequality, one can
estimate the second term on the right hand side of (2.6) as follows
b� a
n

Xn

i¼1

aixm
i ðb� �Þ

m�1

ðm� 1Þ! f ðmÞðð1� xiÞaþ xi�Þ
�����

�����
1

5
b� a

n

Xn

i¼1

aixm
i

ðm� 1Þ! kf
ðmÞðð1� xiÞaþ xitÞkpkðb� �Þ

m�1kq

5
b� a

n

Xn

i¼1

aixm�1
i

ðm� 1Þ! kf
ðmÞkpkðb� �Þ

m�1kq

¼
kf ðmÞkp

m!

ðb� aÞmqþ1

ðm� 1Þqþ 1

 !1=q

: ð2:8Þ
Combining relations (2.6)–(2.8), we conclude that
jIðf Þ � Qðf ; x1; . . . ; xnÞj 5
1

m!

ðb� aÞmqþ1

mqþ 1

 !1=q

kf ðmÞkp þ
kf ðmÞkp

m!

ðb� aÞmqþ1

ðm� 1Þqþ 1

 !1=q
and Theorem 1.4 follows. h

It is interesting to note that a weaker version for the inequality (1.23) can be derived from Theorem 1.3 so long as m P 3.
Indeed, similar to the proof of Theorem 1.2, we can estimate f ðm�1Þ in terms of kf ðmÞkp to obtain
S� s 5 kf ðmÞkpðb� aÞ1=q
:

From this, Theorem 1.3 with m replaced by m� 1, and thanks to m P 3, we obtain
jIðf Þ � Qðf ; x1; . . . ; xnÞj 5
2mþ 3

4m!
ðb� aÞmþ1=qkf ðmÞkp:
Clearly, the preceding estimate is weaker than that of Theorem 1.4 since
1
m!

1
mqþ 1

� �1=q

þ 1
ðm� 1Þqþ 1

� �1=q
 !

<
2

m!
<

2mþ 3
4m!
for any m = 3 and any q = 1. Note that here we require m = 3 rather than m = 2 as in Theorem 1.4 since we have to make use
of Theorem 1.3 with m replaced by m� 1. Having this fact, the condition m� 1 = 2 automatically leads to m = 3 as claimed.
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Before closing our paper, we would like to comment on the similarity between the right hand sides of (1.12) and (1.20).
Indeed, more or less, the right hand side of (1.20) is a particular case of that of (1.12) when one uses m ¼ 2 except the power
of b� a. Note that, in the case m ¼ 2, the right hand side of the estimate (1.12) reads as
1
2

1
2qþ 1

� �1=q

þ 1
qþ 1

� �1=q
 !

ðb� aÞ3�1=pkf 00kp:
The difference between the power of b� a in (1.12) and (1.20) relies on the fact that our expansion (2.1) is only up to f 0. One
way to equalize these orders is to use some expansion for higher orders together with the Hölder inequality. For interested
reader, we refer to the proof of (1.12) in [8, Theorem 4]. Therefore, we expect that there exists a positive constant C which
only depends on p and m such that
1
b� a

Qðf ; y1; y2; . . . ; ynð Þ � Iðf ÞÞ � f ðbÞ � f ðaÞ
n

Xn

k¼1

yk � xkð Þ
�����

����� 5 Cðb� aÞmþ1�1=pkf ðmÞkp; ð2:9Þ
where the sequence fxkgk satisfies the same system of equations for (1.12). We shall not prove (2.9) here and leave it for
interested reader.
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