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Abstract
In this paper, we give a construction of the solutions to the Einstein constraint
equations using the well-known conformal method. Our method gives a result
similar to the one in [14, 15, 21], namely existence when the so-called TT-
tensor σ is small and the Yamabe invariant of the manifold is positive. The
method we describe is, however, much simpler than the original method and
allows easy extensions to several other problems. Some non-existence results
are also considered.
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1. Introduction

1.1. The Einstein constraint equations

The initial data for the Cauchy problem in general relativity are usually given in terms of the
geometry of the Cauchy surface M g( , )̂ in the spacetime g( , ) of dimension n 1+ with
n 3⩾ . Assuming that the spacetime  is globally hyperbolic and M is a spacelike Cauchy
surface, one can define the metric g ̂ induced on M by the spacetime metric g and the second
fundamental form K of M in . It follows from the Einstein equations together with the
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Gauss and Codazzi equations that g ̂ and K are related by the following equations

where ρ and j are related to other fields, such as matter fields and the electromagnetic field,
that one wants to include in the universe under consideration. Also, in (1.1), Scalg ̂ is the
scalar curvature of g .̂ To keep things simple, we will consider only the gravitational field,
hence forcing 0ρ ≡ and j 0≡ .

A simple dimension-counting argument shows that the system (1.1) is under-determined,
and thus it is generally hard to solve (1.1) in this form. To overcome this difficulty, we need to
decompose both g ̂ and K into given data and unknowns that will have to be adjusted so that
equations (1.1a) and (1.1b) are fulfilled. Several such splittings exist and we refer the reader
to [1] for a detailed review of some known results on the constraint equations. In the
literature, the most commonly used method is the conformal method, which we briefly
describe now. We invite the reader to have a look at the excellent recent work of Maxwell
[20] for a deep understanding of this method and its connection to other widely used methods.

The given data in the conformal method consist of

• a Riemannian manifold M g( , ),
• a function M: τ → ,
• and a symmetric 2-tensor σ onM, which is traceless and transverse in the following sense

tr 0, div 0.g gσ σ≡ ≡

As shorthand, we will call σ a TT-tensor. The unknowns in the conformal method are

• a positive function M: *φ → +,
• and a 1-form W.

Combining all these elements, one can form g K( , )̂ as follows:

( )
g g

K
n

g W

,

, (1.2)

N

g

2

2 

φ
τ φ σ

=

= + +

−

−
̂

̂

where N n n: 2 ( 2)= − and g is the conformal Killing operator given by

W W W
n

W g:
2

,g ij i j j i
k

k ij = + −  

with  the Levi–Civita connection associated with the background metric g. Here, τ is the
mean curvature of M as a hypersurface of g( , ) given by

g K .ij
ijτ = ̂

The choice for σ and W in (1.2) is related to the York splitting; see the remark at the end of
section 4.1.

Using the decomposition (1.2), the constraint (1.1) become a system of PDEs for W( , )φ
as follows:
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where we denote div ( )g g gΔ φ φ=  and W Wdiv ( )g g g, Δ = . In the literature, equation (1.3a)
is commonly known as the Lichnerowicz equation, while equation (1.3b) is usually called the
vector equation.

The system (1.3) is notoriously hard to solve except in the case when τ is a constant
function, which is now well understood; see for instance [16]. Indeed, when τ is constant,
equation (1.3b) only involves W and generically implies that W 0≡ . Therefore, one is left
with solving the Lichnerowicz equation (1.3a) without any W. However, everything dra-
matically changes when τ is no longer constant. Perturbation arguments can be used to
address the case when dτ is small in some sense. But, until recently, very few results were
known for arbitrary τ. Two major breakthroughs were first obtained by Holst et al in [15, 16],
by Maxwell in [23], and then by Dahl et al in [4].

Usually, standard methods to solve elliptic PDEs require an a priori knowledge of the
solutions, i.e. nice domains in which one can try to apply fixed point theorems, fixed point
arguments, etc. However, via a simple scaling argument, changing φ to λφ where 1λ ≫
shows that the two dominant terms in the Lichnerowicz equation are n n( 1) N2 1τ φ− − and

W| |g g
N2 1 φ− − . These two terms have the same scaling behavior but come up with opposite

signs in the Lichnerowicz equation (1.3a). Although the first term has the right sign and in
fact helps us in applying the maximum principle, the second one has the wrong sign and
eventually destroys any attempt to get an a priori upper bound for φ when dτ is not small.

1.2. The Holst–Nagy–Tsogtgerel–Maxwell method

Losing such an a priori estimate, a very nice idea was proposed in [15, 16]. This was pushed
further in [23], and consists of looking for solutions of the system (1.3) with φ and W very
close to zero to make the two dominant terms irrelevant. To do this, the manifold M g( , )
needs to be closed with a positive Yamabe invariant, g( ) 0 > (see equation (1.4)). Con-
sequently, the scalar curvature Scalg becomes in some sense the dominant term. In addition, σ
needs to be small to control the right-hand side of equation (1.3a). The theorem they obtained
is the following.

Theorem 1.1. (see [23]). Let M be a compact Riemannian manifold without boundary. Given
p n> , let g W p2,∈ , W p1,τ ∈ , and W p1,σ ∈ , 0σ ≢ be given data. Assume that the Yamabe
invariant g( ) is strictly positive and that g has no conformal Killing vector fields. Then, if

Lσ ∞ is small enough, there exists at least one solution

W W M W M T M( , ) ( , ) ( , * )p p2, 2,φ ∈ × to the system (1.3).

Assume that M is a compact manifold without boundary, we recall that the Yamabe
invariant g( ) of M g( , ) is defined as

( )
( )

g
n n

( ) inf
(4( 1) ( 2)) d Scal dvol

dvol
(1.4)

W M

M g g g

M
N

g
N0 ( , )

2 2

21,2




∫

∫

φ φ

φ
=

− − +

φ≢ ∈

The method of [15, 16] was recently adapted to other situation such as asymptotically
Euclidean manifolds in [7], asymptotically cylindrical manifolds in [19], compact manifolds
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with boundary in [5, 14], and to asymptotically Euclidean manifolds with boundary in [13].
As can be seen from the statement of theorem 1.1, and as we mentioned earlier, the smallness
of Lσ∥ ∥ ∞ was used. However, it is worth mentioning that such an L∞-smallness assumption
can be weakened to small enough L2σ ; see [24].

1.3. The Dahl–Gicquaud–Humbert method

The idea of [4] goes in the opposite direction to the method used in section 1.2. Intuitively,
the idea of [4] is to study what happens if φ and W become very large, i.e. what prevents the
existence of an a priori estimate. The answer to this is heuristically that if φ can become very
large, by setting Lγ φ= ∞ and by renormalizing φ, W, and σ as follows:

W W, , ,N N1φ γ φ γ σ γ σ= = =∼∼ ͠− − −

it turns out that φ∼ and W͠ satisfy the following system:

n

n

n

n
W

W
n

n

1 4( 1)

2
Scal

1
,

1
d .

N g g
N

g g

N

g
N

2
2 1 2 1

,





γ
Δ φ φ τ φ σ φ

Δ φ τ

− −
−

+ = − − + +

= −

∼∼ ∼ ∼ ∼

∼

͠

͠

−
− − −⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

In the limit as γ → +∞, one is left with

n

n
W

1
.N

g g

N2 1 2 1τ φ φ− =∼ ∼͠− − −

Therefore, W͠ becomes a non-trivial solution to the so-called limit equation

W
n

n
W

1 d
. (1.5)g g g

, Δ τ
τ

= −͠ ͠

The rigorous argument leads to a similar limit equation with a parameter (0, 1]α ∈ given as
follows:

W
n

n
W

1 d
. (1.6)g g g

, Δ α τ
τ

= −͠ ͠

The main theorem of [4] can be stated as follows.

Theorem 1.2. Let M be a compact Riemannian manifold without boundary. Given p n> ,
let g W p2,∈ , W p1,τ ∈ , and W p1,σ ∈ be given data. Assume that g has no conformal Killing
vector fields, 0τ > and that 0σ ≢ if g( ) 0 ⩾ . If the limit equation (1.6) admits no non-zero
solution W͠ for all values of the parameter (0, 1]α ∈ , then there exists at least one solution

W W M W M T M( , ) ( , ) ( , * )p p2, 2,φ ∈ × to the system (1.3).

It is worth noticing that the result in [4] requires that τ is bounded away from zero,
however, it involves no assumption on the Yamabe invariant g( ) . A simplified proof of
theorem 1.2 appears in [24].

This method was adapted to several other contexts such as asymptotically hyperbolic
manifolds in [12] and asymptotically cylindrical manifolds in [8]. In particular, strong results
are obtained for negatively curved manifolds; see [12, proposition 6.2 and remark 6.3]. The
case of asymptotically Euclidean manifolds and compact manifolds with boundary is cur-
rently work in progress [6, 11]. New difficulties show up in these cases.
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1.4. Objective and outline of the paper

As we have already seen from sections 1.2 and 1.3, both of the approaches we presented are
dual in a certain sense. The first one constructs solutions that are very close to zero, while the
second is a means to ensure control on the size of the solutions. In this note, we emphasize the
duality between both methods, showing that the Holst et al method can be rephrased as a
scaling argument. This duality can potentially deepen further, recasting both methods in a
single framework; see remark 2.3. This also sheds light on the role of the assumptions of the
main theorem of [23].

Nevertheless, our new method leads to a result that is not as good as the one of [23] but
much simpler than the original one, and also appears quite versatile.

In section 2, we present in detail the simplest case of our method, namely when the
manifold is closed. Also in this section, a non-existence result is presented. Then, we have a
quick look at the asymptotically Euclidean case in section 3 and at compact manifolds with
boundary in section 4.

2. The closed case

In this section, we are interested in studying solutions of (1.3) when the underlying manifold
M is compact without boundary. In the first part of this section, we prove a result that
basically says that (1.3) is solvable when g( ) 0 > and 0σ ≢ is small enough; see theorem
2.1. Then, we improve [4, theorem 1.7] by showing that (1.3) admits no solution provided

g( ) 0 > , 0σ ≡ , and dτ τ is small in the Ln-norm.

2.1. Existence results for small but non-vanishing TT-tensors

The main result of this subsection is the following.

Theorem 2.1. Let M be a compact manifold without boundary. Given p n> , let
g W M S M( , ( ))p2, 2∈ , W M( , )p1, τ ∈ and W M S M( , ( ))p1, 2σ ∈∼ , 0σ ≢∼ be given data.
Assume that the Yamabe invariant g( ) is strictly positive and that g has no conformal
Killing vector fields. There exists 00η > such that for any (0, )0η η∈ there exists at least one

solution W W M W M T M( , ) ( , ) ( , * )p p2, 2,φ ∈ × to the system (1.3) with σ ησ= ∼.

Note that this theorem is not as good as theorem 1.1. Indeed, η0 depends a priori on σ∼ in
an unknown way, while theorem 1.1 asserts that the system (1.3) with σ ησ= ∼ has a solution
provided that L Lσ η σ∥ ∥ = ∣ ∣ ∥ ∥∼∞ ∞ is small enough (less than some ε > 0). So the corre-
sponding η0 would be / Lε σ∥ ∥∼ ∞. Nevertheless, the proof appears to be constructive since it
relies on the sub- and super-solutions method and on the implicit function theorem. For the
sake of clarity, we divide the proof into several claims.

Claim 1. Let 0σ ≢∼ be a TT-tensor belonging to W M S M( , ( ))p1, 2 . Then there exists a
unique solution W M( , )p

0
2, φ ∈∼ to the following equation

n

n

4( 1)

2
Scal , (2.1)g g g

N2 1Δ φ φ σ φ− −
−

+ = ∼∼ ∼ ∼− −
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Proof. The proof is standard; see [21]. Note that this equation is nothing but the
Lichnerowicz equation with 0τ ≡ and W 0≡ . To prove existence, we rely on the classical
sub- and super-solutions method described, for example, in [17, proposition 2]. Since

g( ) 0 > , there exists a positive W M( )p2, function ψ so that the metric g gN 2ψ= − has
positive constant scalar curvature. Setting 1φ ψ φ= ∼− , equation (2.1) transforms into

n

n

4( 1)

2
Scal . (2.2)g g

g

N2 2 1Δ φ φ ψ σ φ− −
−

+ = ∼− − −

To solve (2.2) for φ , we follow the method of sub- and super-solutions by constructing a sub-
solution φ− and a super-solution φ+ as follows. Let u W M( )p2,∈ denote the solution to the
following linear equation:

n

n
u u

4( 1)

2
Scal .g g

g

2 2
Δ ψ σ− −

−
+ = ∼−

It follows from the strong maximum principle that u 0> in M. By setting

u u( max )
N
N

1
2φ =−

− +
+

and

( )u umin ,
N
N

1
2φ =+

− +
+

one readily checks that φ+ and φ− are super- and sub-solutions for (2.2), respectively, meaning
that

( )n

n

4( 1)

2
Scalg g

g

N2 2 1Δ φ φ ψ σ φ− −
−

+ ⩽ ∼
− −

−
−

− −

and that

( )n

n

4( 1)

2
Scal .g g

g

N2 2 1Δ φ φ ψ σ φ− −
−

+ ⩾ ∼
+ +

−
+

− −

Hence, there exists (at least) one solution φ to equation (2.2) and it leads to a solution

0φ ψφ=∼ to equation (2.1) as well.
Uniqueness is also easy to prove. Indeed, let 0φ∼ and 0φ ′∼ be two solutions to

equations (2.1) and denote 0
1

0φ ψ φ= ∼− and 0
1

0φ ψ φ′ = ′∼− . A simple calculation leads us to
the following equality:

( ) ( )

( ) ( )

( )
( )

n

n

N
x

x x

4( 1)

2
Scal

1 1

( 1)
d

(1 )
,

g g

g N N

g N

f

0 0 0 0

2 2

0
1

0
1

2 2

0

1

0 0
2

:

0 0

  

∫

Δ φ φ φ φ

ψ σ
φ φ

ψ σ
φ φ

φ φ

− −
−

− ′ + − ′

= −
′

= − +
+ − ′

− ′

∼

∼

−
+ +

−
+

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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where the term f is obviously non-negative. This then implies

( )( ) ( )n

n
f

4( 1)

2
Scal 0.g g0 0 0 0Δ φ φ φ φ− −

−
− ′ + + − ′ =

Since fScal 0g + > , we immediately conclude that 00 0φ φ− ′ ≡ . This proves the uniqueness
of the solution 0φ∼ as claimed. □

Remark 2.2. As can be seen, the existence of such a metric g in the proof of claim 1 does
not need the full strength of the Yamabe theorem, we could only require that g has positive
scalar curvature. However, this claim strongly relies on the positivity of the Yamabe invariant

g( )Y . Indeed, assume that there exists a positive solution φ∼ to equation (2.1), the scalar
curvature Scalg ̂ of the metric g gN 1φ= −̂ satisfies

n

n
Scal

4( 1)

2
Scal .g

N
g g

N
g

1 2 2φ Δ φ φ φ σ= − −
−

+ = ∼− −⎜ ⎟⎛
⎝

⎞
⎠̂

Hence, the scalar curvature of g ̂ is non-negative and not identically zero.
Thus, g g( ) ( ) 0 = >̂ . This partially explains why this method cannot be adapted to

asymptotically hyperbolic manifolds.

Now, we introduce the following μ–deformed system of (1.3):

Note that this system is obtained from (1.3) by changing the mean curvature τ simply by μτ .

Claim 2. There exists 0ε > such that the system (2.3) admits a solution
W W M W M T M( , ) ( , ) ( , * )p p2, 2,φ ∈ ×∼ ͠

μ μ for all [0, )μ ε∈ .

Proof. The proof is based on the implicit function theorem. First, we define the operator

( ) ( )F W M W M T M L M L M T M: ( , ) , * ( , ) , *p p p p2, 2,  × × → ×+

as follows:

( )F W

n

n

n

n
W

W
n

n

, ,

4( 1)

2
Scal

1

1
d

.
g g

N
g g

N

g
N

2 2 1 2 1

,





μ φ
Δ φ φ τ μ φ σ φ

Δ φ μ τ
=

− −
−

+ + − − +

− −

∼
∼

∼ ∼ ∼ ∼

∼
͠

͠

͠

− − −⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

It is readily checked that F is a C1-mapping. Notice that

( )( )F 0, , 0 0
0

,0φ =∼

where 0φ∼ is the solution found in claim 1. All we need to do is prove that the partial derivative
of F with respect to W( , )φ∼ ͠ is an isomorphism at (0, , 0)0φ∼ . To this end, we first observe that
the differential F(0, ,0)0

 φ∼ is given by
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Note that F Z(0, , )(0, ,0)0
 θ∼ ∼

φ∼ is triangular, meaning that the second line of the two-by-two

block matrix above does not depend on θ∼. Thus, the invertibility of F(0, ,0)0
 φ∼ follows from the

fact that the diagonal terms

H W M L M
n

n
N

: ( , ) ( , )
4( 1)

2
Scal ( 1)

p p

g g g
N

2,

2
0

2

 

θ Δ θ θ σ φ θ

→

↦ − −
−

+ + +∼ ∼ ∼ ∼∼ ∼− −

and

( ) ( )V W M T M L M T M

Z Z

: , * , *p p

g

2,

,Δ

→

↦∼ ∼

are invertible. The invertibility of V follows from [23, proposition 5], while H is a Fredholm
map of index 0. Since g( ) 0 > , the conformal Laplacian is positive definite. Hence, for any
given u W M( )p2,∈ with u 0≢ , we calculate to obtain

uH u
n

n
u u

N u

( ) dvol
4( 1)

2
d Scal dvol

( 1) dvol 0.

M
g

M
g g g

M g
N

g

2 2

0

2 2 2

0

  

  

∫ ∫

∫ σ φ

= −
−

+

+ + >∼ ∼
>

− −

⩾

⎜ ⎟⎛
⎝

⎞
⎠

Hence, H has a trivial kernel. Thus, we have shown that F(0, ,0)0
 φ∼ is an isomorphism as

claimed. □

The last claim is just a straightforward calculation, therefore we omit its proof.

Claim 3. Set

W W

,

,

.

N

N
N

N
N

2
2

2
2

2
2

φ μ φ

μ

σ μ σ

=

=

= ∼

∼

͠

μ μ

μ μ

μ

−

+
−

+
−

⎧

⎨
⎪⎪

⎩
⎪⎪

If W( , )φ∼ ͠
μ μ solves (2.3), the W( , )φμ μ solves (1.3) with σ σ= μ.

Finally, the proof of theorem 2.1 follows by setting N N
0

( 2) ( 2)η ε= + − , where ε is the
constant appearing in claim 2.

Remark 2.3. It is quite appealing to use the deformation (2.3) of the conformal constraint
equations to get a new proof of the limit equation criterion as in [4]. Indeed, the system (2.3)
could be studied using the Leray–Schauder fixed point theorem, which would allow μ to go
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up to 1 (hence σ∼ would be set equal to the desired σ). Assuming that the set of W( , , )φ μ∼ ͠
solutions to (2.3) with 0 1μ⩽ ⩽ is bounded, the Leray–Schauder theorem would guarantee
that the system (1.3) has (at least) one solution. If this set is unbounded, the argument
presented in section 1.3 would lead to the existence of a non-trivial solution to equation (1.5).
Hence, the main result of [4] could be strengthened, getting rid of parameter α (which appears
because we introduce a different deformed system there). Such a result would show that the
methods of [15, 16] and [4] are two facets of a deeper method. However, one serious
difficulty appears in attempting this proof: one has to ensure that if φ∼ (or W͠ ) diverges, then μ
stays away from 0.

2.2. A non-existence result

The assumption on σ, namely that it has to be small but cannot be zero, looks weird at first
sight and one can wonder if the hypothesis 0σ ≢ is purely technical. As can be seen from
[4, 18, 23], σ is used to show that the function φ solving the Lichnerowicz equation (1.3a) is
bounded away from zero. We give a slight improvement of [18] and [3, theorem 1.7] to the
class of metrics with positive Yamabe invariant, showing that the assumption 0σ ≢ is
needed.

As in [4], the manifold M is still assumed to admit no conformal Killing vector fields.
Recall that the proof presented in [4] depends on a Sobolev quotient for the operator ,g i.e.
whenever M admits no non-zero conformal Killing vector fields, the following holds:

( )
( )( )

C
V

V
inf

dvol

dvol
0 (2.4)

*
g

V W M T M

M g g g

M g
N

g
N

0 ,

2 1 2

11,2

∫

∫
= >

≢ ∈

The main result in this subsection is the following.

Theorem 2.4. Assume that g W M S M( , ( ))p2, 2∈ has non-negative Yamabe invariant g( )
and (M,g) has no conformal Killing vector fields. If 0σ ≡ and W M( , )p1, τ ∈ , there exists a
positive constant g( ) independent of W M( , )p1, τ ∈ such that if

d
,

n

τ
τ

<

there is no solution W( , )φ to the system (1.3) with 0φ > .

Note that this allows (a priori) τ to have isolated non degenerate zeros. But, if τ changes
sign, it can be proven that d /τ τ does not belong to any L p space for any p 1⩾ . Hence, such a
case is out of reach from this theorem.

Proof. Let us first assume that the system (1.3a) admits a solution W( , )φ with 0φ > and
0σ ≡ . To prove the result, we denote by g the conformal metric gN 2ψ − where a positive

function W M( , )p2, ψ ∈ is chosen in such a way that Scal 0g ⩾ . Such a function ψ exists
since g( ) 0 ⩾ . In terms of the metric g , equation (1.3a) becomes
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( ) ( ) ( )
( )

n

n

n

n

W

4( 1)

2
Scal

1

. (2.5)

g g
N

g
g

N

1 1 2 1 1

2 2 1 1


Δ ψ φ ψ φ τ ψ φ

ψ ψ φ

− −
−

+ = − −

+

− − − −

− − − −

Consequently, if we denote : 1φ ψ φ= − , multiply both sides of (2.5) by N 1φ + and integrate
both sides of the resulting equation with respect to the conformal metric g , we get

n

n
n

n
W

3 2

2
d dvol Scal dvol

1
dvol dvol . (2.6)

M

N

g
g

M
g

N
g

M

N
g

M
g

g
g

2 1 2 2

2 2 2 2


∫ ∫
∫ ∫

φ φ

τ φ ψ

−
−

+

+ − ⩽

+ +

−

Under our conformal change g gN 2ψ= − , there holds

W W

dvol dvol ,

. (2.7)

g
N

g

g g
N

g g
2 2 2 2 

ψ

ψ ψ

=

=− −

Therefore, in terms of the background metric g, (2.6) implies

n

n
W

1
dvol dvol . (2.8)

M

N N
g

M

N
g g g

2 2 2∫ ∫τ ψ φ ψ− ⩽− −

Since W M( )p2ψ ∈ is strictly positive, (2.8) immediately implies

n

n
Wdvol

1

max

min
dvol . (2.9)

M

N
g

N

M
g g g

2 2 2∫ ∫τ φ ψ
ψ

⩽
−

⎛
⎝⎜

⎞
⎠⎟

We take the scalar product of the vector equation (1.3b) with W and integrate over M with
respect to the background metric g to get

W
n

n
W

1

2
dvol

1
d , dvol . (2.10)

M
g g g

M

N
g

2∫ ∫ φ τ− = −

Using the Hölder inequality, we can estimate (2.10) as follows:

W

n

n
W

n

n

n

n
W

d
C W

n

n
C

d
W

1

2
dvol

1
dvol

d
dvol dvol

1

1

max

min
dvol

dvol dvol

1 max

min
dvol dvol .

M
g g g

M

N
g

M g

n

g

n

M
g
N

g

N

N

M
g g g

M g

n

g

n

g
M

g g g

g

N

M g

n

g

n

M
g g

2

2 2
1 2

1
1

2

1 2

1

1 2
1 2

1
2 1

2









∫

∫ ∫ ∫

∫

∫ ∫

∫ ∫

τ φ τ
τ

ψ
ψ

τ
τ

ψ
ψ

τ
τ

⩽ −

⩽ −
−

×

⩽ −

−

−

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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By setting

n

n
C

1

2 1

min

max
,g

N 2

 ψ
ψ

=
−

⎛
⎝⎜

⎞
⎠⎟

one gets that

d
dvol ,

M g

n

g ∫ τ
τ

⩾

unless

W dvol 0.
M

g g g
2∫ =

However, in the second case, we conclude from inequality (2.8) that

dvol 0.
M

N N
g

2 2∫ τ ψ φ =−

Hence, 0φ ≡ , which contradicts the fact that 0φ > . Thus, we have proved that if dτ τ is
small in the Ln sense, then the constraint equations (1.3) with vanishing σ admit no
solution. □

Since our assumptions are weaker than those in [4, theorem 1.7], the constant 
appearing in theorem 2.4 is smaller than the constant appearing in [4, theorem 1.7].

3. The asymptotically Euclidean case

We now study the situation in the asymptotically Euclidean case. For relevant results on
Sobolev spaces on asymptotically Euclidean manifolds, we refer the reader to [1] or [21]. See
also the forthcoming article [5].

Let M g( , )n be a complete non-compact Riemannian manifold. We say that M g( , ) is
W k p,

δ -asymptotically Euclidean if there exist a compact set K M⊂ , a real number R 0> , and
a diffeomorphism M K B: (0)n

RΨ ⧹ → ⧹ such that, denoting b the flat (background) metric
on n and setting e g b: *Ψ= − , we have

( )e x x1 dvol ( )
i k

B

i

b

p n p i p
b

0

( ) 2 ( ) 2

n
R

∫∑ ∂ + < ∞
δ

⩽ ⩽
⧹

− + −

for some k 2⩾ , p n> and 0δ > . Here, we denoted by ei( )∂ the ith order derivative (in the
sense of distributions) of e and ei

b
( )∂ its (pointwise) normwith respect to the Euclidean metric.

Given an asymptotically Euclidean manifold M g( , ) we denote by r the pullback of the
distance function from the origin in n: r | · | Ψ= ∘ and extend it to a positive continuous
function on K. For any natural tensor bundle E M→ and any section E( )ξ Γ∈ , we define
the following weighted Sobolev norm:

( )r: 1 dvol ,W M E

i s
M

i

g

q n q i q
g

q

( , )

0

( ) 2 ( ) 2
1

s q, ∫∑ξ ξ= +
γ

⩽ ⩽

− + −
γ


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and the associated Sobolev space

{ }W M E W( , ): , .s q s q
W M E

,
loc

,
( , )s q,ξ ξ= ∈ < ∞δ δ
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We also recall that the Yamabe invariant for an asymptotically Euclidean manifold M g( , ) is
given by (1.4) even if the solution to the Yamabe problem in this case does not belong toW1,2

since it tends to some positive constant at infinity.
We prove the following theorem.

Theorem 3.1. Let M g( , ) be aW p2,
δ –asymptotically Euclidean manifold for some p n> and

some n(2– , 0)δ ∈ . Assume that the Yamabe invariant g( ) of the manifold M g( , ) is
positive. Then given any W M( , )p1, τ ∈ δ , W M S M( , ( ))p1, 2σ ∈∼

δ , 0σ ≢∼ , and *φ ∈∼
∞ +, there

exists 00η > such that for any (0, )0η η∈ there exists at least one solution to the system

(1.3a)–(1.3b) with 0σ ησ= and W W M W M T M( , ) ( , ) ( , * )N p p2 ( 2) 2, 2,φ η φ− ∈ ×∼
δ δ

−
∞ .

Note that the condition W M( , )p2, φ ηφ− ∈∼
δ∞ immediately implies that φ ηφ→ ∼

∞ at

infinity. The proof of this theorem mimics that of theorem 2.1, replacing the W k p, spaces by
the W k p,

δ ones. We only give the analogs of each of the four claims and a proof of the
significantly different steps.

Claim 1′. There exists a unique solution 0φ∼ to the equation (2.1) such

that W M( , )p
0

2, φ φ− ∈∼ ∼
δ∞ .

Proof. To simplify the proof, we assume that the manifold M g( , ) has zero scalar curvature.
This assumption is harmless since it is known that any asymptotically Euclidean metric g with
positive Yamabe invariant g( ) is conformally related to a metric g gN 2ψ= − with zero
scalar curvature with W M1 ( , )p2, ψ − ∈ δ (for instance, see [21, proposition 3]). Hence, one

can proceed as in the proof of claim 1, working with metric g and replacing
g

2σ∼ by
g

2
2

ψ σ∼− .

To prove the existence part, we first decompose vφ φ= + ∼∼ ∼
∞ and wish to look for v∼ in

W M( , )p2, δ solving the following PDE:

( )
n

n
v

v

4( 1)

2
. (3.1)g

g

N

2

1
Δ

σ

φ
− −

−
=

+
∼

∼

∼

∼
∞

+

Note that v 0≡∼
− is always a sub-solution to (3.1). To construct a super-solution to (3.1), let

v W M( , )p2, ∈∼
δ+ denote the solution to the following Poisson equation:

( )
n

n
v

4( 1)

2
.g

g

N

2

1
Δ

σ

φ
− −

−
=∼

∼

∼+

∞
+

From the strong maximum principle it follows that v 0>∼
+ . As a consequence, there holds

( )
n

n
v

v

4( 1)

2
,g

g

N

2

1
Δ

σ

φ
− −

−
⩾

+
∼

∼

∼

∼+

∞ +
+

this is to say that v∼+ is a super-solution to (3.1). The standard sub- and super-solutions method
applies, giving rise to the existence of a solution 0φ∼ solving (2.1) and satisfying

W M( , )p
0

2, φ φ− ∈∼ ∼
δ∞ . The proof of the uniqueness property is then entirely similar to

the compact case, therefore we omit it. □
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Claim 2′. There exists 0ε > such that the system (2.3) admits a solution W( , )φ∼ ͠
μ μ such that

W M( , )p2, φ φ− ∈∼ ∼
μ δ∞ and W W M T M( , * )p2,∈͠ μ δ for all [0, )μ ε∈ .

Proof. The proof of claim 2 translates mutatis mutandis, the only difference being that we
need to work on the affine space W M W M T M( , 0) ( , ) ( , * )p p2, 2,φ + ×∼

δ δ∞ . The relevant
properties for the operator g,Δ on asymptotically Euclidean manifolds can be found in [24,
theorem 5.4]. □

Claim 3′. Set

W W

,

,

.

N

N
N

N
N

2
2

2
2

2
2

φ μ φ

μ

σ μ σ

=

=

= ∼

∼

͠

μ μ

μ μ

μ

−

+
−

+
−

⎧

⎨
⎪⎪

⎩
⎪⎪

If W( , )φ∼ ͠
μ μ solves (2.3) with φ φ→∼ ∼

μ ∞ at infinity, then W( , )φμ μ solves (1.3) with σ σ= μ and
N2 ( 2)φ μ φ→ ∼

μ
−

∞ at infinity.

4. The compact with boundary case

4.1. Boundary conditions

A natural issue in the study of the Einstein constraint equations is the construction of initial
data modeling black holes. While the definition of a black hole requires knowledge of the
whole solution g( , ) of the Einstein equations, it is natural to construct initial data con-
taining apparent horizons. For an overview, we refer the reader to [3]. A natural way to
construct such solutions is to excise the inside of the apparent horizon and thus construct
solutions to the constraint equations on the outside. As a consequence, we fix a manifold M
with boundary M∂ , and solve the constraint equations on M in such a way that M∂ becomes
an apparent horizon.

The first articles where such solutions to the constraint equations were constructed dealt
with the constant mean curvature case; see e.g. [10, 21]. Very recently, people have turned
their attention to compact manifolds with boundary with a varying τ; see for example [5, 14].

To go further, let us roughly reformulate this problem. For a detailed explanation and
calculations, we refer the reader to [5, 11, 14]. Let ν ̂ be the (spacelike) unit normal vector
field to M∂ in M pointing towards the outside of M (hence to the ‘inside’ of the apparent
horizon) and let n ̂ be the future directed unit normal spacetime vector field to M. Then, by
means of apparent horizon boundaries, in addition to the constraint (1.1), we further require

0,

0,
(4.1)

Θ
Θ

⩽
=

−

+




⎪

⎪

⎧
⎨
⎩

where Θ± , known as the null expansion with respect to the null normal ℓ n: ν= ∓± ̂̂ , are given
as follows:

( )K K Htr , ,g gΘ ν ν= − ∓±   ̂ ̂̂ ̂
where Hg ̂ is the (unnormalized) mean curvature of M∂ in M evaluated with respect to ,ν ̂ that
is to say
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H g ,g
ij

i jν=  ̂̂̂
where we denote by  the Levi–Civita connection for the metric g .̂ Since we require 0Θ ≡+
on M∂ , the conditions can be rewritten as

( )K K

H

tr ,
2 2

,

2 2
.

g

g

ν ν
Θ Θ Θ

Θ Θ Θ

− =
+

=

=
−

=

+ − −

− + −

  

  

 
⎧
⎨
⎪⎪

⎩
⎪⎪

̂ ̂̂

̂

On the other hand, recalling that g gN 2φ= −̂ , one has the following formula relating: Hg ̂ and
Hg:

n

n
H H

2( 1)

2
,g g

N 2φ φ φ−
−

∂ + =ν ̂

where N 2 1ν φ ν= − ̂ is the unit vector field normal to Σ calculated with respect to the metric g.
Hence, we get the following condition for φ:

n

n
H

2( 1)

2 2
. (4.2)g

N 2φ φ
Θ

φ−
−

∂ + =ν
−

Next, thanks to Ktrg τ=̂ and the fact that

( )( )K
n

W, ( , ) ,g
Nν ν τ σ ν ν φ= + + − ̂ ̂

we obtain the following identity:

( )n

n
W

2

1
( , ) . (4.3)g

N
Θ

τ σ ν ν φ= − − +− −


Contrary to (4.2), this does not give a boundary condition that complements equation (1.3b).
In this context, it is natural to prescribe W( )( , · )gσ ν+ as follows:

( )W
n

n
( , · )

1

2
(4.4)g

Nσ ν τ
Θ

φ ν ξ+ = − − +− ♭
⎛

⎝⎜
⎞
⎠⎟

where ξ is a 1-form on M∂ that we extend to the restriction of TM to M∂ by setting ( ) 0ξ ν =
so that condition (4.3) is satisfied. Also, in (4.4), we use ν♭ to denote the 1-form dual to the
normal vector field ν, which is given by X g X( ) ( , )ν ν=♭ for any vector field X on M∂ .
Having had the discussion above, we are now in a position to write the following system of
PDEs:

( )

n

n

n

n
W

W
n

n

n

n
H

W
n

n

4( 1)

2
Scal

1
,

1
d ,

2( 1)

2 2
,

( , · )
1

2
,

(4.5)

g g
N

g g

N

g
N

g
N

g
N

2 1 2 1

,

2







Δ φ φ τ φ σ φ

Δ φ τ

φ φ
Θ

φ

σ ν τ
Θ

φ ν ξ

− −
−

+ = − − + +

= −

−
−

∂ + =

+ = − − +

ν

− − −

−

− ♭





⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪
⎛
⎝⎜

⎞
⎠⎟
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where the given data are now M g( , ) a compact Riemannian manifold with boundary M∂ , τ a

function on M, σ a TT-tensor, Θ− a nonpositive function on MΣ = ∂ and M T M( , * )ξ Γ∈ ∂ a
1-form.

In the presence of the boundary M∂ , instead of using the sign of g( ) , we use the sign of
the Yamabe invariant g M( , ) ∂ introduced by Escobar [9]:

( )
( )

g M
H

( , ) : inf
d Scal dvol ds

dvol
.

W M

M
n

n g g g M g g

M
N

g
N0 ( , )

4( 1)

2
2 2 2

21,2




∫ ∫

∫

φ φ φ

φ
∂ =

+ +

φ≢ ∈

−
− ∂

We also comment on the York splitting on compact manifolds with boundary. While on
closed manifolds we have that the set of (say) W1,2-TT-tensors is L2-orthogonal to the set

W W W M T M{ , ( , * )}g
2,2 ∈ , this is no longer true for compact manifolds with boundary.

Indeed, let σ be a TT-tensor and W be an arbitrary 1-form, then if we denote byW ♯ the vector
field dual to the 1-form W, then by a direct calculation together with the Stokes theorem, we
have

( )( ) ( )
( )

W W

W W

W

, dvol 2 , dvol

2 div , · dvol 2 (div ) dvol

2 , ds ,

M
g g

M
g

M
g

M
g

M
g

∫ ∫
∫ ∫
∫

σ σ

σ σ

σ ν

=

= −

=

♯ ♯

∂
♯



where tr 0gσ = and div 0g σ = were also used to obtain the first and last lines, respectively.
Since the restriction of W to M∂ can be arbitrary, σ belongs to the orthogonal of the set of

Wg ʼs if and only if we also impose that ( , · ) 0σ ν ≡ on M∂ . We will make this assumption
from now on.

4.2. Existence result

The main result of this subsection is the following.

Theorem 4.1. Let M be a compact manifold with boundary. Given p n> , let
g W M S M( , ( ))p2, 2∈ , W M( , )p1, τ ∈ , and W M S M( , ( ))p1, 2σ ∈∼ , W M( , )p p1 1 , Θ ∈ ∂−

− ,

W M T M( , * )p p1 1 ,ξ ∈ ∂∼ − be given data, where σ∼ is a TT-tensor such that ( , · ) 0σ ν ≡∼ on M∂ .
Assume that the Escobar invariant g M( , ) ∂ is strictly positive, that g has no conformal
Killing vector fields and either 0σ ≢∼ or 0ξ ≢∼

. There exists 00η > such that for any

(0, )0η η∈ there exists at least one solution W W M W M T M( , ) ( , ) ( , * )p p2, 2,φ ∈ × to the

system (4.5) with σ ησ= ∼ and ξ ηξ= ∼
.

We initiate the proof of theorem 4.1 by proving that the right-hand side of the analog of
equation (2.1) (see equation (4.6)) is actually non-zero.

Claim 0″. Let W W M T M( , * )p
0

2,∈͠ be the unique solution of

W 0,

( , · ) .

g

g

, 0



Δ

ν ξ

=

= ∼
͠⎪

⎪

⎧
⎨
⎩
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Then under the assumptions of theorem 4.1, we have

W 0.g g
0

2
σ + ≢∼ ͠

Proof. The existence, uniqueness, and regularity of W͠ 0 are proved in [13, theorem 4.5]. See
also [21, proposition 5.1] and [10, theorem 8.6] for earlier references. From the remark at the
end of section 4.1, we have

W Wdvol dvol dvol .
M

g g
g

M g g
M

g g
g0

2 2
0

2
 ∫ ∫ ∫σ σ+ = +∼ ∼͠ ͠

Hence if 0σ ≢∼ , the claim follows. Otherwise if 0ξ ≢∼
, W͠ 0 is a non-trivial element of

W M T M( , * )p2, . Since M g( , ) has no non-zero conformal Killing vector field, it follows that

W dvol 0,
M

g g
g0

2
∫ >͠

which proves the claim. □

Claim 1″. Under the assumptions of theorem 4.1, there exists a unique solution
W M( , )p

0
2, φ ∈∼ to the following system:

n

n
W

n

n
H

4( 1)

2
Scal ,

2( 1)

2
0.

(4.6)
g g g g

N

g

0 0 0
2

0
1

0 0

Δ φ φ σ φ

φ φ

− −
−

+ = +

−
−

∂ + =

∼∼ ∼ ∼

∼ ∼

͠

ν

− −⎧
⎨
⎪⎪

⎩
⎪⎪

Proof. The proof of this claim is similar to the proof of claim 1. From the work of Escobar
[8, lemma 1.1], there exists a conformal factor W M( , )p2, ψ ∈ such that the metric
g gN 2ψ= − has Scal 0g > and the mean curvature of the boundary M∂ vanishes identically:

H 0g ≡ 1. The equation for :0
1

0φ ψ φ= ∼− reads

( )n

n
W

4( 1)

2
Scal ,

0,
(4.7)

g g g
g

N
0 0

2
0

2

0
1

0

Δ φ φ ψ σ φ

φ

− −
−

+ = +

∂ =

∼ ͠

ν

− − −⎧
⎨⎪
⎩⎪

where N1 2ν ψ ν= − is the unit normal to M∂ for the metric g . There exists a unique function
u W M( , )p2, ∈ solving

( )n

n
u u W

u

4( 1)

2
Scal ,

0.
(4.8)g g g

g

2
0

2

0

Δ ψ σ− −
−

+ = +

∂ =

∼ ͠

ν

−⎧
⎨⎪
⎩⎪

Further, the function u is positive. By setting

u u( max ) N N( 1) ( 2)φ =−
+ +

1 As pointed out by the referee, [8, lemma 1.1] is only stated for smooth metrics. However, the proof works forW 2,p

metrics without any change.
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and

( )u umin ,N N( 1) ( 2)φ =+
+ +

one readily checks that φ+ and φ− are super- and sub-solutions for (4.7). Hence, by the sub-
and super-solution method, we conclude that there exists a solution 0φ to (4.7). The function

:0 0φ ψφ=∼ is then a solution to (4.6). The proof of uniqueness is a rephrasing of that in claim
1 with a Neumann boundary condition. □

Similar to (2.3) for the closed case, in view of (4.5) we now introduce the following μ-
deformed system for the compact with boundary case:

n

n

n

n
W

W
n

n

n

n
H

W
n

n

4( 1)

2
Scal

1
,

1
d ,

2( 1)

2 2
,

( , · )
1

2
.

(4.9)

g g
N

g g
N

g
N

g
N

g
N

2 2 1 2 1

,

2







Δ φ φ τ μ φ σ φ

Δ φ μ τ

φ φ
Θ

μφ

ν μ τ
Θ

φ ν ξ

− −
−

+ = − − + +

= −

−
−

∂ + =

= − − + ∼

∼∼ ∼ ∼ ∼

∼

∼ ∼ ∼

∼

͠

͠

͠

ν

− − −

−

− ♭





⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪
⎛
⎝⎜

⎞
⎠⎟

This system is obtained from (4.5) by replacing τ by μτ and Θ− by μΘ− .

Claim 2″. There exists 0ε > such that (4.9) admits a solution W( , )φ∼ ͠
μ μ for all [0, )μ ε∈ .

Proof. We define the following operator:

( )

( ) ( )

F W M W M T M

L M W M L M T M W M T M

: ( , ) , *

( , ) ( , ) , * , *

p p

p p p p p p

2, 2,

(1 (1 )), (1 (1 )),

 

 

× ×

↓

× ∂ × × ∂

+

− −

given by

( )F W

n

n

n

n
W

n

n
H

W
n

n

W
n

n

, ,

4( 1)

2
Scal

1

2( 1)

2 2
1

d

( , · )
1

2

.

g g
N

g g
N

g
N

g
N

g
N

2 2 1 2 1

2

,







μ φ

Δ φ φ τ μ φ σ φ

φ φ
Θ

μφ

Δ φ μ τ

ν μ τ
Θ

φ ν ξ

=

− −
−

+ + − − +

−
−

∂ + −

− −

− − − − ∼

∼

∼ ∼ ∼ ∼

∼ ∼ ∼

∼

∼

͠

͠

͠

͠

ν

− − −

−

− ♭





⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
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It is not hard to see that the mapping F is of class C1 and

( )F W0, ,

0
0
0
0

,0 0φ =∼ ͠
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

where 0φ∼ and W͠ 0 are given in claims 0″ and 1″. Again, all we need to do is to prove that the
derivative of F with respect to W( , )φ∼ ͠ is an isomorphism at W(0, , )0 0φ∼ ͠ . To do so, we need to
study the following mapping:

( )

( ) ( )

( )F W M W M T M

L M W M L M T M W M T M

: ( , ) , *

( , ) ( , ) , * , * .

W
p p

p p p p p p

0, ,
2, 2,

(1 (1 )), (1 (1 )),

0 0 

 

×

↓

× ∂ × × ∂

φ

− −

∼ ͠

A direct computation shows that this derivative is given by

Clearly, F W(0, , )0 0 φ∼ ͠ is continuous. To prove that F W(0, , )0 0 φ∼ ͠ is invertible, we observe that
F W(0, , )0 0 φ∼ ͠ is block upper-triangular, where the diagonal blocks are

n

n
N

n

n
H

4( 1)

2
Scal ( 1)

2( 1)

2

and
· ( , · )

g g g
N

g

g

g

2
0

2
,




Δ σ φ Δ

ν

− −
−

+ + +

−
−

∂ +

∼

ν

− −⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

which are invertible. Hence, the derivative F W(0, , )0 0 φ∼ ͠ is an isomorphism at W(0, , )0 0φ∼ ͠ as
claimed. □

Claim 3″. Set

W W

,

.

N

N
N

2
2

2
2

φ μ φ

μ

=

=

∼

͠

μ μ

μ μ

−

+
−

⎧
⎨⎪
⎩⎪

If W( , )φ∼ ͠
μ μ solves (4.9), then W( , )φμ μ solves (4.5) with : N N( 2) ( 2)σ σ μ σ= = ∼

μ
+ −

and : N N( 2) ( 2)ξ ξ μ ξ= = ∼
μ

+ − .

Finally, the proof of theorem 4.1 follows by setting N N
0

( 2) ( 2)η ε= + − , where ε is the
constant appearing in claim 2″.
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Remark 4.2. It is tempting to prove an analog of the non-existence result for the case of a
compact manifold with boundary as in theorem 2.4. The natural assumptions in this theorem
would then be 0σ ≡ , 0ξ ≡ and g M( , ) 0 ∂ > . The proof is, however, not just an extension
of that of theorem 2.4, it relies on the techniques developed in [11], so we choose to defer this
to that article.
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