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Problem/Ql n

Find al@air‘s of positive integers (z,p) such that p s o prime, z < 2p and
2Pt 15 a diyistr o -1+ 1
1§ Clj/;f (p—1)" +
Solution. Clearly we have the solutions (1,p) and (2,2), and for every other
solution p > 3.
It remains to find the solutions (z,p) with z > 2 and p > 3. We claim that in this
case z is divisible by p and z < 2p, whence = p. This will lead to

PN 1P+ 1= (pﬂ— (?i)ppfﬂ...nu (pig)p* (pfg) +1)

therefore, because all the terms in the brackets excepting the last one is divisible by
p, p— 1< 2. This leaves only p =3 and z = 3.

Let us prove now the claim. Since (p — 1)* |- 1 is odd, so is  (therefore z < 2p).
Denote by g the smallest prime divisor of z. From g|(p — 1* 4+ 1 weget (p—1)F=
—1(modgq) and (g,p — 1) = 1. But (7,9 — 1) = 1 (from the choice of g} leads to the
existence of integers u,v such that uz + v(g — 1) = 1, whence p — 1= (p—-1*"
(p— 1)1 = (-1)*-1* = —1(mod q), becausc u must be odd. This shows that q|p,
therefore g = p.

In conclusion the required solutions are (2,2), (3,3) and (1,p), where p is an
arbitrary prime.
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Problem N2

Prave that cvery positive rational number con be represented in the form
o+t
A+ dd’

where a,b,c,d are positive integers.

Solution. We firstly claim that cvery rational number from the interval (1,2) can
be represented in the form

(13 + b3
Indeed, let m/n € (1,2), where m and n are natural numbers. We will choose a, b, d
such that b # d and ¢® — @b + b? = a®> — ad + % i.e. b+ d = a. In that case

&+ a+b  a+d
B+ a+d 2a-b

Taking o + 6 = 3m, 20 — b = 3n, that is a = m+n, b = 2m — n, the claim is
proven.
We can prove now the required conclusion. If 7 > 0 is a rational nunber, take
3
pusitive integers p, g such that 1 < p—gr < 2. There exists positive integers a, b, d such
q
that 5
A

T = 5
q3 a3+d3

Hence
__ (og+ (ba)?
(ap)® + (dp)®
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Problem N3

Prove that there exists two strictly increasing sequences (a,) and (b, such “hat
a.(a, + 1) divides b. + 1 for every natural n.

Solution. A way of constructing such sequences is to use the following

Lemma. Ifa,c € N and a?|c?+1 then there erists b € N such that a*(a*+1) b + 1.

Proof. Indeed a?|(c+ a®c —a%)2+1 and a® - 1|(c + a’c — a®)? + 1, s0 we can "ake
bh=c+a—ad. C

Using the lemma we see that it is enough to find strictly increasing sequences 1@,,)
and (e,) such that a2|c2 + 1 for every n € N. This can be realised by takine for
instance a, = 2% + 1, ¢, = 2™~ In this case

A 4+1=(2"" +1=(a,—1)* —1
is divisible by aiv
Another selution. We will use factorizations over the ring Z[i]. Take {p,q, ") a
Pythago-
rean triple (p®> = ¢*> +r?) and a = p*. Then
ala +1) — (¢ +r3) P’ +1) — (g+ri)p+i){g —ri)(p— i)

must divide (b + 4){(b — ¢}). Therefore we have to find a Gaussian integer x + yi -uch
that
(q4+ri)(p+ i)z +y) =b+i

that is we have to find integers z, y such that
(pr+qz+(pg—rly=1

It is casy to see that if p, g, are coprime then pr + ¢ and pg — r are also coprime:
if d is & prime divisor of pr + ¢ and pg — r, then

diQ(pT + q) - T(pq- r) = q2 + r? = pﬁ’

hence dlp and also d|g, 7, which implies d = 1. Thus the existence of #,y is proven.
The construction of the sequences {a,) and (b,) is now obvious.



Bucharest 1999 7

Problem N4

Denote by S the sct of all primes p such that the decimal representation of L/p
has the fundamental period divisible by 3.
For every p € S such that 1/p has the fundamental period 3r one may write

1
_:O,erag“.a-gralﬂg...ag,—,.-7

P
where r = r(p); for every p € S and every integer k > 1 define f(k,p) by

f(kwp) =a + Ctrr(p) + Qg42r(p)-

a) Prove that S is infinite.
b) Find the highest value of fkp)jork>1andpe S.

Solution. a) The fundamental period of 1 /p is the smallest integer d > I such
that 104 — 1 is divisible by p.

Let & be a prime and N, = 1025 | 10° + 1. Clearly N, = 3(inod9). Let p, be a
prime divisor of N,/3; p, cannot be 3. Since N, is a divisor of 10% — 1, the decimal
representation of 1/p, has a period of length 3s, so its fundamental period is a divisor
of 3s. The fundamental period cannot be s, beeause this would inply 10° = 1(mod p.),
leading to Ny = 3 # O(mod p,). Also, the fundamental period can be 3 only in the
case when p, is a divisor of 10 — 1 = 33.37, that is s = 37. We claim that p, can be
chosen # 37: otherwise N, = 3.37% = 3(mod4) and N, = 10%* +10° +1 = 1{mod 4)
Henee, for every prime s we can find a prime p, such that the decimal representation
of 1/p, has the fundamental period of length 3s.

b) Let 3r(p) be the fundamental period for a prime p € 8. Theu pis a divisor of
10%® — 1 but not a divisor of 107 — 1, s0 p is a divisor of N, = 1070 11070 4 1.

Let 1/p=0,a1a505... .25 = 100~ /pand y; = {z;} = 0,0;a;110549 - . -

Clearly a; < 10y;, therefore

F(k, D) = ar + Gryrz) + Oigargpy < 100 + Yhir(p) + Yeiorip))-

We notice that
108N,

p
is an integer, whence yi + ypirg + Yrtar(p) 18 also an integer. Since yy + ypopp +
Ye+2r(py < 3, it follows that -y, + Yk+r(p) T Ykt2e(p) S 2, therefore f(k,p) < 20.

Hence, the highest value for f(k, p) can be at most 19. From f{2,7) = 44847 =19
wo conclude that this is the required maximum.

Tk + Thgr(py + Tripar(p) =
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Problem N5

Let n, k be positive integers such that n is not divisible by 3 and k > n. Prove
that there exists a posttive integer m which s divisible by n and the sum of its digits
in decimal representation is k.

Solution. Let n = 295°p, where a, b are non-negative integers and (p,10) = 1. We
notice that it is enough to find M such that p|M and the sum of M’s digits is k (we
can take then m — M . 10°, where ¢ = max{a, b}).

Since (p,10) = 1, there exists k > 2 such that 10F = 1{modp). It follows that
10* = 1(mod p) and 109%+! = 10(mod p) for every non-negative integers ¢, j. We will
look for integers u,v > 0 so that M = i 105 + il 10%*L (if 4 or v is O then the

i=1 j=
corresponding sum is 0).
Notice that M = u + 10v{mod p). Hence M is acceptable if

{u+v:k {u—i—v:k (1)
plu+ 100 pk+9% (2)

Because (p, 3) = 1, one of the residues (mod p) of the numbers k, k+9,k+18,..., k+
9(p — 1) must be nil, so relation (2) holds for some vy with 0 < vy < p. Taking this
v and up = k — vy we get the wanted M.
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Problem N6

Prove that for every real number M there exists an infinite arithmetic progression
such that:

- each term is a positive integer and the common difference 4s not divisible by 10;

— the sum of the digits of each term (in decimal representation) crceeds M,

Solution. We will prove that it is possible to take a common difference of the form
10™ + 1, where m is a positive inleger.

Let ag be a positive integer and a, = g + n(10™ + 1) = B,b,_, ... by, where s
and the digits by, b1, ..., b, depend on n. It is easy to see that if | = k(mod 2m) then

2m—1 .
10! = 10* (mod (10™ + 1)). Therefore ag = a, = bsbo1 .. bg= 3 10 (mod 10™ +
i=0

1), where ¢ = b; + boms + by + ... fori=0,1,...,2m — 1.
Let N > M be a positive integer. The number of 2m-uples (¢, c1, ..., Comey ) Of

non-regative integers with co+e¢; + ...+ ¢opmeg < N is equal to the number of strictly
increasing sequences

0<m<gtatl <gta+ent2<... < oteit. Ao +2m—1 < N4+2m—1,

This is equal to the number of subsets with 27 elements of the set {0, 1,...,2m—
1} and is
2m + N 2m+ N)2m+N-1)-. ... 2m+1)
KNQm - - .
N N!

For sufficiently large m we have Hwam < 10™. Toking aq € {1,2,.... 10™} such

that g is not congruent (mod L0™ + 1) with any of the numbers belonging to the set
T — Tl tot. .t Cmn < N},
we get the required sequence.

Remark. For large M a “small” common difference cannot do the job, because
in such a case the sequence would have at least one of its terms in an interval of the
form [10%,10% + d] and all the integers from such an interval have the sum of their
digits at most 1+ 9 - log,, d.
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Problem G1

Let ABC be a triangle and M be an interior point. Prove that

min{ MA MB MC}+MA+ MB+ MC < AB+ AC + BC.

Lemma. If M is an interior point of the conver quadrilateral ABC'D then MA+
MB <AC+CD+ DB.

Proof of the lemma (Figure 1). The ray (AM intersects the quadrilateral in N;
suppose, for instance, that N € [C'D]. Then MA+ MB < MA+ MN + NB <
AN+ NC+CB<AD+ DN +NC+CB=AD+ DC+CB.

Solution of the problem (Figure 2). The median triangle DEF divides trian-
gle ABC into four regions. Each region is covered by at least two of the convex
quadrilaterals ABDE, BCEF, CAFD. If, for instance, M belongs to [ABDE] and
[BCEF] then MA+ MB < BD+ DE+ EAand MB+ MC < CE+EF + FB. By
adding these two inequalitics we get MB + (MA+ MB + MC) < AB + BC + CA,
which implies the required conclusion.

Another solution. Let O be the circumcenter of AABC.

Case 1: O € [ABC] (Figure 3). Suppose M € |[ADOE|. Then M A = min{MA, M B, M(
and MA+ MB< NA+NB, MA+ MC < NA+ NC. Since NA+NB < (0A+ OB
and NA + NC < AD + DC (for O(|[ANC]; otherwise NA+ NC < BD+ DC) it is
enough to prove that m. 4 {¢/2} + 2R < o+ b + ¢ (with the usual notations). Since
m, < (e + )/2, it is enough to prove that 4R < a + b + ¢ (in a nonobtuse-angled
triangle).

This reduces to sin A +sin B+smC > 2, or

) B-C
sin — cos — + cos — cos > 1.

2 2 2 2
For fixed 4 the minimum value of the left member is obtained when B — C' has
maximum value, that is B = 7/2, C + A = #/2 and thc minimum is (1/2)(sin A +
1+ cos A) thercfore it is greater than (1/2)(1+1) =1.

Case 2. ABC is obtuse-angled (Figure 4). Suppose for instance that m{B) > 90°.
Let P and Q be the intersections of the perpendicular bisectors of e sides [AB] and
[BC] with AC.

For M € [ADP], min{MA, MB,MC} = MA and, as above, MA + MB <
PA+PB=2-AP, MA+MC <m.+(c¢/2) < (a+b+c)/2. It is enough to prove
thal 4- AP < a+b-+c, which is implied by 44AP < 20 < a+b+c. A similar argument
works in the case M € [CEQ)].

For M € [BEQPD), let BM N AC = N.

Then min{MA MB MC} = MB and MB+ MC < NB+ NC, MB+ MA <
NB + NA, NB < max{PB,QB}, therefore it is enough to prove that 2 - PB <«
ADB+ BC. Since PB < BD+ DP < BD + PI”, the needed relation is obvious.
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Problem G2

A circle is called a separator for a set of five points in a plane if it passes through
three of these points, it contains a fourth point inside and the fifth point is outside
the circle.

Prove that every set of five paints such that no three are collinear and no four are
concyelic has exactly four separators.

Solution. Let {A, B, C, D} be the inverses of four of the points of the set through
an inversion having as pole the fifth point. Notice that a separator which passes
through the pole is transformed into a straight line which passes through two of the
points A, B, C, D and separates the other two. Notice also that a separator which
doues not pass through the pole is transformed into a circle which passes through three
of the points A, B,C, D and contains the fourth point inside.

Considering K-the convex hull of the set {4, B,C, D}, iwo cases may appear.

Case 1. K =quadrilateral (for instance ABC D). In this case we have as scparators
the two diagonals of the quadrilateral and one circle from each pair {{ABC). (ABD)},
{(CDA),(CDB)} (the one corresponding to the smaller angle from {ACS, ADB}
and {CAD,CBDY} respectively).

Case # K=triangle (for instance AABC). In this case we have as separators,
with obvious arguments, the straight lines DA, DB, DC and the circle (ABC).

Another solution. Consider coordinates and the points Aid{z;, ), ¢ = 1,2,3,4,5.
Let d;;u be the value of the determinant |22+ 42 2, Y1 1]pi ;1. The circle (A1 AzAz)
is a separator iff djo3s and digss have different signs. Let us look at the ten pairs
(d1234, d1235), (d1243, d12gs), etc. corresponding to the ten circles which pass through
three of the five given points. Denoting by a, the number die (¢ < 7 < & < [,
{i,7,k,1,n} = {1,2,3,4,5}), the ten pairs are (a5, as), (—as, aa), (—a4, —a3), (05, ag),
(as, —a2), (a3, G2), (—as, a1}, {(—as, —ar), (—asz, a1), (—ag, —ar).

We notice that the number of separators is equal to the number of pairs of terms
with the same sign from the sequence S = (a;, —ag, a3, —4,a5). We also remark
{using the determinant |22+u2 2, % 1 1lp=12345) that a1 —as +a3—ue+as = 0.
This shows that S cannot have all its terms of the same sign.

We claim also that S cannot have four terms of Lhe same sign. Indeed, if four
terms have the same sign then all the six circles passing through one point of the
given five are separators. Taking this point as origin, the Oz axis through an other
of the given points and passing to polar coordinates we would get, for instance,

™ cosa sina r{ cosa Ssina
ry cosh sind | >0, rz cosb sinb [ <0,
ry cosc sinc T4 1 0
. cosa sina re cosb sinb
s cosc sine | >0, and rg cosec sine | < 0.

T4 1 0 T4 1 0
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This would lead to

rysin{c — b) + rysinfe — ¢} + rysin(b— a) > 0,
—rysinb+ rysina + resin(d — a) < 0,
—rysine + rysina + rqsin{c — a) > 0,
—rasinc+ rysinb + rysinf{c — b) < 0.

Multiplying the last three relations by r3, —ry and r; respectively and adding the
results we would get ry[r; sin{c — b) + rysin(a — ¢) + 3 sin(b — a)] < 0, impossible.

Hence three terms of § have the same sign and the other two have the other sign,
therefore there are exactly four separators.
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Problem G3

A set S of points from the space will be called completely symmetric if 4t has
at least three elements and fulfils the condition:

for every two distinct points A, B from 8 the perpendicular biseclor plane of the
segment AB is o plane of symmeiry for 5.

Prove that if a completely symmetric set is finite then it consists of the vertices of
either of a regular polygon, or o regular tetrahedron or @ regular octahedron.

Solution. Denote by rpg the refiection in the perpendicular bisector plane of a
segment. PE) and let G be the barycenter of S. From r45(S) = S we get rap(G) = G
for every A, B € S, therefore all the points of § are at the same distance from .
This shows that S is included in a sphere .

Case 1: S is included in o plane . In this case § is included in the circle & N«
and its points form a convex polygon A;As...A4,. The reflection in the perpendicular
bisector of 4, Aj; transforms cach half-plane bordered by A, A3 into itself, therefore
the point 74, 4,(A2) can be only A;. Hence A; Ay = Az Az, In the same way AyA; —
AzAy = ... = Ay A, Since S is included in a circle, this proves that 4;A;..4, is a
regular polygon.

Case 2: the points of S are not coplaner. In this case the points of S are the vertices
of a convex polyhedron P (since they are on the sphere L). Each face A;1A4,... A of
P is invariant under every reflection rg, 4; 1 <4 < j <k, therefore it is a regular
polygon ([rom case 1).

Notice also that every reflection 45, A, B € § transforms a face of P into a face
of P.

Take now a vertex V of P and denate P's edgesissuing from V by V1, VVa, . .., VV,,

such that (VV1, V), (VVA, VVa),... . (VV,,VV]) are an the same face (Figure 1).
Notice that the intersection of the half-planes (W, V3, V; and ViV, V with P are tri-
angles ViV2V; and V113V respectively. The reflection ry,y, transforms each of these
half-planes into itself, therefore it can transform V, and V only into themselves. This
shows that 7y, v, must transform the face containing {(V'V5, V'V3) into the face contain-
ing (VV¥45, VV}). Hence these faces are congruent.

In the same way every two faces of P having a common side are congruent. This
shows that all P’s faces are congruent, because every two faces can be ‘linked’ by a
chain of faces so that every two consecutive faces of the chain have a common edge.
It follows that P is a regular polyhedron (a similar argument shows that from each
vertex emerges the same number of edges).

Tt rermains to rule out the cube, the regular dodecahedron and the regular icosa-
hedran. The cube (Figure 2) is ruled out because of the reflection 74 (the rectangle
ACC'A’ should be invariant, but it isn’t). The dodecahedron (Figure 3) is excluded
because of the reflection r4,p, (same argument for the rectangle A} A3B;B;). Finally,
the icosahedron (Figure 4) is eliminated hecause of the reftection 745 (use rectangle
AABB;).
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Problem G4

For a triangle T — ABC we tcke the point X on the side (AB) such that
AX/XB — 4/5, the point Y on the segment (CX) such that CY = 2Y X and, if
possible, the point Z on the ray (CA such that CXZ = 180° — ABC'. We denote by
2 the set of all triangles T' for which XYZ = 15°

Prove that oll the triangles from ¥ are ssimilar and find the measure of their small-
est angle.

Solution. A convenient way to describe the position of the points using trigonom-
etry is to employ the cotangent.We firstly prove the following

Lemma (Figure 1). Tn a triangle ABC, X € (AB), XA: XB=mn, CXB=a
and ACX = 8. Then

(m+njeota=ncotA—mcotB and mcotf = (m | n)cotC | ncot A.

Proof of the lemma. Let CF = h be the altitude fram . Then, using oriented
segments, AX = [AF + FX| = h-cotA — h-cote and BX = |BF + FX| =
h cot B+ hcotex. The first part of the conclusion follows now fromn- XA = m- X B.

For the second part take XT|BC, T € (AB). Then XTA = C and CT : TA =
n : m. The required result follows from the first part applied in AAXC. O

We have (Figure 2) by the lemma and the hypothesis 4 cot ACX =9cot C+5cot 4
and

cot ACX —2cot CXZ = 3cot XY Z = 3.
We also have X Z = 180° — B, therefore {9cot C+5cot A)/4+ 2 cot B = 3,

that is
45cot A +8cot B +9cot ' = 12.

We will prove that this equation specifies the angles of the triangle ABC. Denoting
cot A =z, cot B = y, cot C = z we have 52+ 8y+9z = 12 and the well-known relation
ry+yz+z2z=1.

Eliminating z we get (a:+y)(12 52—8y)+9zy = 9, that is (dy+x—3)2+9(z—1)* =
0. This shows that 2 = 1, y = = and z = =, therefore all the triangles from X are
similar and their smallest angle is A = 45°.
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Problem G5

Let ABC be a triangle, Q its incircle and q, Q4, £, three circles ovthogenal to €
passing through (B,C), (A,C) and (A, B) respectively. The circles Qo and §2y meel
again in C'; in the same way we obtain the points B and A'. Prove that the radius
of the circumcicle of A'B'C" is half the radius of Q2.

Solution. Denote by I the incenter, by r the inradius, by D, E, F' the contacts
of the incircle with BC, C A, AB respectively and by P, (@, R the midpoints of the
segments [£F], [FD], [DE].

We will prove that €2, is the circle (B,C,Q, R). We firstly notice that from the
right-angled triangles I BD and IDQ we get I(Q-IB = ID* = r? and in the same way
IR . IC = r?, therefore the points B, C, R, @ are on a circle [';. The points @ and
R belong to the segments (IB) and (IC), so I is exterior to the circle (B,Q, . C)
and I’s power with respect to the circle (B, Q, R,C) is 1B - IQ = r?, which is the
condition of Q beeing orthogonal to the circle (B,Q, R, C).

In the same way (), is the circle (C, R, P, A) and 1, is the circle (4, P,Q, B).
It follows that A’, B, C’ coincide with P,Q, R and the required conclusion is now
obvious.

Another solution. Let O, be the center of ), and M be the midpoint of (BC).
Denote, using oriented segments, MO, = z (the positive sense on the perpendicular
bisector of {BC) beeing Iﬁ)

2

The radius of £, is 22 + % and

e -5\
102 = DM*+ (ID+ MO,)2 = = - (p—) +(r+ )%

2 2
Tle condition of § and €, beeing orthogonal is OuI? = 0, B% + r?, that is
2 b- ¢\’ —b)(p— A B (O
w2+%+r2 = (——2—6) +(r+r)i e a= %}—C) @ X = 2Rs’1n§ cos - €08 .

It follows that

__ A B P .
00, = OM—|—MO,,=2Rsin§c05+2-cos§ = H+g.

Therefore O, (), (), are on the circle of center O and radius R + % Let {N} =

0,0.N BC. The angle O:@OC has measure © — B (regardless of the position of B),
— B

so 00,0, = 3 and

_ B A B C _p—v¢ e p—c p—b
MN—mtan-zfAZRsmEsmEcosE— 5 BN—2 3 2
BD
Hence BN = - and, becanse MN < BM, N € (BM). The same holds for the

common point of AB and 0,0, thercfore the reflection of B in 0,0, is on DF. This
proves that B’ — the second common point of €, and {), — is the midpoint of (DF).
The conclusion follows now easily.
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Problem G86

Two carcles (1 and Oy touch internally the circle Q in M and N and the center
of Qg 15 on (4. The common chord of the circles O and § intersccts  in A and
B. MA and MB intersect (0, in C and D. Prove that Qq is tangent to CD.

Solution.
Lemma. The circle ky touches internally circle k at A and touches one of k’s

chords MN at B. Let C' be the mid-point of k’s arc MN which does nol contain A.
Then the points A, B, C are collinear and CA -CB = C' M2,

Proof of the lemma (fig.1). The homothety with center A which transforms k,
into k transforms M N into a tangent at k parallel to MN, i.e. into the tangent at C
t0 k, so A, B, C are collinear.

For the second part notice that NMC = CTM, therefore AACM ~ AMCB,
whence CA-CB = CM?

Solution of the problem. Let O; and Oy be the centers of @ and €25 respectively
and ty, tp their common tangents (fig.2). Let o, 8 be the arcs cut. from €2 by #; and
t2, positioned like in Lthe lemma.

Their midpoints have, according to the lemma, equal powers with respect to €,
and Iy, therefore they are om the radical axis of the two circles. T'hus A and B
are the midpoints of & and 3. From the lemma we also conclude that ¢’ and D are
the points in which the tangents ¢; and £, touch €. If H is the homothety with
center M transforming (i into 2, then H : CD — AR whence AR||CD. Therefore
CD 1 0,0, and Oy is midpoint of one of the arcs G from {1s.

Let X be the point in which #; touches 2. We get XCO, = (1/2)CO,0, =
DE'DQ, 50 Oy lies on the bisector of the angle X/C\D, therefore C'1) is tangent to the
circle {2y,
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Another solution (Figure 3). An inversion of pole N transforms the figure as
follows:  and 2, in parallel straight lines, € in a circle which passes through the
reflection of NV in )y and is tangent to Q, AB in the circle (congruent with £2,) passing
through N and through Q; N Qy, AM and BM into the circles (congrucnt) passing
through N, M and A, B respectively, therefore CD becomes circle (NC'D). We have

\ to prove that (NCD) is tangent to .

A\
|

Figure 3 Figure 4

Denote by d the distance between the centers U and V of the circles () and
(N AB), by r their radiuses and by T’ the midpoint of the common chord Q; (Figure
4). Tt follows that

TU:E, '1'52:r2—f, T.Mi?“fé, TN:T+§.

2 4 2 2
The circle {CDN) has its center on MN and ND __ BD), therefore it is enough to
prove that B, D, T are collinear, that is the common point R of BT and {1, is the
projection of N on BT. This results from BR.2BT = BM? = BN* — NM* =
BN? 4+ BT? — NT?, the last equality being justified by NM? = &, BT?> — NT? =

2
d d
BU2+UM2—2-UM-UT7NT2:T2+(g) —2.2(d-r) = (r+ 5P = -4
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Problem G7

The point M is inside the conver quadrilateral ABCD, such that
MA=MC,AMB — MAD + MCD and CMD = MCB + M AR

Prove that AB-CM = BC - MD and BM-AD~ MA-CD.

Solution. Counstruct the convex quadrilateral PERS and the interior point T such
that APTQ = AAMB, AQTR ~ AAMD and APTS ~ ACMD.

C R
B Q

P

It follows that

7MD-PT*M TR MD-MB MB

Ts MC " TS MA-MD MCO

and STH = BﬁC, therefore ARTS ~ ABMC. The asswnption on angles leads to
QPS + KSP = PT + TPS + TSP + TSR = FTS 1 TPS 4 TSP — 180°
and
RQP + SPQ = RGT + TOP + TPQ + TRS = QTP+ TQP + TPQ = 180°,

50 PQRS is a parallelogram.
Hence PQ = RS and QR = PS, that is

BC-TS BC-MD  AD.QT _CD.TS
MC T MO ™ TaAm T umn

The conclusion is now obvious.

AB =

CD.




26 40 IMO

Problem A1l

Let n 2 2 be a fized integer. Find the least constant C such that the inequality

e +2) < O Yx)’

i<j i

holds for any z1,...,2, > O (the sum on the left consists of (:‘) summands).

For this constant C', characterize the instances of equality.

Solution. The inequality is symmetric and homogeneous, so we can suppose that
122> ...212, > 0and Z_a:i = 1. In this case we have to maximize the sum

i

Flag, ... z.) = 3 zia;(a? + 22).

i<j
We try to increase the value of F' by replacing the vector © = (x1,...,Zx, Thes,
0,...,0) with ' = (21,..., Te—1, Zx + Z£41,0, . .., 0} (244, is the last nonzero coordi-
nate and we suppose that k& > 2):
’ = 2 2
F(d') Fla) = zuTui|3(ze + 2p1) L T TR T By | =
e

= Tt [3(2h + i) (1 — 24 — T} — 2 — 2%,,] =
Tr@raa [(Tx + Bey1) (B — Mok + Ta)) + 205 @pep1 -

From i
12z 4+ 2 + 2 > §($k + Tpy1) + T + Tpy

it follows that 2/3 > z; + 21~ , and therefore
F(z')— F(z) > 0.

Applying the above replacements several times we obtain

F(z) < F(a,b,O,..',O):ab(az—ka):%(2ub)(1—2ub)§

1 11
gZF(E,iyu,.y.,O).

IA

Thus the constant C is equal to 1/8. The equality occurs if and only if two of the
z;’s are equal {possibly zero) and the remaining ones are zero.

3
Another solution. We shall use the symmetric polynomials p, = 3 z¥ and s, =
i=
Ziy&iy - -« iy, (8, = 0if k > n) and Newton’s relation
<41 <. <ix<n

P4 — 8103+ 82p2 — s3p1 + 48, = 0.
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We still take p; = 5, = 1 and we obtain:
2 n
Flazy,. s By = T Tz (] + :1:;") = (213 . _,L-j) _
i<g i=1 J#
le?(l ‘l"i) =D2Pa=Sapa— s34+ ds, =
i=
= 52(1 - 252) + 484 — 83.

If

By adding the inequalitics

i
(1) s2(1—~28)) < -
8
and
ds4—8 = ¥ Iilxizzig( 2 mi) =X InT,m, =
11<i2 <43 ig{iy,i9,i5} i1 i <ia
(2) S Ty Ty sy 0T, = 1) =
21 <1<y i¢{i1,62,03}
= - Z ) xilxiizfs(mil + Ty -4 13,'3) _<_ 0
tp<tz <iz

we obtain F(z} < 1/8.

The inequalities (1) and (2) turn into equalities if and only if s, = 1/4 and at
least n — 2 of z,’s are zero. This gives the instances of equality obtained in the first
solution.
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We still take p; = 57 = 1 and we abtain;
3 n
Flzy, ... )z,) = T T (r? + a:j) =3 (z‘f 3 xj) =
o S0 i
= le?(l ~ T} =Dy P = sapg — s34+ ds, =
=
52(1 - 252) + 484 -— 83.

By adding the inequalitics

i
(1) 52(1 — 28,) < =
8
and
ds4—8 = ¥ xilxizzig( 2, mi) =0 I Tl =
11 <ip<13 ig{iy,i9,i5} i1 <ig <tz
(2) = ¥ m | X wi*l) =
1y <ty <iy i¢{i1,62,03}
= - Z ) Ii1xigzi3<$i1 -+ Ziz - 1’),'3) _<_ 0
i<z i3

we obtain F(z} < 1/8.

The inequalities (1) and (2) turn into equalities if and only if s, = 1/4 and at
least n — 2 of z,’s are zero. This gives the instances of equality obtained in the first
solution.
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Problem A2

The numbers from 1 to n? are randomly arranged in the cells of a n x n square
(n 2 2). For any pair of numbers situated on the same row or on the same column
the ratio of the greater number to the smaller one is calculated.

Let us call the characteristic of the arrangement the smallest of these n?(n — 1)
fractions. What is the highest possible value of the characteristic?

Solution. Let us firstly prove that for any arrangement A its characteristic ¢ (A)
is less or equal than (n + 1}/n.

If two of the greatest numbers {n* ~n 4 1,n? —n +2,...,0% - 1,72} lie on the
same row or column, we have

n? n+1
= <
f_n41 n

a
y - <
C(A)Sb_n

If all these numbers arc in different rows and columns, then Lwo of them are on
the same row or column with the number n? — n, so we have

21 1
a <n :n+‘

¢4 nt—n " n?2 -n n

IN

i+n(j—i-1) ifi<j

Now the arrangement a;; = { itnln—itj—1) ii>]

1+(n—1n 1 I1+n el 1+(n—=3)n 1+ (n—2)n
2+ n-2n {24+ (n—1)n 2 ol 24 (n—4)n 2+ {n—8n
3+(n-3)n[3+n-2n|3+(r—-1Unl---| 3+m-5n 3+ (n—4)n
n-2+2n | (n-2)+3n | (n—-2)+4n|--- n—2 n-2)+n
(n—L+n [(m-V+2 |-+ - |n— 11 (n-1)n n—1

n n+mn n+2n | n+n-2n |n+(n—1I)n

has the characteristic C(4) = (n + 1)/n:
» the difference of any two numbers lying on the same row is a multiple of n,
therefore .

&&:a,-j+hn2aij+n> n >n-:—1;

a; a;j a; T ni-—n n

¢ on the first column we have the arithmetic progression
n<{n-1+n<(n-2)+2n<.. . <24+n-2n< 1+ (n—1n
Thus

a.,'1>n27n+l n+1
agg  nEo2n+2 7

{with equality if n = 2).



Bucharest 1999

e the column j = 2,.. ., 7 — 1 contains the elements

J l,j—2+n,j—3+2n,...,1+(j72)n,n+j(n—1),...,j+(n¥1)n.

Therefore

aij> _)+(n—l)n >n+1

- il lity for j =n — 1),
ar;  JH1+(mn-2n = n (with equality for j = n—1)

29
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Problem A3

A game 1s played by n girls (n > 2), everybody having a ball. Each of the (’;) pairs
of players, in an arbitrary order, exchange the balls they have at that moment. The
game is called nice if at the end nobody has her own ball and it is called tiresome
if at the end everybody has her initial ball. Determine the values of n for which there
eTists o nice game and those for which there erists a tiresome game.

Solution. A game with n players is determinated by ordering the N = (;) trans-
positions (4, 7) of the set {1,...,n} : t1,...,#x. The game is nice if the permutation
P =tyo... otaot; has no fixed point and it is tiresome if P is the identity.

Claim 1. There exists a nice game with n players if and only if n # 3.

If » = 3 and the players are denoted such that ¢; = (a, b}, t2 = (a,¢), t3 = (b,¢),
then
P= tgtztl == ((Z,C)
has a fixed point.
For every n and the changes made in the order (1,2),(1,3),...,(1,n)},{2,3),
(2,4),...,(2,n).....{(n — 1,n) we get, using induction

P = (n—Laj)n—2,n)(n—2,7—1).02,3){1,n){1,n — 1)..(1,3)(1,2) =

_ 2 3 . i .on 12 . ny\
- nn-1 . n—i+2 .. 2 23 .1/}
1 2 . i LN

n n—1 . n—14+1 .. 1

and, for n = 2k, we have no fixed point: 7 % 2k — 7+ 1,
Forn=2k+ 1, k 2 2, prolonge the previous ordering by

(1,2k +1),{2,2k + 1), .., (k, 2% + 1), (2k, 2k + 1), (2k — 1,2k + 1),.., (k + 1,2k + 1) :
P

(k + 1,2k + 1)..(2k, 2k + 1) (k, 2k + 1)..(1, 2k + 1)(2% — 1,2k)..(1,2) =

12 . k=1 &k k+1 k+2 . 2k 2k+1
- (2 3 . k2 2%k+1 k+1 . 2k-1 1
0(1 2 . k=1 k k+1 . 26 _
2k 2k-1 . k+2 k+1 & . 1
_ 1 2 . k-1 k  k+1 k+2 . 2k 2k+1
(2k-1 2% -2 . k+1 2k+1 2% k . 2 1

has no fixed points (k + 1 # 2k because k # 1).

Claim 2. There exists a tiresome game with n players if and only n = 4k or
n=4k+ 1.

Indeed, the signature of the permutation I” is equal to (-1)(3) and thus n must
be 4k or 4k + 1. If n = 4 we have the solution:

(1) (3,4)(1,3)(2,4)(2,3)(1,4)(1,2) = id.
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Between two groups of four players we choose the partial garme:

2) {4,7)(3,7)(4,6)(1, 6)(2, 8)(3,8)(2, 7)(2, 6)(4, )
(4,8)(1,7)(1,8)(3,5)(3,6)(2,5)(1,5) = id

With (1) and (2) we can build a tircsome 4k-game: divide the 4k players into k&
groups, each of them containing 4 playcrs; then play the game (1} inside each group
and the game (2) between any two different groups, in an arbitrary order.

An identity 4k + 1-game can bc obtained from a 4k- -game by inserling in each

block of moves of type (1) the transpositions with 4k + 1 such that the block is not
disturbed:

3) [(3,5)(3,4)(4,5))(1,3)(2,4)(2,3)(1,4)[(1,5)(1,2)(2, 5)] =
= (3,4)(1,3)(2,4)(2,3)(1, 4)(1,2) = id.

Another solution. We can prove the second claim in the case n = 4k by induction
ou k. If there exists a tiresome game G, for 4k then, noticing that

Hk+1 == [(1,n+2)(2,n+2)..(71,n+2)]o
o(n+2,n+3)(n,n+3)(n—Ln+3).(l.n+3)] =

= (n+2n 13
and
Ievt = (Ln+4)2n+4).(n,n+4)o
oln+Ln-4)[(nn+1D)(n—Ln+1).((1,n+1)] =
= (n+1,n+4),

we can take for n = 4k + 4 the game
Gen=Gn+3n+4)n+1,n+3)n+2,n+4Hplipy(n+1,n+2)

and, according to (1), this is equal to id.
The case n = 4k + 1 can be solved as abave.
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Problem A4

Prove that the set of positive integers cannot be partitioned into three nonempity
subsets such that, for any two integers z,y taken from two different subsets, the
number z* — zy + y° belongs to the third subset.

Solution. Denote f(z,y) = z? — 2y + y* and suppose that one can find such a
partition: N* = A[IBIC.

Suppose also that 1 € A, b & B, c € C (b < ¢) are the first elements of the three
classes (this implies that 1,2,...,h—1 € A).

Lemma 1. z,y and z + y cannol belong to the three different subsets.

Proof. iz € A,y € B,z +y € C then z = f(z +y,7) = f{z +y,y) should be
both in B and A. O

Lemma 2. The subset C' contains a multiple of b. If kb is the first such multiple,
then {k - 1)b e B.

Proof. Let r be the residue of c(modb). If r =0, then c=nbe C. If r >0, c—7
ie not in C because ¢ is minimal; also e —r is not in B because r < b—1is in A and
r+(c—r)—c Hencec—r ¢ A be Band f(c—r,b) = nb belongs to C.

The last statement of the lemma follows immediately from Lemma 1.0

Lemma 3. For every positive integer n. we have {nk—1)b+1 € A and nkb+1 € A.

Proof. Use induction on n. Take n = 1. Then (k — 1)b+ 1 ¢ C because 1 € 4,
(k—1)be B. Also (k—1)b & B because b—1 € A, kb € C'. Hence (k—1b+1e A

Similarly, kb+ 1 ¢ C because (k—1)b+1 € A, b€ B and kb +-1 & B because
1 e A, kb€ C, Therefore kb + 1 € A.

Suppose now that ({n — 1)k — )b+ L and (n — 1)kb + 1 belong to A.

We have (n — 1)kb+1 € 4, (k—1)b € B, hence (nk — 1)b + 1 ¢ C' and also
((n—1)k—1)b+1 € A, kb € C, hence (nk—1)b+1 ¢ B. Thus we get (nk—1)b+1 € A.
Further, (nk — 1)b+1 € A, b € B implies nkb+1 ¢ C and (n —1)kb+1 € A kbel
implies nkb + 1 ¢ B. Therefore nkb+ 1 € A and the lemma is proven. )

A contradiction follows now easily: kb+1 € A and kb € C, therefore f(kb+1, kb) =
= (kb—+1)kb + 1 should be in 4 (Lemma 3) and also in B.
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Problem A5 w(ﬂ\ M
Find oll the functions f : R — R whichsutisfy
[l = fw) = fFw) + =f ) + flz) -1
for allz,y e R
Solution. Let A =1Im f and ¢ = f{0). By putting z = y = 0 we get f(—c) =

fle)+c—1,50c#0.
It is easy to find the restriction f|A: take z = f(y) and obtain

c+1
{1) f(I):T*'g

for all z in A.
The main step is to show that A — A = R. Indeed, for y = 0 we get:

{flr—c)=flz) |z e R} ={cz+ flc)=-1|z€R} =R

because ¢ is not zero.
Now we can obtain the value of f(z) for an arbitrary z: if we choose y;, 1, € A
such that z = y; — y2 and use (1) we find that

flz) = fGn—y2) = flyn) + iy + fln) — 1

e+l BB e+l i
(2) = S-S twet -5l
o (3 — 92)2 z*
= -2 oo
2 2

Comparing (1) and (2) we oblain ¢ = 1 and therefore

fe)=1-%

forall z e R.
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Problem A6

Forn>3anday € ax £ ... < a, giwen real numbers we have the following
nstructions:
(1) place out the numbers in some order in a Ting;

(2) delete one of the numbers from the ring;
(3) 4f just two numbers are remaining  the ring: let S be the sum of these two

numbers, Otherwise, if there are more then two numbers in the ring, replace

*3 . X3+ X5

/ N
X

t 2 with ERES
\ 1
N X

\}/ P v/xp+ xl

p-1 Xp_l'l'xp

Afterwards start agan with the step (2).
Show that the largest sum S which con resull in this way is gwen by the formula

and repeatedly deleting the smallest term.
Start the induction with n = 3:

a, /‘12\
Oaﬁ < \‘
a 1 \”'-—'//
3 d3
1 1
— Sy — ag +az= (0)(12 + (0)0',3.
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Now start with the steps (1) and (2) for n + 1 numbers

a
4 a B
+. 4 oy 2
w3 = (3 L O
\ /& ! \u/fg s\ /A
a g a5 b

where

bi=ata<bh=amta<b=a+a<. <
by = ar+apn <bepn = tpar tarz <. <
<bny — @n-1 tap < by = Oy + Qpyy-

According to the induction assumption

Sn+1(a‘1: o uan+1) = Sn(b], ey bn) = kz; ([;72 )bk
n=1

= E ([217_21) (ak + Cb;c+2) S ([
=ay+az+ Z (([ i) + (lgf—;)) et ((@1—-22) * (1;21)) ot
+ (70 + (372 oo =

- ( )a2+ (n i)aéjr Z ( 15- 1)"k+ ([_+_] })anJrl

For the last coefficient we used [2] + [%1] = n and

(e22) + (§2) = (i) + (et igy) =
= (=557a) + () = (5L).
Now we have to show that for any numbers a; < ... < 4, and for any choice of

steps (1) and (2) we get a final sum S(ay, ... ,a,) < Smax(ar, ..., a,).

For every k-tuple (zy,3,...,2;) € R* denote by (&, 5, ... , ) the k-tuple hav-
ing the same elements rearranged in increasing order

Define now the following partial order:
(IIJxQV":Lk) (UI:U%«--,K/I:) if and Only if
i < W

T+ Thoy < U+ Yo

Tyt eyt AT Sy Y+ Ly
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Lemma. Let zy,29,.. 25 and y1 < 1 < ... <y (k > 3) be real nunbers
such that (l‘l,l'z, ces ,.’L'k) S (ylayZa e ,yk). Let (21, Iy ,Zkfl) be the (]ﬁ; - 1)-tll,jil€
resulfing from (z,z9,...,zx) by an application of steps (1), (2), (3). Then

(21,220 2m1) < (y2 + U o T Y Vs T U5, Yhoz + Vi b1 + Uk

Proof of the lemma. Notice that the sum z,_; + 2, o+ ...+ 2} (i > 2) contains
2(k — 1) numbers of the form z,, each z,, appears at mosL twice and two of the z,’s
appear only once. Therefore

Byt Ayt A L2 b+ wly) by, ) <
Sy +yr1+ -+ Yige) F Ui U=
=yt ) W o+ Upd + e s+ 0k 1) — -~ (Wi F Vira) + (0 + Yiva)

Also
Gt Bat ot SUATA T+ 2 S by ) =

= (U1 + ) F {2+ ¥+ Grs F )+ by F 2 tys). O

Denote now by (a\,a”, ..., a™ ) the (n — &)-tuple obtained from
{a1,as,...,a,) after k random iterations ol the given algorithm.

Denote by (bgk), bg‘), B ) the (n — k)-tuple obtained from (a,,...,a,) after

rHYn—k
k-iterations of the Sp,.-algorithm, where bgk), bg“), NN b;k)k are placed

()

b4\ b(k)
| o
e

b;k) 3

We notice that
B < < <O

and that
59 < b < < B oy ) < ) o p)
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R s 5 5 {0 0} It
Stfmrtmg with the obvious relation (q} ),aé N I (bgo),bgm,...,bﬁlm) and
applying the lemma we get by induction

{& k k)
(a0, o) < B, fork—1,. n_2,

Slar, . an) = al* P 4ol < B L0 P — 5, (0 a)

s
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Problem C1

Let n> 1 be an integer. A path from (0,0) to (n,n} in the zy plane 13
a chain of consecutive unii moves either to the right (move denoted by E) or
upwards (move denoted by N ), all the moves being made inside the halfplane

= y. A step in a path is the occurence of two consecutive moves of the
form EN.

Show that the number of paths from (0,0) to (n,n) that contain ezactly s
steps (n > s > 1) is
lin—-1 n
s (s = 1) (s 1)'

Solution. A path with s steps from (0,0) to (n,n) will be called a path
of type (n, s). Let f(n,s) denote the number of paths of type (n, s) and let

1/n—1 n
o=
We will prove that f(n,s) = g(n,s) for s =1,2,...,n by

induction on n.
It is easy to see that

F1,1) = 1= g{1,1),
f(2,1)=1=g{2,1},
f(2a2) =1 :9'(2!2

Let n > 2 and assume that f(m,s) = g(m,s) for 1 < s <m < n. It is
clear that f(n+1,1) = 1 = g(n+1,1). We will show that f(n+1,s+1) =
=gn+1l,s+1)for1 <s<n.

We say that a (n,s)— path and a {n + 1,5 + 1)— path are related if the
latter is obtained from the former either by inserting in the first path a pair
EN between two succesive moves of the form (E, E), (N,N) or (N, E) or
by adding a pair EN at the end of it. We say also that a (n,s + 1)— path
and a (n+ 1,5+ 1)— path are related if the longer path is obtained from the
shorter one by inserting a pair EN between (E, N).
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(53) <> (6,4) L{TJ—((

,
/‘AA{ (54 <> (64) ; E

Each (n, s)—path is related to 2n 4+ 1 — ¢ different {n+1, s+ 1)~ paths;
each (n,s + 1)— path is related to s + 1 different (n + 1,5 + 1)— paths;
each (n+ 1,5+ 1)~ path is related to exactly s + 1 paths of type (n,s) or
(n,5+1). Therefore the number of related pairs is

(st 1f(n+Ls+1)=(2n+1-5)f(n,s) + (s+1)f{n,s+1).
It is easy to verify that
(s+Dgln+1Ls+1)=2n+1-9)gln,s) + (s + Hg(n,s+ 1)
and thus

fln+1,s4+1)=gn~1,5+1).

Remark. Ifm >n > s> 1, the number of paths from 0,0) to (m,n)
with s steps is given by

= (6 ()T

The proof is by induction on m:

(s+1)f(m+1,n+1,5+1) = (m+n+1—s)f(m,n,s)+(s+1)f(m,n,s+1).

39
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Problem C2

a) If a b x n rectangle can be tiled using n preces like those shown in the
dizgram, prove that n is even.

—t H

b} Show that there are more than 2 . 3! ways to tile a fired 5 % 2k

rectangle (k = 3) with 2k pieces. (Symmetric constructions are supposed to
be different.)

fay
Solution. Colour in red the first, third and fifth row of a tiled rectangle
and colour in white the sccond and fourth row, We get 3n red squares and
2n white squares. Each copy of the figure can cover af most 3 red squares.
It follows that each copy must cover exactly 3 red and 2 white squares. The
shape of the figure implies that the 2 white squares are on the same row.
Therefore a white line must have an even number of squares, that is n is

ven.
(. j Denote by ax the number of possibilities to tile a 5 x 2k rectangle and by
P, the number of such tilings not containing a smaller 5 x 25 rectangle.

The diagrams

show that pi,pa > 2,p3 > 4 and the following diagrams show that, in
general, pp > 2:
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LT }
-

Looking at the leftmost 5 x 2i (i = 1,2,...,k — 1) rectangle of a 5 x 2k
rectangle, we find that

A = Pl +poog—z+ ... F g6y +pr >
> 2ak,1+2ak¥2+ +2G1+2

The inequality ps > 4 implies that the last inequality is strict for k& > 3.
Consider the sequence by = 2,b, = 2b,_1 + 25 o +.. + 261 4+ 2. Tt is easy
to see that b — be_y = 2b,_; and also, by induction, that

ag > by —2- 31
(with equality only for k= 1,2).

Remark. It is possible to prove that ps, = 4, P30 11 = Panyz = 2. There-
fore we have

O = 2ak-1 + 2089 + Sag_s .

41
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Problem C3

A biologist watches a cameleon. The cameleon catches flies and rests afier
each catch. The biologist notices that:

» the first fly s caught after a resting period of one minute;

o the resting period before catching the 2m®* fiy 4s the same as the resting
period before catching the m™ fly and one minute shorter than the resting
pertiod before catching the (2m 1+ 1) fly,;

o when the cameleon stops resting, he catches a fly instantly.

a) How many flies were caught by the camelesn before his first resting
period of 9 minutes in a row?

b) After how many minutes will the cameleon catch his 984 fly?

¢) How many flies were caught by the cameleon after 1999 minutes have
passed?

Solution. Denote by r(m) the length of the resting period befcre the
mf catch. The problem says that (1) = 1,7(2m) = r(m),r(2m + 1) =
= r(m)+ 1. This shows that r(m) is equal to the number of 1’s in the binary
representation of m.

Denote also by t{m) the moment of the m* catch and by f(n) the number
of flies caught after n minutes have passed. We notice that

m

t(m) =Y r(i) and f(t(m))=m

i=1
for every m. The following recurrence formulae hold:

t(2m+ 1) = 2t(m) + m+ 1;
(%) t(2m) = 2t(m) + m — r(m);
tH2Pm) = 2Pt(m) +p-m- 2271 — (27 — L)r(m).

The first formula follows from
Yy r(2i) = X r(d) = t{m) and
Yar(2i4+1) =1+ X0, (r(f) + 1) = t(m) + m + L.

The sccond formula is justified by
t(2m) =t(2m+ 1) — r(2m + 1) = 2t(m) + m — r(m).

An easy induction on p proves the third formula.

a) We have to find the first m so that 7(m+ 1) = 9. The smallest number
having 9 binary unit digits is T1... 1, = 22 — 1 = 511, so the required m is
510.

b) Using (*) we get

£(98) = 26(49) + 49 — 7{49);

£(49) = 2t(24) + 25;

£(24) — 2%4(3) +3-3- 22 — (2° — 1)r(3);

(1) — r{2) = 1, 7(3) = 2, 7(48) = r(110001;} = 3 whence
£(3) = 4, £(24) — 54, £(49) = 133 and #(98) — 312.
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c)We have f(n) =m iff n € [{(m),{(m + 1)), so we have to find mg such
that t(mg) < 1999 < t(ms + 1). We start with some more values of the
function ¢:

o HP—1)=¢(2(P— 1)+ 1) =2t(2277 =1} + 277! thercfore
82 —1) —p- 2 Land t(22) =4(P — 1) +r(2?) =p- 2771 4 1;
o $(I1.100...0,) —H2P-(29-1)) =
N o e, et
2]

q
S 20— 1) Fp(€ - 1) — (P 1) (2= 1) =
=+ —p P —q. P 1y

Now we can estimate: from #{2%) = 827 +1 < 1999 < 9. 2% = ¢{29)
we get 2% < my < 2°, hence the binary representation of my has 9 digits.
Taking g = 3,p = 6 and ¢ = 4,p = 5 we find ¢(111000000;) = 1923 and
t(1111000005) = 2100, therefore the first binary digits of g are 1110. Since
¢(TTI010000,) = 2004, $(TIT00II11,) = 2000 aud ((TTT0011T0;) — 1993 it
follows that f(1999) = 111001110, = 462.
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Problem C4

Let A be a set of N residues (mod N?). Prove that there exists a set B
of N residues (mod N?) such that the set A+ B = {a+bla€ Abe B}
contains at least half of all the residues (mod N }.

Solution. Let § = {0,1,...,N? —1} be a complete residue system (mod
N2)and A C S a N-subset of . We shall prove that there exists a N-subset
B ¢ S such that the number of residues of A+ B is greater than (1—1/e)N*.

We use the notations:

1X| = the number of elements of a subset X C 5
X $ — X the complement of X

C; the set of residues (mod N?) of the elements
a+ia€ A(whereie S).

Il

Notice that || = N and UzesC; = S. Every z € § appears in exactly
d(z) = N sets C;. Counting in two ways the pairs

{(g,(i1<...<in))|z€8,2¢Ch,...z & Ciy}
we get that

Zl{{il<...<1'N)|:z¢0i1,‘..,:c§€6'm}|:

eS8
- (NZ—d(z)) v (N2 - N) - (N2 - N)m
zes N €S N N
is equal to
S HzeS|ezgCumzsgCidl= > [Can...0Chy]
i<y i< <N
We obtain

|Ci1U"'UCiNl: Z (lSI Icnﬂ OUNH:

0<iy < iy SN2 -1 0<iy < EN SN2—1

(- (O ()

Therefore one can find 0 < 4, < -+ < iy < N? — 1 such that

|CoU---UCiy| 2 (1m (Nng)/(JY;))N2> (1 —-le—) N%.

The last inequality follows from

() __ M-y (W -Nt1)
(M) MV =N D) (V2N 1)

> BE ) 1+ ! )N>
“\M N ( N-1) 7°¢
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Hence the set B = {4,...,ix} satisfies the required inequality:

1 1
[the set of residues of A+ B| =|C, U--- UG, ] > (1 - —) N* > ENQ.

[

N
Remark. 1t is elementary to prove that (1 + ﬁ) > 2, which implies
the required conclusion.
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Problem C5

Let n be an even positive integer. We say that two different cells of o
7 % n board are neighboring if they have a common side. Find the minimal
number of cells on the n x n board that must be marked so that any cell
(marked or not marked) has a marked neighboring cell.

Solution. First colour the board black and white like a chessboard. Let
f(n) be the number we are looking for and f,,(rn) be the minimal number of
white cclls that must be marked so that any black cell has a white marked
neighbor. Define similarly fy{n). Due to the symmetry of the chessboard
(n =2k ), we have f,(n) = fo(n) and also f(n) = fu(n) + fu(n).

It will be more convenient to look at the board along the lines parallel
to the longest black diagonal which will be placed horizontally. Thus the
‘length’ of these black lines are 2,4,...,2k,...,4,2.

Cross the ‘odd’ cells forn the white lines just below the black lines of
length 47 — 2:

In the first case (above the diagonal) there are 2¢ crossed white cells and
in the second case (below the diagonal} there arc 2i + 1 crossed white cells.
Thus we crossed

(k4 1)

244+ . +Ek+. +3+ 1= 5

white cells.
It is easy to see that each black cell has a white crossed neighbor. This
implies that

(1) ol < HELT

Consider the k(k + 1)/2 crossed white eclls: they have no common black
neighbor, so we need at least k(k+1)/2 black marked cells in order to ‘cover’
these white cells. Therefore

2 piy 2 MELD
In conclusion we have
futmy = oty = HE L

Flny=k(k+1).
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Remark.

In a similar way we can prove that

Fln) = 4k* -1 ifn=dk-1
Pl (2k+ 12 ifn=4k+ 1

47
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Problem C6

Suppose that cvery integer has been given one of the colours red, blue,
green or yellow. Let x and y be odd integers so that |z| £ |y|. Show that
there arc two integers of the same colour whose difference has one of the
following values: z,y,z+y orz — y.

Solution. Suppose that there exists a colouring funetion f : Z — {R, B.G, Y}
with the property that for any integer a

fHa,e+z,a+y,a+2+y} —{R,B,GY}
In particular, colouring the integer lattice by the rule
g:ZxZ-{R,B,GY}, gli,j)= fliz+ ju),

we obtain that the vertices of any unit square have all four different colours.

Claim 1. If there exists a column ¢ x Z such that g} x Z is not periodical
with period 2, then there exists a row Z x j such that g|Z x 7 is periodical
with period 2.

}/

Proof. 1f g|i x Z is not periodical, then we can find the configuration B ;

R
RYR YRYRY
using the adjacent unit squares, we get GBG and also BGBGB and so

YRY RYRYR
on. Thus we obtain three periodical lines. O

Claim 2. If for one integer i, g; = g|Z x ¢ is periodical with period 2, then
for every j € Z, g; = g|Z x j has period 2. The values of ¢; arc the valucs of
g; if = j(mod2) and the other two values if 7 # j(mod2).

Proof. Applying the square rule to the line ... RBRBRB ... we get

...RBRBR... ...BRBRB...
}};g}};g}}; and next ... YGYGY ... or ...YGYGY ... .
...RBREBR... ...RBRBR...
A similar argument holds for the rows below the line Z x 1. a

Changing between them ‘rows’ and ‘columns’ we have similar claims. So
we can suppose that the rows are periodical with period 2 and g(0,0) = R,
9(1,0) = B. Therefore g(y,0) = B (y is odd). The row Z x {2} is odd
too; hence g(Z x {z}) = {Y,G}. From g¢(y,0) = f(zy) = g{0,z) we get a
contradiction.

Remark. The same result is true for z = 2¢{2p+1), 2¥{2¢ + 1); just take

9(t,5) = f (m ;jy) :
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Problem C7

Let p > 3 be a prime number. For each nonempty subset T of {0,1,2,3,
,p 1}, let E(T) be the set of ull (p— 1)-tuples (T1,..., Zp_1) where each
z; €T and o1+ 225+ -+ (p— V)ay_, is divisible by p and let [E(T}| denote
the number of elements in E(T).
Prove that

[E({0,1,3})] >
with equality if and only if p = 5.

E({0,1,2})]

Solution. Let f(z}) = (I +z + 2?) and F(z) = flzif(®y - fa#71). In
expanded form we can write

p(p-1

)
Flz)= Y a.a"
n=0

Note here that ay, is the number of (p — 1)-tuples (#1,...,%p 1) with each
z; € {0,1,2} such that

zLH 2+ 4 {p— 1z, =n.

Hence |[E({0,1,2})] is the sum of those a, with n divisible by p. Write
w = cos(27 /p)+isin(2r /p) and note that 1, w,w?, ..., wP ! are the p™ roots
of nnity and that

j bH L (p—1)7 - Yy if Y4 divides j
W+ w™+o+w { 0 if p does not divide j.

Substituting « = 1,w,...,w® ! into F(z) and adding up the resulting
expressions we obiain

P(t)+ Flw) + -+ F(wP™") = pE({0,1,2}).

Note that F'(1) = 37~!. Note also that for j not divisible by p, (1, w?, w®, . . .,
w17} is a permutation of

2 ~1

(%) Laww, . .. w?

Thus

Flw) = F(w’)=--=F@u )=
(LT+w+w®) (1wt 4wl
)

1—wl 1—uf 1 wlle-!
- (75) (%) (=25) -
1

i

I
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using observation (*). Hence

|E({0,1.2})] = (& ' +p - 1)/p.

Let g(z) = 1+224a?, G(z) = g(z)g(z?) - - g(2P~"'). By similar arguments

we obtain
1E({0,1,31)] = (G()+ (p— DGw))/p =
= (3 + (o~ DCw))/p.

Hence we must show that G(w) > 1 with equality if and only if p = 5.
Let h{z) = z* + z + 1 and write h(z) = (z — A)(z — p){z — v) where A, p, v
are complex numbers. Since h(z) > 0 for z > 0 and A+ u+ v = 0, h(x)
has one negative real root, say A, and u, v = T, are complex conjugate roots

with positive real part.
Note that

Glw) = (1+w"+w e
I;[ —u(w! —v) =
- (,\v— 1) ( p_11) (V::ll)

since pH {A — w!) = u(A) etc., where
=1

al 2 -1

M) =

i=1

z—1"

Note that (A — 1)(p — 1){v ~ 1) = —h{1) = -3.
Next
X4a+1=0

so for each positive integer k,
Ak+3 4 )\k-H + Ak =0
with similar equations for u,v. Adding these we deduce, using induction,
that A™ + y” + v is an integer for all positive integers 7.
Suppose now that G{w) =1, so
(¥ =1~ 1) — 1) = -3
and A, u? and v are the roots of the cubic equation

miz) =2 —grf + (1 +g)z+1=0
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and ¢ = A+ pP + 7 is an integer. Since A is the real oot of 28 + 7 41 — 0,
—l<h < —f s0if g <0, 2% —qa? > 0, (L+qg)z > 0for z = M\ and
m(M)#0. Ifg=0, A =XAsop=1, again yielding a contradiction.

Hence ¢ > 1. For 1 <o <0, g(z® — 1) is positive and 2° + z < 1 is
strictly increasing, and A3 + A +1 =0,

\
S
/N //
T —\Q\vﬂjﬂ
y=x3+x+l/

-
i
AP is the z-coordinate of the intersection P of y = #° + ¢+ 1 and y =
g(z® — 2) in the interval [~1,0] and thus as p increases {and X gets closer

to 0), ¢ increages.
Note that if p =5, g{w) =1+ w + w® = —w?(1 + w?) and thus
p—l )
Glw) = [[(1+u¥) = p(-1) = L

j=1

Note that
A=+ 1) = A2+ A+ 1

and hence that
q:—(:/\2+u2+1/2)+()\+u+r/)+3:5

since

Mt p+v) — 200+ ww + v)
=2(Ap 4 pr + 1)
= -2

/\2+/,L2+1/2

Il

as A, p, v are the roots of 2 + £ +1 =0, Hence g > 5 and if g=5, p — 5.
Suppose ¢ > 6. Consider m(z) = 2*+ z + 1 —¢(z? - z). Note that

m(-1) <0, m(0) >0, m(2) <0,
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and that m(z) > 0 for all sufficicntly large > 0. Hence m(z) = 0 has three
distinct real roots. But the roots of m(z) = 0 are \?, u? and P = @i, so if
#P is real, m{x) must have repeated real roots. This is a contradiction. So
g < 6. Thus ¢ = 5 and thus p = 5 is the only case where G{w) = 1. The
formula

IB({0,1,3D)] = (37" + (o — DG(w))/p

and the fact that G{w) > 0 (which follows from g{w?) = g{wP7}) implies
that C(w) > 1. Hence

|£({0,1,3})] = |E({0,1,2})]

with equality only if p = 5.





