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N1.  What is the smallest positive integer  such that there exist integers  witht x1, x2, … , xt

x3
1 + x3

2 +  …  + x3
t = 20022002 ?

Solution.  The answer is .t = 4
We first show that  is not a sum of three cubes by considering numbers modulo 9.
Thus, from ,  and  we find that

20022002

2002 ≡ 4 (mod 9) 43 ≡ 1 (mod 9) 2002 = 667 × 3 + 1

20022002 ≡ 42002 ≡ 4 (mod 9) ,
whereas, from ,  for any integer , we see that .x3 ≡ 0 ±1 (mod 9) x x3

1 + x3
2 + x3

3 ≡⁄ 4 (mod 9)
It remains to show that  is a sum of four cubes.  Starting with20022002

2002 = 103 + 103 + 13 + 13

and using  once again, we find that2002 = 667 × 3 + 1

20022002 = 2002 × (2002667)3

= (10 × 2002667)3
+ (10 × 2002667)3

+ (2002667)3
+ (2002667)3

.

Comments
1. This is an easy question. The only subtle point is that, to show that  is not the sum

of three cubes, we need to consider a non-prime modulus. Indeed, to restrict the number of
cubes mod  we would like  to be a multiple of 3 (so that Fermat-Euler is helping us),
but taking  to be 7 or 13 or 19 does not help: there are too many cubes. So we try a
composite  with  a multiple of 3, and the first such is .

20022002

n φ (n)
n
n φ (n) n = 9

2. The proposer's original version of the problem only asked for a proof that three cubes is
impossible and five cubes is possible. It is a fortunate feature of the number  that we
are able to settle the case of four cubes.

20022002
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N2.  Let  be a positive integer, with divisors .  Prove that
 is always less than , and determine when it is a divisor of .

n ≥ 2 1 = d1 < d2 <  … < dk = n
d1d2 + d2d3 +  …  + dk − 1dk n2 n2

Solution.  Note that if  is a divisor of  then so is , so that the sumd n n / d

s = ∑
1 ≤ i < k

di di + 1 = n2 ∑
1 ≤ i < k

1
di di + 1

≤ n2 ∑
1 ≤ i < k

( 1
di

−
1

di + 1
) <

n2

d1
= n2.

Note also that , , , where  is the least prime divisor of .d2 = p dk − 1 = n / p dk = n p n
If  then  and , which divides .n = p k = 2 s = p n2

If  is composite then , and .  If such an  were a divisor of  then
also  would be a divisor of .  But , which is impossible because  is the
least prime divisor of .

n k > 2 s > dk − 1dk = n2 / p s n2

n2 / s n2 1 < n2 / s < p p
n2

Hence, the given sum is a divisor of  if and only if  is prime.n2 n

Comments
1. The problem is perhaps not quite as easy as the short solution here appears to suggest. Even

having done the first part, it is very easy to get stuck on the second part.

2. It would be possible to delete from the question the fact that the given expression is always
less than . But, in our opinion, the form as given above is natural and inviting to a reader.n2
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N3.  Let  be distinct primes greater than 3.  Show that  has at least 
divisors.

p1, p2, … , pn 2p1p2…pn + 1 4n

Comment
1. The natural strategy for this problem is to use induction on the number of primes involved,

hoping that the number of divisors increases by a factor of 4 for each new prime in the
expression.  By the usual properties of the divisor function , it would be enough to
show that  contains at least two new prime factors not contained in .
Unfortunately this does not seem to be easy.  Instead, we will show in an elementary way
that there is at least one new prime at each step.  To finish the proof, we will need the
following additional observation: if  then , which follows from the
simple fact that if  divides  then both  and  divide .

d (m)
2p1p2…pn + 1 2p1p2…pn − 1 + 1

k > m d (km) ≥ 2d (m)
a m a ka km

Solution.  We claim first that if  and  are coprime odd numbers then the highest common
factor of  and  is 3.  Certainly 3 divides  and , because  and  are odd.
Suppose now that some  divides  and .  Then we have  and

.  But if any  is  then the set of all such  is the set of all odd
multiples of , where  is the order of .  It follows that  divides both  and ,
which is impossible as .

u v
2u + 1 2v + 1 2u + 1 2v + 1 u v

t > 3 2u + 1 2v + 1 2u ≡ −1 (mod t)
2v ≡ −1 (mod t) 2x −1 mod t x

r / 2 r 2 mod t r / 2 u v
r > 2

Note also that the factorisation

2uv + 1 = (2u + 1) (2u(v − 1) − 2u(v − 2) +  …  +  22u − 2u + 1)
shows that  is divisible by  and , and so is also divisible by

.
2uv + 1 2u + 1 2v + 1

(2u + 1) (2v + 1) / 3
Let us now prove the desired result by induction on .  It is certainly true when  (for
example, because  is a multiple of 3 and is at least 27), so we assume that 
has at least  divisors and consider .  Setting  and  in the
above, we see that  and  are coprime, whence  has
at least  divisors.

n n = 1
2p1 + 1 2p1…pn − 1 + 1

4n − 1 2p1…pn + 1 u = p1… pn − 1 v = pn

2u + 1 (2v + 1) / 3 m = (2u + 1) (2v + 1) / 3
2 × 4n − 1

Now, we know that  divides .  Moreover, from  when , we
see that .  By the fact mentioned in the comment above, it follows that 

m 2uv + 1 uv > 2 (u + v) u, v ≥ 5
2uv + 1 > m2

, as required.d (2uv + 1) ≥ 2d (m) ≥ 4n

Further comment

2. From a more advanced point of view,  is the product of cyclotomic polynomials
at 2, that is the product of  over .  It turns out that  and  are
coprime unless  is a prime power (this is not an easy fact), from which it follows that

 has at least  prime divisors.  Hence , which is
much more than  when  is large.

 f (p1p2… pn)
Φ2m (2) m | p1… pn Φr (2) Φs (2)

r / s
f (p1p2… pn) 2n − 1 d (f (p1p2… pn)) ≥ 22n − 1

4n n
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N4.  Is there a positive integer  such that the equationm

1
a

+
1
b

+
1
c

+
1

abc
=

m

a + b + c
has infinitely many solutions in positive integers ?a, b, c

Solution.  If  then , and we proceed to show that, for this fixed value
of , there are infinitely many solutions in positive integers .  Write   

a = b = c = 1 m = 12
m a, b, c

1
a

+
1
b

+
1
c

+
1

abc
−

12
a + b + c

=
p (a, b, c)

abc (a + b + c)
,

where .  Suppose
that  is a solution with , that is .  Then, regarding this as a
quadratic equation in , we see that  is also a solution, except that we
need to establish that such a value  is integral.

p (a, b, c) = a2 (b + c) + b2 (c + a) + c2 (a + b) + a + b + c − 9abc
(x, a, b) x < a < b p (x, a, b) = 0

x y = (ab + 1) / x > b
y

Let , and definea0 = a1 = a2 = 1

an + 2 =
anan + 1 + 1

an − 1
,  for each n ≥ 1.

We now prove the following assertions simultaneously by induction:

(i)  an − 1 | anan + 1 + 1,  (ii)  an | an − 1 + an + 1,  (iii)  an + 1 | an − 1an + 1.
The three assertions are true when  from the initial values for , and we suppose
that they are true when .  Thus (i) implies that  and  are coprime and that 
divides , whereas (ii) gives , so that together

, that is , which is
(i) when .  

n = 1 a0, a1, a2

n = k ak − 1 ak ak − 1
(akak +1 + 1)ak +1 + ak −1 ak | aka2

k +1 + ak +1 + ak −1

akak − 1 | aka2
k + 1 + ak + 1 + ak − 1 ak | ak +1(akak +1 + 1)/ak −1 + 1 = ak +1ak +2 + 1

n = k + 1
Similarly (i) also implies that  and  are coprime, and that ,
whereas (iii) gives , so that together ,
that is , which is (ii) when .  

ak − 1 ak + 1 ak − 1 | akak + 1 + 1 + akak − 1

ak +1 | akak −1 + 1 + akak +1 ak − 1ak + 1 | ak (ak − 1 + ak + 1) + 1
ak +1 | ak + (akak +1 + 1)/ak −1 = ak + ak +2 n = k + 1

Finally, the definition of  together with (i) implies , which is (iii) when
.  

ak + 2 ak + 2 | akak + 1 + 1
n = k + 1

Therefore  is a sequence of integers, strictly increasing from , and 
for all .  In other words,  is a solution to the given equation, with

(an) n ≥ 2 p(an, an+1, an+2) = 0
n (an, an + 1, an + 2)

(an) = (1,  1,  1,  2,  3,  7,  11,  26,  41,  97,  154, … ) .

Comments
1.  Another method is to define    by , , and  and

, and use induction to show that the triples  are
solutions.

(cn) c0 = 2 c1 = 3 c2n = 3c2n − 1 − c2n − 2

c2n + 1 = 2c2n − c2n − 1 (cn, cn + 1, cn + 2)

2. One may also apply Pell's equation to show that there are infinitely many solutions for
.  Indeed, let  be as above. With an eye on eliminating a variable in  by a

substitution of the form  with a suitable , we find that
, showing that  are suitable candidates.  We

therefore consider

m = 12 p (a, b, c) p
a + c = rb r

p(1,  1, r − 1) = 2(r − 2)(r − 3) r = 2,  3

p (a, b,  2b − a) = 3b (3a2 − 6ab + 2b2 + 1) = 3b (3 (a − b)2 − b2 + 1)
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and recall the well-known result that there are infinitely many solutions to the Pell equation
.  Thus there are infinitely many positive integers  satisfying

.
x2 = 3y2 + 1 a < b
p (a, b,  2b − a) = 0

3. In fact, using a little more theory on quadratic forms, it can be shown that if the equation is
soluble for a given value of  then there are infinitely many solutions for that value of .m m

4. There is nothing special about : there are infinitely many possible values of .
Indeed, the given equation may be rewritten as ,
which becomes  on setting .  One can define a
sequence  with the property that  divides ; take, for example,

, , set , and induction then shows that
.  The corresponding value for  is then .  We have

one solution for this value of , so by the remark above there are infinitely many solutions
for this value of .

m = 12 m
m = (a + b + c)(1 + ab + bc + ca)/abc

m = (1 + b + c) + (1 + b + c)2/bc a = 1
(bn) bnbn + 1 (1 + bn + bn+1)2

b1 = 4 b2 = 5 bn+2 = 3bn+1 − bn − 2
(bn+1 + bn + 1)2 = 5bnbn+1 m bn + bn+1 + 6

m
m
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N5.  Let  be positive integers, and let  be integers, none of which is a
multiple of .  Show that there exist integers , not all zero, with  for
all , such that  is a multiple of .

m, n ≥ 2 a1, a2, … , an

mn − 1 e1, e2, … , en | ei | < m
i e1a1 + e2a2 +  …  + enan mn

Solution.  Write  for .  Let  be the set of all -tuples  where each 
is an integer with .  For , write  for .  If some
distinct  have   then we are done: setting  we have

.  So we are done unless no two  are congruent mod .
Since , this implies that, mod , the numbers  for  are precisely the numbers

 (in some order).  We wish to show that this is impossible.

N mn B n b = (b1, b2, … , bn) , bi

0 ≤ i < m b ∈ B f (b) b1a1 + b2a2 +  …  + bnan

b, b′ ∈ B f (b) ≡ f (b′) (mod N) ei = bi − bi′
e1a1 +  …  + enan ≡ 0 (mod N) f (b) N

|B| = N N f (b) b ∈ B
0,1, … , N − 1
Consider the polynomial .  On the one hand, it factorises as∑b ∈ B Xf (b)

∏
n

i = 1

(1 + Xai + X2ai +  …  + X(m − 1)ai) ,

but on the other hand it is equal to  whenever .  But now
set , a primitive -th root of unity.  Then 

1 + X + X2 +  …  + XN − 1 XN = 1
X = exp (2πi / N) N

1 + X + X2 +  …  + XN − 1 =
1 − XN

1 − X
= 0,

but for each  we have i

1 + Xai + X2ai +  …  + X(m − 1)ai =
1 − Xmai

1 − X
,

which is non-zero because  is not a multiple of .  This is a contradiction.mai N

Comments
1. The proof begins with a standard pigeonhole argument.  The exceptional case (with each

congruence class mod  hit exactly once) is quickly identified, and looks at first glance at
though it should be easily attackable.  However, it is actually rather challenging.  The use of
the polynomial and -th  roots of unity is probably the most natural approach.  We do not
know of any bare-hands or essentially different proof.

N

N

2. The condition that no  is a multiple of  cannot be removed, as may be seen by taking
 for each .

ai mn − 1

ai = mi − 1 i
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N6.  Find all pairs of positive integers  for which there exist infinitely many positive
integers  such that

m, n ≥ 3
a

am + a − 1
an + a2 − 1

is itself an integer.

Solution.  Suppose  is such a pair.  Clearly .m, n n < m
Step 1.  We claim that  is exactly divisible by  in

.  Indeed, since  is monic, the division algorithm gives
f (x) = xm + x − 1 g (x) = xn + x2 − 1

Z [x] g (x)
f (x) / g (x) = q (x) + r (x) / g (x)

where .  The remainder term  tends to zero as ; on the other
hand it is an integer at infinitely many integers . Thus  infinitely often, and so

.  The claim follows; and in particular, we note that  is an integer for all
integers .

deg (r) < deg (g) r (x) / g (x) x → ∞
a r (a) / g (a) = 0

r ≡ 0 f (a) / g (a)
a

Step 2.  Both  and  have a unique root in the interval (0, 1), since both functions are
increasing in [0, 1] and span the range .  Moreover it is the same root, since  divides ;
call it .

f (x) g (x)
[−1,  1] g f

α

Step 3. We can use  to show that .  Certainly , where  is the positive
root of .  This is because  is increasing in (0, 1) and .
On the other hand, if  then , and the outer terms rearrange
to give , which requires , a contradiction.

α m < 2n α > φ φ = 0.618…
h(x) = x2 + x − 1 f f (φ) < h(φ) = 0 = f (α)

m ≥ 2n 1 − α = αm ≤ (αn)2 = (1 − α2)2

α (α − 1) (α2 + α − 1) ≥ 0 α ≤ φ

Step 4. We show that the only solution with  is .  This is pure number
theory, at last.  Suppose we have a solution.  We consider the value , and write

, so that .  Let  where , so that

m < 2n (m, n) = (5,  3)
a = 2

d = g (2) = 2n + 3 −2m ≡ 1 (mod d) m = n + k 1 ≤ k < n

−2m ≡ (d − 2n) 2k ≡ 3 × 2k (mod d) ,
which shows that  when .  When , that is

, the least positive residue (mod ) for  is given by ,
which takes the value 1 only when , giving .  Finally, the identity

 shows that  is indeed a solution.

−2m ≡⁄ 1 (mod d) 1 ≤ k ≤ n − 2 k = n − 1
m = 2n − 1 d −2m 3 × 2n−1 − d = 2n−1 − 3

n = 3 m = 5
a5 + a − 1 = (a3 + a2 − 1) (a2 − a + 1) (m, n) = (5,  3)

Comment
1. Although the above solution is entirely elementary, several separate good ideas seem to be

needed to crack the problem.  Step 1 is the natural way to begin, and Step 4 has several
variations. Perhaps the most important—and most difficult—idea is the use of the common
root  (in Steps 2 and 3) to obtain the quantitative bound . All solutions we have
seen make use of this idea in some form.

α m < 2n

Page 7



G1.  Let  be a point on a circle , and let  be a point distinct from  on the tangent at  to .
Let  be a point not on  such that the line segment  meets  at two distinct points.  Let 
be the circle touching  at  and touching  at a point  on the opposite side of  from .
Prove that the circumcentre of triangle  lies on the circumcircle of triangle .

B S1 A B B S1

C S1 AC S1 S2

AC C S1 D AC B
BCD ABC

Comments
1. In both solutions that follow, the key idea is to work with the perpendicular bisectors of 

and .  
BD

CD
2. There does not appear to be a straightforward coordinate solution.

A

B

C

DE
F

K

T

T ′

S1
S2

Solution 1.  Let  and  be the midpoints of  and  respectively,  be the circumcentre of
triangle  and let  be the common tangent to the two circles.  Then  is perpendicular
to  and bisects the angles between the tangents  to  at .  Hence  is equidistant
from  and .  Similarly,  is perpendicular to  and  is equidistant from  and .
Hence  is the centre of a circle touching  and .  Accordingly,  is a bisector of

.  But  is also on the perpendicular bisector of  and it is known that this line meets
the bisectors of  on the circumcircle of .

E F BD CD K
BCD TDT ′ EK

BD BA, DT S1 B, D K
BA DT KF CD K AC DT

K BA, AC DT AK
∠BAC K BC

∠BAC ABC

Solution 2.  We use the same notation as in the first solution.
Since the tangents at the ends of a chord are equally inclined to that chord, we have

 and .  Hence∠TDB = ∠ABD ∠T ′DC = ∠DCA

∠BDC = 180° − ∠ABD + ∠DCA

= 180° − (∠ABC − ∠DBC) + (∠DCB − ∠ACB)

= (180° − ∠ABC − ∠ACB) + (∠DBC + ∠DCB)

= ∠BAC + 180° − ∠BDC.
Thus

2∠BDC = 180° + ∠BAC.
Finally

∠BKC = ∠BKD + ∠DKC

= 2 (∠EKD + ∠DKF) = 2∠EKF

= 2 (180° − ∠BDC) = 180° − ∠BAC,
so that  lies on circle .K ABC
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G2.   Let  be a triangle for which there exists an interior point  such that
.  Let the lines  and  meet the sides  and  at  and 

respectively. Prove that

ABC F
∠AFB = ∠BFC = ∠CFA BF CF AC AB D E

AB + AC ≥ 4DE.

Comments
1. We present two solutions, a geometrical one and an algebraic one, both of which use

standard procedures and are of moderate difficulty.

2. Though the geometrical solution uses known properties of the Fermat point, these are very
easy to deduce directly.

3. A complex variable solution is also possible because of the  angles, but it is comparable
with the other methods in length and difficulty.

120°

4. Ptolemy's inequality applied to the quadrilateral  does not seem to produce the
required result.

ADFE

Solution 1.  We need the following lemma:
Lemma.  A triangle  is given.  Points  and  lie on ,  respectively, so that

 and , where .  If  then .
DEF P Q FD FE

PF ≥ λDF QF ≥ λEF λ > 0 ∠PFQ ≥ 90° PQ ≥ λDE
Proof:  Let .  Since , we have .  Now, by the cosine law, we
have 
from which , as required.

∠PFQ = θ θ ≥ 90° − cos θ ≥ 0
PQ2 = PF2 + QF2 − 2 cosθ (PF)(QF) ≥ (λDF)2 + (λEF)2 − 2 cosθ (λDF)(λEF) = (λDE)2

PQ ≥ λDE

A

B C

D
E

F

P

Q

M

P1

P2

We now start the main proof.  Note that .  Now
let the lines ,  meet the circumcircles of triangles ,  at the points , 
respectively.  Then it is easy to see that both triangles  and  are equilateral.  We now
use the lemma with  and .  To see how, let  be the foot of the perpendicular
from  to the line  and suppose the perpendicular bisector of  meets the circumcircle 
at  and .  Let  be the midpoint of .  Then  so

.  Similarly we have .  Since , the lemma applies and so
.  Finally, using the triangle inequality, .

∠AFE = ∠BFE = ∠CFD = ∠AFD = 60°
BF CF CFA AFB P Q

CPA AQB
λ = 4 θ = 120° P1

F AC AC CFA
P P2 M AC PD / DF = PM / FP1 ≥ PM / MP2 = 3

PF ≥ 4DF QF ≥ 4EF ∠DFE = 120°
PQ ≥ 4DE AB + AC = AQ + AP ≥ PQ ≥ 4DE
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Further comment
5. An alternative argument may be used to prove .  Since the area

 we have , from which 
PF ≥ 4DF

[CFA] = [AFD] + [CFD] (CF) (AF) = (CF) (DF) + (AF) (DF)

DF =
(CF) (AF)

(CF) + (AF)
.

But it is easily shown, by Ptolemy's theorem for the cyclic quadrilateral  for example,
that , so .

AFCP
CF + AF = PF PF / DF = {(CF) + (AF)}2 / {(CF) (AF)} ≥ 4

Solution 2.  Let  denote the lengths of  respectively.  Then, from (*), we have
 and similarly .  Applying the cosine law to triangles ,

,  the given inequality becomes 

x, y, z AF, BF, CF
DF = xz / (x + z) EF = xy / (x + y) ABF
ACF DEF

x2 + xy + y2 + x2 + xz + z2 ≥ 4 ( xy

x + y)2

+ ( xz

x + z)2

+ ( xy

x + y) ( xz

x + z)
Since  and  it is sufficient to prove(x + y) / 4 ≥ xy / (x + y) (x + z) / 4 ≥ xz / (x + z)

x2 + xy + y2 + x2 + xz + z2 ≥ (x + y)2 + (x + z)2 + (x + y) (x + z).
It is easy to check that the square of the left-hand side minus the square of the right-hand side
comes to

2 (x2 + xy + y2) (x2 + xz + z2) − (x2 + 2 (y + z) x + yz) .
It is sufficient, therefore to show that the square of the first term is greater than or equal to the
square of the second term.  But a short calculation shows that the difference between these two
squares is equal to .3 (x2 − yz)2 ≥ 0

Further comment
6. It is easy to show that equality holds if and only if triangle  is equilateral, but there

seems no interest in making this part of the question.
ABC
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G3.  The circle  has centre , and  is a diameter of .  Let  be a point of  such that
.  Let  be the midpoint of the arc  which does not contain .  The line

through  parallel to  meets the line  at .  The perpendicular bisector of  meets  at 
and at .  Prove that  is the incentre of the triangle .

S O BC S A S
∠AOB < 120° D AB C

O DA AC I OA S E
F I CEF

Comments
1. The condition  ensures that  is internal to triangle .∠AOB < 120° I CEF

2. Besides the two solutions given, other proofs using circle and triangle properties are
possible;  a coordinate method would appear to be lengthy.

S∗

A

B C

D

E

M
I

F

S

O

Solution 1.   is the midpoint of arc , so  bisects .  Now, since ,
 so  is parallel to  and  is a parallelogram.  Hence

  since  (with diagonals bisecting each other at right angles) is a
rhombus.  Thus 

A EAF CA ∠ECF OA = OC
∠AOD = 1

2∠AOB = ∠OAC OD IA ODAI
AI = OD = OE = AF OEAF

∠IFE = ∠IFA − ∠EFA = ∠AIF − ∠ECA

= ∠AIF − ∠ICF = ∠IFC.
Therefore,  bisects angle  and  is the incentre of triangle .IF EFC I CEF

Solution 2.  As in the first solution,  is a parallelogram.  Thus both  and  lie on the
image  of the circle  under the half-turn about the midpoint  of .  Let  be the incentre
of the triangle .  Since  is the midpoint of the arc  of  which does not contain , both 
and  lie on the side , which is the internal bisector of .  Note that

ODAI O I
S∗ S M EF I0

CEF A EF S C I
I0 CA ∠ECF

AO = OE = EA = AF = FO,
implying that  and  are congruent equilateral triangles.  It follows that .
Since  is the incentre and  the circumcentre of  we have

AEO AFO ∠EOF = 120°
I0 O CEF

∠EI0F = 90° + 1
2∠ECF = 90° + 1

4∠EOF = 120°.
It follows that , as well as , lies on .  Since  has a unique intersection with the side , we
conclude that .

I0 I S∗ S∗ AC
I = I0
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G4.   Circles  and  intersect at points  and .  Distinct points  and  (not at  or ) are
selected on .  The lines  and  meet  again at  and  respectively, and the lines 
and  meet at .  Prove that, as  and  vary, the circumcentres of triangles  all lie
on one fixed circle.

S1 S2 P Q A1 B1 P Q
S1 A1P B1P S2 A2 B2 A1B1

A2B2 C A1 B1 A1A2C

Comments
1. The solution establishes the essential fact that the circle to be identified passes through 

and the centres ,  of ,  respectively.  A solver must appreciate this before
composing a solution.  The motivation may arise from considering certain special or
limiting cases.  For example, when  is tangent to  at  then  coincides with  and 
coincides with .  The circumcircle of triangle  is then  and its circumcentre 
coincides with .  Also if  is close to , so are  and , indicating that  lies on the
circle to be identified.

Q
O1 O2 S1 S2

A1P S2 P A2 P C
B1 A1A2C S1 O
O1 B1 Q B2 C Q

2. Although the solution given is short and the problem is by no means hard, it is not as
straightforward as the solution may at first sight suggest (see above comment).

3. An analytic solution is possible, but the best we could manage took three full sheets of
writing!

A1

B1

C

O

P

A2

B2

O1 O2

Q

S1 S2
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Solution.
Step 1.   The points , , ,  are concyclic.A1 C A2 Q
Proof:  We prove this by showing that the opposite angles of the quadrilateral add up to .
We have .
Here we have made use of the circle property that the exterior angle of a cyclic quadrilateral is
equal to the interior opposite angle and also that angles in the same segment are equal.

180°
∠A1CA2 + ∠A1QA2 = ∠A1CA2 + ∠A1QP + ∠PQA2 = ∠B1CB2 + ∠CB1B2 + ∠CB2B1 = 180°

Step 2.  Let  be the circumcentre of triangle .  Then the points  are
concyclic.

O A1A2C O, O1, Q, O2

Proof:  We again prove that opposite angles of the quadrilateral add up to .180°
From Step 1 we have . Also . Hence 

.  Similarly .  Here we have used the property
that the angle at the centre is twice the angle at the circumference and the angle properties of a
cyclic quadrilateral.  Hence .
Thus, the centres of the circumcircles of all possible triangles  (and similarly for triangles

) lie on a fixed circle through ,  and .

OQ = OA1 O1Q = O1A1 ∠OO1Q = 1
2∠A1O1Q

= 180° − ∠A1PQ ∠OO2Q = 180° − ∠A2PQ

∠OO1Q + ∠OO2Q = 180° − ∠A1PQ + 180° − ∠A2PQ = 180°
A1A2C

B1B2C O1 O2 Q

Further comment
4. There are some additional features about this configuration which may arise in alternative

proofs.  For example, if the tangents at ,  meet at  then , , ,  are concyclic.
Since it is easy to prove that  are concyclic, we have an alternative proof of
Step 1.

A1 A2 C′ A1 A2 C C′
C′, A1, A2, Q
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G5.  For any set  of five points in the plane, no three of which are collinear, let  and 
denote the greatest and smallest areas, respectively, of triangles determined by three points from
.  What is the minimum possible value of ?

S M (S) m (S)

S M (S) / m (S)

Solution.
When the five points are arranged at the vertices of a regular pentagon, it is easy to check that

 equals the golden ratio, .  We claim that this is best possible.M (S) / m (S) τ = (1 + 5) / 2
Let  be an arbitrary configuration, and label the points  and , so that  has
maximal area .  In the following five steps, we prove the claim by showing that some
triangle has area  or smaller.

S A, B, C, D E ABC
M (S)

M (S) / τ
Step 1.  Construct a larger triangle  with parallel sides to  so that  and  lie at
the midpoints of the edges ,  and , respectively.  The point  must then lie on the
same side of  as  otherwise  would have greater area than .  Arguing
similarly with the other edges and with the vertex , it follows that both  and  necessarily lie
within  (perhaps on its boundary).

A′B′C′ ABC A, B C
B′C′ C′A′ A′B′ D

B′C′ BC DBC ABC
E D E

A′B′C′

A

B

C

A′

B′

C′

Step 2.  We can assume more.  Of the three triangles ,  and  at least one of
them contains neither  nor . Rearranging the labels  and  if necessary, we can assume
that  and  are contained inside the quadrilateral .

A′BC AB′C ABC′
D E A, B C

D E BCB′C′

Step 3.  Note that if an affine linear transformation of the plane is applied to the configuration ,
the ratio  remains unchanged (since all areas change by the same factor).  We can
therefore make the convenient assumption that  and  are vertices of a regular pentagon

; if this is not already true, then a suitable affine linear transformation can be found
carrying  and  to the required positions.  Since , it follows that 
lies on .  Similarly,  lies on .

S
M (S) / m (S)

A, B C
APBCQ

A, B C ∠ABP = ∠BAC = 36° P
BC′ Q CB′

A

BC

PQ

B′ C′
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Step 4.  If either  or  lies in the pentagon , then we are done.  We argue for  as
follows: Note that  has area .  If  lies in , then  has area at most

.  Likewise we are done if  lies in .  Finally if  is contained in , then one
of ,  or  has area at most . Similarly for .

D E APBCQ D
APB M (S) / τ D APB DPB

M (S) / τ D AQC D ABC
DAB DBC DCA M (S) / 3 < M (S) / τ E

Step 5.  What remains is the case where  and  are contained in the union of the triangles
 and . Then , and on the other hand the angle

 satisfies one of  (if  and  lie in the same triangle) or
 (if they lie in different triangles).  Either way, we have

.

D E
APC′ AQB′ |AE| , |AD| ≤ |AP| = |AQ|
θ = ∠EAD 0 < θ ≤ 36° E D
108° ≤ θ < 180°
Area (ADE) = 1

2 |AD| |AE| sin θ ≤ 1
2 |AP| |AQ| sin 108° = Area (APQ) = M (S) / τ

This completes the proof that the minimum value of  is .M (S) / m (S) τ

Comments
1. The difficulty is in knowing where to begin. The winning configuration (a regular pentagon)

is certainly eminently guessable, but what next?  It is natural to look at a largest (or
smallest) triangle and work from there. After that, naive case-checking or diagram-chasing
doesn't seem to work very well. The crucial observation is in Step 3, when we note that

 can be identified with part of a regular pentagon. Now the case-checking and
diagram-chasing becomes comparatively clean, since the known geometry of the pentagon
can be used as a reference.

ABC

2. Without something like Step 3 the problem is forbidding.  It is still possible, but quite
difficult, to find a clean argument − most attempts are likely to be messy and/or incomplete.

3. Reading the above proof carefully, it is easy to show that the minimum is attained precisely
when  is an affine linear transformation of the vertices of a regular pentagon.S

4. The proof above in no way generalises when the number  of points is greater than 5.  It
would be extremely interesting if a contestant were to find a proof that did work for some
other values of .  For general , the answer is unknown, and not even known
asymptotically; this is related to the famous Heilbronn problem on the smallest triangle
formed from  points in the unit square.

n

n n

n
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G6.   Let  be a positive integer.  Let  be unit circles in the plane, with
centres  respectively.  If no line meets more than two of the circles, prove
that

n ≥ 3 C1, C2, C3, … , Cn

O1, O2, O3, … , On

∑
1 ≤ i < j ≤ n

1
OiOj

≤
(n − 1) π

4
.

Comments
1. We present a solution, which, though fairly short, requires considerable ingenuity to devise.

The question seems medium to hard in difficulty.

2. The last part of the solution is a double-counting argument, and doubtless there are many
equivalent formulations possible.

Solution.  We use the following Lemma.
Lemma.  Let  be a circle of radius  and ,  two chords intersecting at , so that

.  Then .  (See Diagram 1.)
Ω ρ PR QS X

∠PXQ = ∠RXS = 2α arc PQ + arc RS = 4αρ

P

Q
R

S

Ω

X

O

λµ
2λ 2µ

2α 2α

Diagram 1

Proof:   Let  be the centre of .  Let  and ; then  and
, since the angle at the centre is twice the angle at the circumference.  Then

 and .

O Ω ∠POQ = 2λ ∠ROS = 2µ ∠QSP = λ
∠RPS = µ
∠RXS = 2α = λ + µ arc PQ + arc RS = 2λρ + 2µρ = 4αρ

We now start the main proof.
Surround all the given circles with a large circle  of radius .  Consider two circles , , with
centres ,  respectively.  From the given condition  and  do not intersect.  Let  be the
angle between their two internal common tangents ,  (see Diagram 2).  We have

, so .

Ω ρ Ci Cj

Oi Oj Ci Cj 2α
PR QS

OiOj = 2 cosec α α ≥ sin α = 2 / OiOj
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P

Q R

S

Wα

Ci
Cj

Oi
Oj

Diagram 2

Now, from the lemma, , so thatarc PQ + arc RS = 4αρ ≥ 8ρOiOj

1
OiOj

≤
arc PQ + arc RS

8ρ
 .

We now wish to consider the sum of all these arc lengths as  range over all pairs, and we
claim that any point of  is covered by such arcs at most  times.  To see this, let  be
any point of  and  a half-line tangent to , as in Diagram 3.  Consider this half-line as it is
rotated about  as shown.  At some stage it will intersect a pair of circles for the first time.
Relabel these circles  and .  The half-line can never intersect three circles, so at some
further stage intersection with one of these circles, say , is lost and the half-line will never
meet  again during its transit.  Continuing in this way and relabelling the circles conveniently,
the maximum number of times the half-line can intersect pairs of circles is , namely
when it intersects  and ,  and , …,  and .  As  was arbitrary, it follows that the
sum of all the arc lengths is less than or equal to , and hence

i, j
Ω (n − 1) T

Ω TU Ω
T

C1 C2

C1

C1

(n − 1)
C1 C2 C2 C3 Cn − 1 Cn T

2 (n − 1) πρ

∑
1 ≤ i < j ≤ n

1
OiOj

≤
(n − 1) π

4
.

W

T

U

Diagram 3

Further comment
3. If the lemma proves elusive, a solver could construct a proof in which  is sufficiently large

for the intersection points to be close to its centre, thus removing any need for the lemma.
Ω
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G7.    The incircle  of the acute-angled triangle  is tangent to  at .  Let  be an
altitude of triangle  and let  be the midpoint of .  If  is the other common point of 
and , prove that  and the circumcircle of triangle  are tangent at .

Ω ABC BC K AD
ABC M AD N Ω

KM Ω BCN N

Comments
1. We give two solutions, both of which involve a mixture of pure geometry and computation.

The problem is difficult, but not excessively so.

2. In the first solution, the point  is defined as the point of intersection of  and the
perpendicular bisector of , and is shown to lie on the circumcircle of triangle  by
proving .

P NK
BC BCN

(NK) (KP) = (BK) (KC)

3. In the second solution, the point  is defined as the intersection (other than ) of  and the
circumcircle of triangle , and is shown to lie on the perpendicular bisector of  by
proving that  bisects .

P N NK
BCN BC

NK ∠BNC

4. In the two solutions, we perform some manipulations that only make sense when  is not
equal to .  This is why we start by dealing with the (trivial) case when .  It
would be possible to add the words ‘non-isosceles’ in the statement of the problem, but we
feel that this would detract from its elegance, especially as the result does still hold in the
isosceles case.

AB
AC AB = AC

A

N

M

B
K

I

S

D
C

A′

Ω

P

f

Solution 1.  We may assume that , as if  then the result is trivial (as the
distance between the centres of the two internally tangent circles is equal to the difference of
their radii).  By symmetry, we may assume that .

AB ≠ AC AB = AC

AB < AC
Let the perpendicular bisector of the side  intersect  and  at  and  respectively.  It is
sufficient to prove that , the incentre  of triangle  and , the circumcentre of triangle

, are collinear.  Since  and  are parallel, both being perpendicular to , it is sufficient
to prove that  lies on the circumcircle of triangle ; for once we know  then

, and  is a straight line.  To establish what is wanted
we show .

BC NK BC P A′
N I ABC S

BCN IK SP BC
P BCN SP = SN

∠PNS = ∠NPS = ∠NKI = ∠PNI NIS
(NK) (KP) = (BK) (KC)
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Using the standard notation for triangle  (with ), we have 
and , so .  By the cosine law for triangle , we
have  and then .  Now

 and .  Let ; then

ABC s = (a + b + c) / 2 BK = s − b
KC = s − c (BK) (KC) = (s − b) (s − c) ABC
cos B = (c2 + a2 − b2) / 2ca BD = c cos B = (c2 + a2 − b2) / 2a

KA′ = BA′ − BK = 1
2 (b − c) DK = BK − BD = (b − c)(s − a)/a ∠MKD = φ

tan φ =
MD

DK
=

1
2 (AD) a

(b − c) (s − a)
=

[ABC]
(b − c) (s − a)

,

where  is the area of .  Now , so , where  is the inradius
of .  Finally, from triangle  we have  and hence

[ABC] ABC ∠NIK = 2φ NK = 2r sin φ r
ABC A′KP KP = KA′ secφ

(NK) (KP) = 2r (KA′) tan φ =
r [ABC]
(s − a)

=
[ABC]2

s (s − a)
= (s − b) (s − c) = (BK) (KC) .

Here we have used the well-known expressions for area: .[ABC] = rs = s(s − a)(s − b)(s − c)

Solution 2.  As in Solution 1, we may assume , and it is sufficient to show that  is
a straight line.  But now we define  to be the intersection (other than ) of  with the
circumcircle of triangle .  Now   implies  and  implies

, and  is a straight line if and only if all these angles are equal, which is
when  and  are parallel.  Since  is perpendicular to  this means that  must be also,
and hence it is sufficient to show that  is the midpoint of the arc .  To establish this, we
show that  bisects  for which it is sufficient to show that . Again
let .  Now, by the cosine rule,

AB < AC NIS
P N NK

BNC SP = SN ∠SPN = ∠SNP IN = IK
∠IKN = ∠INK NIS

IK SP IK BC SP
P BC

NKP ∠BNC BN / CN = BK / CK
∠MKD = φ

BN2 = NK2 + BK2 − 2 (NK) (BK) cos φ
and

CN2 = NK2 + CK2 + 2 (NK) (CK) cos φ.
So it is sufficient to show

BK2

CK2
=

NK2 + BK2 − 2 (NK) (BK) cos φ
NK2 + CK2 + 2 (NK) (CK) cos φ

.

or .(CK − BK) NK = 2 (BK) (CK) cos φ
Now , so it is sufficient to prove   But

, since  is the midpoint of .
Now  and , so it is sufficient to prove

NK = 2r sin φ 2r (CK − BK) tan φ = 2 (BK) (CK) .
tan φ = MD / DK = 1

2AD / DK = 1
2c sin B / (s − b − c cos B) M AD

BK = r cot 1
2B CK = r cot 1

2C

(cot 1
2C − cot 1

2B) (c sin B) / (a + c − b − 2c cos B) = cot 1
2B cot 1

2C.
Using the sine rule and  this reduces to proving thata = c cos B + b cos C

sinC sinB(cot 1
2C − cot 1

2B) = cot 1
2Bcot 1

2C (sinC − sinB + sinBcosC − sinC cosB). (∗)
Putting (*) into half-angles, and cancelling  this resolves tosin 1

2 (B − C)

sin B sin C = 4 sin 1
2B sin 1

2C cos 1
2B cos 1

2C,
which is true.

Further comment
5. Slight changes in the text are necessary in Solution 2 when  but the solution is

essentially the same.
AB > AC,
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G8.  Let  and  be circles meeting at the points  and .  A line through  meets  at  and
 at .  Points  lie on the line segments  respectively, with  parallel to
 and  parallel to .  Let  and  be points on those arcs  of  and  of 

respectively that do not contain .  Given that  is perpendicular to  and  is
perpendicular to  prove that .

S1 S2 A B A S1 C
S2 D M, N, K CD, BC, BD MN
BD MK BC E F BC S1 BD S2

A EN BC FK
BD ∠EMF = 90°

Comments
1. In the solution, the lemma looks elaborate but merely formalizes the ‘obvious’ similarity of

two figures involving circular arcs.  This seems worth making explicit as it appears to be the
key to the problem.

2. A coordinate approach would be impracticable.

C

E

N

A

B F

D

K

M

Q
S1

S2

Solution.
Lemma.  If  and  are circular arcs with

 and  are the feet of the perpendiculars
from  to  respectively, then if

 then the triangles ,  are
similar.

P1Q1R1 P2Q2R2

∠P1Q1R1 = ∠P2Q2R2 T1, T2

Q1, Q2 P1R1, P2R2

P1T1 / T1R1 = P2T2 / T2R2 P1Q1R1 P2Q2R2

Proof:   If  is the unique point on arc  making triangles
,  equiangular and therefore similar, and if  is

perpendicular to , then ,
so  and .

Q2′ P2Q2R2

P1Q1R1 P2Q2′R2 Q2′T2′
P2R2 P2T2′ / T2′R2 = P1T1 / T1R1= P2T2 / T2R2

T2′ = T2 Q2′ = Q2

Turning now to the problem we have

BN / NC = DM / MC since MN | |DB

= DK / KB since MK | |CB.
Let  produced meet  again at .  Then

.  By the Lemma, triangles ,  are
similar.  Hence  and the right-angled
triangles  are similar.

FK S2 Q
∠BQD = ∠BAD = ∠BEC BEC DQB

∠EBC = ∠QDB = ∠QFB
BNE, FKB

T1
P1

Q1

R1

R2

Q2

P2

T2

Now  since  is a parallelogram, so .  Also

.  Therefore triangles  are similar and

.  Since lines  are perpendicular, so are  and .

∠MNB = ∠MKB MKBN ∠ENM = ∠MKF
MN

KF
=

BK

KF
=

EN

NB
=

EN

MK
ENM, MKF

∠NME = ∠KFM MN, KF EM FM

Further comment
3. From the similarity of the right-angled triangles  it follows easily that

 as well.
BNE, FKB

∠EAF = 90°
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A1.  Find all functions  from the reals to the reals such thatf

f (f (x) + y) = 2x + f (f (y) − x)
for all real .x, y

Solution.  For each real , the function given by  is a solution for the given
functional equation, since it makes both sides equal .  We claim that these are the
only solutions.

c f (x) = x + c
x + y + 2c

Our strategy is to derive an equation of the form , where  is an expression
whose values are guaranteed to run over all real numbers.

f (X) = X + c X

We claim first that  is surjective.  Indeed, set  in the functional equation.  This givesf y = −f (x)
f (0) = 2x + f (f (−f (x)) − x)

or

f (0) − 2x = f (f (−f (x)) − x) .
As all real numbers have the form , for each real  there is a  with , as claimed.f (0) − 2x y z y = f (z)
In particular there is an  with .  Set  in the functional equation.  This givesa f (a) = 0 x = a

f (y) = 2a + f (f (y) − a) ,
or equivalently

f (y) − a = f (f (y) − a) + a.
As  is surjective, for each real  there is a real  with . Hencef x y x = f (y) − a

x = f (x) + a

for all , that is .x f (x) = x − a

Comment
1. This is an easy problem.  It seems to be crucial to note that  is surjective.f
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A2.  Let  be an infinite sequence of real numbers, for which there exists a real number
 with  for all , such that

a1, a2, …
c 0 ≤ ai ≤ c i

| ai − aj | ≥
1

i + j
for all i, j with i ≠ j.

Prove that .c ≥ 1

Solution.  Fix , and let  be the permutation of  which orders the
first  elements of the sequence:

n ≥ 2 σ(1),σ(2),…,σ(n) 1,2, …,n
n

0 ≤ aσ(1) < aσ(2) <… < aσ(n) ≤ c.
Then

c ≥ aσ(n) − aσ(1)

= (aσ(n) − aσ(n − 1)) + (aσ(n − 1) − aσ(n − 2)) +  …  + (aσ(2) − aσ(1))

≥
1

σ (n) + σ (n − 1)
+

1
σ (n − 1) + σ (n − 2)

+  …  +
1

σ (2) + σ (1)
 . (∗)

Now, using the Cauchy-Schwarz inequality, we obtain

( 1
σ(n) + σ(n − 1)

+  …  +
1

σ(2) + σ(1))((σ(n) + σ(n − 1)) +  … +(σ(2) + σ(1))) ≥ (n − 1)2

so

1
σ(n) + σ(n − 1)

+  …  +
1

σ(2) + σ(1)
≥

(n − 1)2

2(σ (1) +… +σ(n)) − σ(1) − σ(n)

=
(n − 1)2

n(n + 1) − σ(1) − σ(n)

≥
(n − 1)2

n2 + n − 3

≥
n − 1
n + 3

.

From (*) it follows that the inequality

c ≥
n − 1
n + 3

= 1 −
4

n + 3
holds for all .  Thus we must have .n ≥ 2 c ≥ 1

Comments
1. What makes the question challenging is: how do we bring in the value of ?  Which bits of

the data should we use?  The key step is to realise that to make use of  all we need are the
distances between adjacent terms.  Having got equation (*), the rest is then easy, and there
are several ways to finish off the proof.

c
c

2. We do not know what the smallest value of  actually is.c
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3. The solution relies on finding a lower bound for the quantity

1
σ (1) + σ (2)

+
1

σ (2) + σ (3)
+  …  +

1
σ (n − 1) + σ (n)

where  is an arbitrary permutation of .  An alternative would be to take this
as the heart of the question, and ask for the exact minimum, thus:

σ (1,  2,  … , n)

A2'.   What is the minimum value of

1
σ (1) + σ (2)

+
1

σ (2) + σ (3)
+  …  +

1
σ (n − 1) + σ (n)

as  ranges over all permutations of  ?σ {1, 2, …,n}

The optimal permutation turns out to be the one given by , , ,
, and so on.  To prove this, we use induction, but it is vital to prove a

stronger statement: that if we look at permutations of a general sequence 
instead of just  (where say ), then the optimal permutation is
again , , , , and so on.  The proof is more
difficult, and more interesting, than that of A2.  The only drawback is that A2' lacks the
‘how on earth can we make use of the information?’ puzzle that contestants face with A2.

σ (1) = 1 σ (n) = 2 σ (2) = 3
σ (n − 1) = 4

x1, x2, … , xn

1,2, … , n x1 < x2 <  … < xn

σ (x1) = x1 σ (xn) = x2 σ (x2) = x3 σ (xn − 1) = x4
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A3.  Let  be a cubic polynomial given by , where  are
integers and .  Suppose that  for infinitely many pairs  of integers with

.  Prove that the equation  has an integer root.

P P (x) = ax3 + bx2 + cx + d a, b, c, d
a ≠ 0 xP (x) = yP (y) x, y

x ≠ y P (x) = 0

Comment
1. The main ideas in the solution are that  is bounded for all solutions  (consider the

shape of the quartic ), and that  is then symmetric about one particular value of
 which is taken infinitely often.

x + y x, y
xP (x) P

(x + y) / 2

Solution.  Let  be distinct integers satisfying  so thatx, y xP (x) = yP (y)

x (ax3 + bx2 + cx + d) = y (ay3 + by2 + cy + d)
i.e.  a (x4 − y4) + b (x3 − y3) + c (x2 − y2) + d (x − y) = 0.

Dividing by  leads tox − y (≠ 0)

a (x3 + x2y + xy2 + y3) + b (x2 + xy + y2) + c (x + y) + d = 0. (1)
It is convenient to write

s = x + y,  t = xy. (2)
Since

x3 + x2y + xy2 + y3 = (x + y) (x2 + y2) = s (s2 − 2t)
and

x2 + xy + y2 = s2 − t ,
(1) can be written in the form

as (s2 − 2t) + b (s2 − t) + cs + d = 0

or equivalently as

P (s) = (2as + b) t. (3)
We claim that the integer  can take only finitely many values.  Indeed, consider the right-hand
side of (3).  Since , we have  so that

.

s
s2 − 4t = (x − y)2 ≥ 0 | t | < s2/4

|(2as + b)t| ≤ |(2as + b)(s2/4)|
Equation (3) therefore leads to

| as3 + bs2 + cs + d | ≤ | a2  s3 +
b

4
 s2 |

which can only be true for finitely many values of the integer , as required.s

Write  for .  The equation  becomes , which holds for
infinitely many pairs of distinct integers .  Equivalently,  holds for
infinitely many pairs of integers  with  as in (2).  But  can only take finitely many values.
Hence for (at least) one integer , the equation  must hold for infinitely many
integers.  But then  and  are polynomials of degree 4 which are equal for
infinitely many integer values of .  They must therefore be equal for all real numbers .

Q (x) xP (x) xP (x) = yP (y) Q (x) = Q (y)
x, y Q (r) = Q (s − r)

s, r s s
s Q (r) = Q (s − r)

Q (x) Q (s − x)
x x
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To finish the proof, we consider two cases.
Case 1:  .  We have  for all real numbers .  Take  to get

 so that  as .  Hence  is an integer root of .
s ≠ 0 xP (x) = (s − x) P (s − x) x x = s

sP (s) = 0 P (s) = 0 s ≠ 0 x = s P (x) = 0
Case 2:  .  We now have  for all real numbers  so that  is an even
function.  As  is divisible by , it must be divisible by  i.e.  for
some polynomial .  Hence  so that .  Again, the equation

 has an integer root, namely .

s = 0 Q (x) = Q (−x) x Q
Q (x) x x2 Q (x) = xP (x) = x2R (x)

R (x) P (x) = xR (x) P (0) = 0
P (x) = 0 x = 0

Further comment
2. By examining further Cases 1 and 2 above, it is not too hard to show that polynomials 

satisfying the conditions of the problem have the general form
P

P (x) = (x − k) (ax2 − akx + m)
where  and  are integers.a, k m
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A4.   Find all functions  from the reals to the reals such thatf

(f (x) + f (z)) (f (y) + f (t)) = f (xy − zt) + f (xt + yz)
for all real .x, y, z, t

Solution.  We are given that

f (xy − zt) + f (xt + yz) = (f (x) + f (z)) (f (y) + f (t)) (∗)
for all real .  The equation (*) has the solutions  for all ,   for all
 and  for all .  These make both sides of (*) equal to 0, to 1 and to

 respectively.  We claim that there are no other solutions.

x, y, z, t f (x) = 0 x f (x) = 1 / 2
x f (x) = x2 x
(x2 + z2) (y2 + t2)
Suppose (*) holds.  Then setting  gives .  In
particular  and so  or .  If  we get

 and so  is identically 1/2.

x = y = z = 0 2f (0) = 2f (0) (f (0) + f (t))
2f (0) = 4f (0)2 f (0) = 0 f (0) = 1 / 2 f (0) = 1 / 2

f (0) + f (t) = 1 f
Suppose then that . Then setting  in (*) gives , that is  is
multiplicative.  In particular  and so  or 1.  If  then

 for all .

f (0) = 0 z = t = 0 f (xy) = f (x) f (y) f
f (1) = f (1)2 f (1) = 0 f (1) = 0

f (x) = f (x) f (1) = 0 x
So we may suppose that  and .  Setting  and , (*) givesf (0) = 0 f (1) = 1 x = 0 y = t = 1

f (−z) + f (z) = 2f (z)
and so  for each , that is  is an even function.  So it suffices to show that

 for positive .  Note that ; as  is an even function,  for
all .

f (−z) = f (z) z f
f (x) = x2 x f (x2) = f (x)2 ≥ 0 f f (y) ≥ 0

y
Now put  and  in (*) to gett = x z = y

f (x2 + y2) = (f (x) + f (y))2 .
This shows that .  Hence if  then , that is 
is an increasing function on the positive reals.

f (x2 + y2) ≥ f (x)2 = f (x2) u ≥ v ≥ 0 f (u) ≥ f (v) f

Set  in (*) to yieldy = z = t = 1

f (x − 1) + f (x + 1) = 2 (f (x) + 1) .
By induction on , it readily follows from this that  for all non-negative integers .
As  is even,  for all integers , and further, as  is multiplicative,  for all
rationals .  Suppose that  for some positive .  If  take a rational  with

.  Then , but  as  is increasing.  This is a
contradiction.  A similar argument shows that  is impossible.  Thus  for all
positive , and since  is even,  for all real .

n f (n) = n2 n
f f (n) = n2 n f f (a) = a2

a f (x) ≠ x2 x f (x) < x2 a
x > a > f (x) f (a) = a2 > f (x) f (a) ≤ f (x) f

f (x) > x2 f (x) = x2

x f f (x) = x2 x

Comments
1. This is a medium difficulty problem, requiring no really clever ideas, but a willingness to

experiment with the functional equation to squeeze out diverse consequences.  One also
needs the passage from knowing  on the rationals to knowing it on the reals: here the key
point is that we know that  is increasing (on the positive reals).

f
f

2. This problem is clearly inspired by the famous identity

(x2 + z2) (y2 + t2) = (xy − zt)2 + (xt + yz)2

used to study sums of two squares in number theory.
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3. In its original form, the problem had the variable  set equal to 1, thus:t

A4'.   Find all functions  from the reals to the reals such thatf

(f (x) + f (z)) (f (y) + 1) = f (xy − z) + f (x + yz)
for all real .x, y, z

This has the ‘sums of two squares’ hidden, so that it may be less clear that  is a
solution. We feel that this version is less elegant and attractive than the form we have given.
It is quite easy to transform either problem into the other.

f (x) = x2
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A5.  Let  be a positive integer that is not a perfect cube.  Define real numbers  byn a, b, c

a = 3 n ,  b =
1

a − [a]
 ,  c =

1
b − [b]

 ,

where  denotes the integer part of .[x] x
Prove that there are infinitely many such integers  with the property that there exist integers

, not all zero, such that .
n

r, s, t ra + sb + tc = 0

Solution.  Note first that it is sufficient to find rational numbers  not all zero such that
.

r, s, t
ra + sb + tc = 0
Let  and .  Thenm = [a] k = n − m3

1 ≤ k ≤ ((m + 1)3 − 1) − m3 = 3m (m + 1) .
From the factorisation  we havea3 − m3 = (a − m) (a2 + am + m2)

b =
1

a − m
=

a2 + am + m2

k
.

Since , the numerator is less thana < m + 1

(m + 1)2 + (m + 1) m + m2 = 3m2 + 3m + 1.
To simplify the calculation, we shall assume that .  This is true provided that[b] = 1

3m2 + 3m + 1 < 2k. (∗)
Now

b − [b] = b − 1 =
a2 + am + m2 − k

k
.

Factorise the numerator in the form , so that
 and .  Note that  are real since the discriminant  is

 by (*).  Then

a2 + am + m2 − k = (a − x) (a − y)
x + y = −m xy = m2 − k x, y (x − y)2

m2 − 4 (m2 − k) = 4k − 3m2 > 0

c =
1

b − 1
=

k

(a − x) (a − y)
=

k (a2 + ax + x2) (a2 + ay + y2)
(a3 − x3) (a3 − y3) .

(Note that  and  are strictly positive.)a2 + ax + x2 a2 + ay + y2

Since

x3 + y3 = (x + y) [(x + y)2 − 3xy] = −m [m2 − 3 (m2 − k)] = m (2m2 − 3k)
and

x3y3 = (xy)3 = (m2 − k)3

are integers, so is .  Thenl = (a3 − x3) (a3 − y3) = n2 − (x3 + y3) n + x3y3

c =
k

l
(a2 + ax + x2) (a2 + ay + y2)

=
k

l
(a4 + (x + y) a3 + (x2 + xy + y2) a2 + xy (x + y) a + x2y2)

=
k

l
(ka2 + (m (k2 − m) + n) a + (m2 − k)2

− nm) .
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To make , choose  and  so that the coefficients of  and  vanish i.e.ra + sb + tc = 0 s t a2 a0

s

k
+

tk2

l
= 0 and  

sm2

k
+

tk

l
((m2 − k)2

− nm) = 0.

The first equation gives  and the second then becomess = −
tk3

l

−
tk2m2

l
+

tk

l
((m2 − k)2

− mn) = 0

i.e.
tk

l
[(m2 − k)2

− mn − km2] = 0.

The bracket simplifies as 

m4 − 2km2 + k2 − mn − km2 = m (m3 − n) − 3km2 + k2

= −mk − 3km2 + k2

= k (k − 3m2 − m) .
Choose , which satisfies (*) and also satisfies .  We have
therefore shown that for integers  of the form  we can obtain non-zero rational
values of  so that  is a rational multiple of .  In view of the opening comment, this
completes the proof.

k = 3m2 + m 1 ≤ k ≤ 3m (m + 1)
n m3 + 3m2 + m

s, t sb + tc a

Comment
1. One of the key ideas is to force  to have integer part 1: this greatly simplifies what is to

come.  But there are still more ideas needed: pure brute-force calculation would be doomed
to failure.

b
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A6.   Let  be a non-empty set of positive integers.  Suppose that there are positive integers
 and  such that
A

b1, … bn c1, … , cn

(i) for each  the set  is a subset of , andi biA + ci = {bia + ci : a ∈ A} A
(ii) the sets  and  are disjoint whenever .biA + ci bjA + cj i ≠ j

Prove that

1
b1

+  …  +
1
bn

≤ 1.

Comment
1. In the following proof, the key idea, after trying an example with the  equal, is to weight

the number of times each  appears (this is the use of the  below).  After that, the
calculations are quite easy, and there are several ways to accomplish them.  However, this
key idea is rather non-trivial, so we feel this is a hard problem.

bi

bi pi

Solution.  For a contradiction, assume that

1
b1

+  …  +
1
bn

> 1.

So certainly .  Note also that  is infinite.n ≥ 2 A
For each , define .  Each function  maps  to itself.  By condition (ii), if

 for  then  and so . By iterating this argument, it follows
that if we have  and

i f i (x) = bix + ci f i A
f i (a) = f j (a′) a, a′ ∈ A i = j a = a′

a, a′ ∈ A

f i1 (f i2 (… f ir
(a) … )) = f j1 (f j2 (… f jr (a′) … ))

then each  (and ).ik = jk a = a′
The idea of our proof is to take a suitable  and generate a family of numbers of the form

 by choosing  appropriately.  These iterates are all distinct, and
we will get an upper estimate on their size, but a lower bound on their number.  Before
embarking on the main argument, let us consider the case when  as an
illustration.  If we choose  large enough, then for any  we have

.  But there are  such numbers, all distinct.  Taking  large
enough we see this is impossible.

a ∈ A
f i1 (f i2 (… f ir

(a) … )) i1, … , ir

b1 = b2 = b3 = 2
a ∈ A ik ∈ {1,2,3}

f i1 (f i2 (… f ir (a) … )) ≤ (2.01)r a 3r r

This argument is trickier to generalize when the  are not all equal.  To do so we will look at all
sequences of the functions  of length  where each  appears in a proportion dependent only
on .  Take positive rational numbers  (to be chosen later) with  and an
integer  which is a multiple of , the least common multiple of the denominators of the .
Hence each  is an integer.  Let  and consider the set  of the numbers of the form

 where, for each , exactly  of the  equal .  As these are all distinct,
 has

bi

f i N f i

i p1, … pn p1 +  …  + pn = 1
N N0 pi

piN a ∈ A Φ (N)
f i1 (f i2 (… f iN (a) … )) i piN ik i
Φ (N)

|Φ (N)| =
N!

(p1N)! … (pnN)!
elements.
Choose  with .  There is a number  such that 
for all  whenever .  As  is infinite, we may choose  with .  Then

di > bi 1/d1 +  … +1/dn > 1 K K ≤ f i (x)  ≤ dix
i x ≥ K A a ∈ A a ≥ K

f i1 (f i2 (… f iN (a) … )) ≤ di1… diNa = dp1N
1 … dpnN

n a.
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To obtain a contradiction we need an estimate for .  We can use Stirling's formula, or
similar, to get a precise asymptotic formula for , but we can obtain a weaker but still
adequate lower bound in a completely elementary fashion.  Note that

|Φ (N)|
|Φ (N)|

|Φ (N + N0)|
|Φ (N)|

=
(N + N0) (N + N0 − 1) … (N + 1)

[(p1N + p1N0) (p1N + p1N0 − 1) … (p1N + 1)] … [(pnN + pnN0) … (pnN + 1)]

=
(1 + N0 / N) (1 + (N0 − 1) / N) … (1 + 1 / N)

[(p1 + p1N0 / N) (p1 + (p1N0 − 1) / N) … (p1 + 1 / N)] … [(pn + pnN0 / N) … (pn + 1 / N)] .

If we choose any  then  for large enough .  It
follows that there is a constant  with  for all  divisible by .  But, as the
size of the elements of  is at most , we have .  

q > pp1
1 … ppn

n |Φ (N + N0) | / |Φ (N) | > 1 / qN0 N
U |Φ (N)| > U / qN N N0

Φ (N) a (dp1
1 … dpn

n )N |Φ (N)| ≤ a (dp1
1 … dpn

n )N

It is now clear how to choose  and .  We take  proportional to
, and  with .  Then our bounds on  are

contradictory for large .

p1, … , pn q p1, … , pn

1/d1, … ,  1/dn q pp1
1 … ppn

n < q < 1 / (dp1
1 … dpn

n ) |Φ (N)|
N

Further comment
2. Another approach is to consider the functions  and

.  One gets
N (x) = |{a ∈ A : a ≤ x}|

Ni (x) = |{a ∈ biA + ci : a ≤ x}|

N (x) ≥ ∑
n

i = 1

Ni (x) ≥ ∑
n

i = 1

N ( x

bi
− u)

for a suitable number .  By ingenious manipulation of this inequality, a contradiction can
be obtained.  However these manipulations seem less natural than the approach through
iterating applications of the .

u

f i
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C1.  Let  be a positive integer.  Each point  in the plane, where  and  are non-negative
integers with , is coloured red or blue, subject to the following condition: if a point

 is red, then so are all points  with  and .  Let  be the number of ways
to choose  blue points with distinct -coordinates, and let  be the number of ways to choose 
blue points with distinct -coordinates.  Prove that .

n (x, y) x y
x + y < n

(x, y) (x′, y′) x′ ≤ x y′ ≤ y A
n x B n

y A = B

Comment
1. This is an easy question, with an interesting variety of approaches.  We give three different

solutions: one is by induction on , one is by induction on the number of red points, and one
is a direct bijection.

n

Solution 1.  Let the number of blue points with -coordinate  be , and let the number of blue
points with -coordinate  be .  Our task is to show that , and to
accomplish this we will show that  is a permutation of .  

x i ai

y i bi a0a1… an − 1 = b0b1… bn − 1

a0, a1, … , an − 1 b0, b1, … , bn − 1

We prove this result by induction on .  The case  is trivial, so we pass to the induction
step: we may assume the result for all smaller values of .

n n = 1
n

Blue

Blue

Red

(k, n − 1 − k)

Consider first the case when every point  with  is blue.  Ignoring these points,
we have a configuration for , with blue columns of sizes  and
blue rows of sizes .  It follows by the induction hypothesis that

 is a permutation of , and since
 we are done.

(x, y) x + y = n + 1
n − 1 a0 − 1, a1 − 1, … , an−2 − 1

b0 − 1, b1 − 1, … , bn − 2 − 1
a0 − 1, a1 − 1, … , an−2 − 1 b0 − 1, b1 − 1, … , bn − 2 − 1
an − 1 = bn − 1 = 1
Now suppose instead that some point  is red.  Then the entire rectangle of all
points  with  and  is red.  Thus, considering just the points 
with , the induction hypothesis tells us that  is a permutation of

, and similarly we have that  is a permutation of
.  Since , we are done.

(k, n − 1 − k)
(x, y) x ≤ k y ≤ n − 1 − k (x, y)

x < k a0, a1, … , ak − 1

bn − k, bn − k + 1, … , bn − 1 ak + 1, ak + 2, … , an − 1

b0, b1, … , bn − 2 − k ak = bn − 1 − k = 0

Solution 2.  As above, we wish to show that  is a permutation of .
We prove this by induction on the number of red points: the result is trivial when there are no
red points.  Choose a red point  with  maximal.  Then .
If we change this red point to blue, then we have a configuration with fewer red points, with all
blue rows and columns unchanged except that the values of  and  decrease by 1.  So from
the induction hypothesis we have that , with  replaced by , is a
permutation of , with  replaced by .  Since , it follows that

 is a permutation of , as required.

a0, a1, … , an−1 b0, b1, … , bn−1

(x, y) x + y ax = by = n − 1 − x − y

ax by

a0, a1, … , an−1 ax ax − 1
b0, b1, … , bn−1 by by − 1 ax = by 

a0, a1, … , an−1 b0, b1, … , bn−1
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Solution 3.  We give an explicit bijection between  and .  If 
then also , and we let  correspond with .  If , let  be the bottom blue point
in column .  Now, among the points , there must be
at least one that is the leftmost blue point of a row: let the first one be .  Then we let 
correspond with . 

a0, a1, … , an−1 b0, b1, … , bn−1 ax = 0
bx = 0 ax bx ax > 0 (x, y)
x (x, y) , (x − 1, y + 1) , (x − 2, y + 2) , …

(x′, y′) ax

by′

This is clearly reversible: if  then we let  be the leftmost blue point in row , choose
the first point among  that is the bottom blue point
of a row, say , and let  correspond to . 

by > 0 (x, y) y
(x, y) , (x + 1, y − 1) , (x + 2, y − 2) , …

(x′, y′) by ax′

BlueRed

(x, y)

(x′ ′,y )
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C2.  For  an odd positive integer, the unit squares of an  chessboard are coloured
alternately black and white, with the four corners coloured black. A tromino is an -shape
formed by three connected unit squares.  For which values of  is it possible to cover all the
black squares with non-overlapping trominos?  When it is possible, what is the minimum
number of trominos needed?

n n × n
L

n

Solution.  Write .  The key observation for the second part of the problem, which
also helps in eliminating cleanly the case  for the first part, is the following.  Consider the
black squares at an even height above the bottom row: there are  of them, and no two
are covered by any one tromino.  So we always need at least  trominos to cover.

n = 2m + 1
n = 5

(m + 1)2

(m + 1)2

This disposes of the cases  and  (and ), as in each of these cases we have
that  is greater than , so that the black squares cannot be covered by trominos.

n = 3 n = 5 n = 1
3 (m + 1)2 n2

It remains only to show that when  we can cover the black squares with exactly 
trominos.  For , the numbers make this just about possible, as  is 48.  There are
several ways to achieve this.  One simple way is to note that we can make a  rectangle
from trominos, and two of these together make a  rectangle.  If we lay four of these
around the  board, we have covered every square except the central one.  But now take a
tromino that is adjacent to the central square: by the way the  rectangles have been built
up, it may be moved to uncover a white square and cover the central black square instead.

n ≥ 7 (m + 1)2

n = 7 3 (m + 1)2

2 × 3
4 × 3

7 × 7
4 × 3

4

4
3

3

4

3
4

3

2m
−

1

2m + 1

}
}

The case n = 7 From  
to 

(2m − 1) × (2m − 1)
(2m + 1) × (2m + 1)

In general, having covered the black squares on a  board with 
trominos, let us form a  board by surrounding it with a 
rectangle and a  rectangle.  Now, we may break up the  rectangle
into  squares (  of them) and one  rectangle, so that its black squares may be
covered by  trominos, and similarly the black squares of the 
rectangle may be covered by  trominos.  This gives a total of 
trominos, as required.

(2m − 1) × (2m − 1) m2

(2m + 1) × (2m + 1) (2m − 1) × 2
(2m + 1) × 2 (2m − 1) × 2

2 × 2 m − 2 2 × 3
(m − 2) + 2 (2m + 1) × 2

(m − 1) + 2 m2 + m + (m + 1)

Comment  
1. Covering problems are not uncommon, but this problem seems to be rather unusual.  What

is nice is that when one first thinks about the problem it seems very messy, but when one
has made the key observation above it all becomes very clean and elegant!
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C3.  Let  be a positive integer. A sequence of  positive integers (not necessarily distinct) is
called full if it satisfies the following condition: for each positive integer , if the number 
appears in the sequence then so does the number , and moreover the first occurrence of

 comes before the last occurrence of .  For each , how many full sequences are there?

n n
k ≥ 2 k

k − 1
k − 1 k n

Solution.  We claim there are  full sequences.  To do this, we will construct a bijection with
the set of permutations of .

n!
{1,  2, … , n}

Let  be a full sequence, and let .  Then all the numbers from 1
to  occur in .  Let  for .  Then all the  are non-
empty, and they partition the set .  The condition that the sequence is full means
that  for .  Now we write down a permutation  of

 by writing down the elements of  in descending order, then the elements of  in
descending order and so on.  This gives a map from full sequences to permutations of

.

a1, … , an r = max (a1, … , an)
r a1, … , an Si = {k : ak = i} 1 ≤ i ≤ r Si

{1,  2, … , n}
min Sk − 1 < max Sk 2 ≤ k ≤ r b1, … , bn

{1,  2, … , n} S1 S2

{1,  2, … , n}
Note also that this map is reversible.  Indeed, given a permutation  of   let

 where , let  where
 and so on.  Then let  whenever .  

b1, … , bn {1,  2, … , n}
S1 = {b1, … , bk1} b1 >… > bk1 < bk1 + 1 S2 = {bk1 + 1, … , bk2}
bk1 + 1 >… > bk2 < bk2 + 1 aj = i i ∈ Sj

It follows that the full sequences are in bijection with the set of permutations of , as
required.

{1,  2, … , n}

Comment
1. It is easy to guess, from some small examples, that the answer is , but finding a bijection

is not easy.  An alternative proof goes by induction on : given a full sequence of length ,
we form a sequence of length  by removing from it the first occurrence of its highest
number.  It is easy to check that this sequence of length  is full.  One can then check
that each full sequence of length  arises in this way from exactly  full sequences of
length .

n!
n n

n − 1
n − 1

n − 1 n
n
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C4.  Let  be the set of ordered triples , where  are integers with .
Players  and  play the following guessing game.  Player  chooses a triple  in , and
Player  has to discover 's triple in as few moves as possible.  A move consists of the
following:  gives  a triple  in , and  replies by giving  the number

.  Find the minimum number of moves
that  needs to be sure of determining 's triple.

T (x, y, z) x, y, z 0 ≤ x, y, z ≤ 9
A B A (x, y, z) T

B A
B A (a, b, c) T A B

|x + y − a − b| + |y + z − b − c| + |z + x − c − a|
B A

Solution.  It is easy to see that two moves cannot be enough.  Indeed, each answer is an even
integer between 0 and 54 inclusive, so that there are 28 possibilities for each answer.  Thus with
two moves the number of possible outcomes is at most , which is less than the required
number of outcomes, namely 1000.

282

We now set out to show that three moves are enough, by providing an explicit strategy.  The
first move should be (0, 0, 0).  The reply is , so that we now know the value of

.  Clearly , but to reduce the number of cases, in the algorithm
below we may assume that .  Indeed, if  then we perform the algorithm below,
but always ‘reflecting’, i.e. asking  instead of  − we will recover
the reflection of  at the end.

2 (x + y + z)
s = x + y + z 0 ≤ s ≤ 27

s ≤ 13 s ≥ 14
(9 − a,  9 − b,  9 − c) (a, b, c)

(x, y, z)
Case 1: .  This is the easy case.  The second move should be (9, 0, 0).  We learn

, so we now know the value of .  And
similarly asking (0, 9, 0) tells us the value of , so we are done (as ).

s ≤ 9
y + z + (9 − x − y) + (9 − x − z) = 18 − 2x x

y z = s − x − y
Case 2:  .  The second move should be .  We learn

, which is say , where  if  and  if
.  Note that whichever value  takes we do have .

9 < s ≤ 13 (9, s − 9,  0)
z + |9 − x − z| + |9 − x| 2k k = z x + z ≥ 9 k = 9 − x
x + z < 9 k z ≤ k ≤ s
Case 2a: .  The third move should be .  We learn

.  Since  (if  then this is obvious, while if
 then ), this is just .  Thus we

know , and hence .  So we know whether  is  or , and we are done.

s − k ≤ 9 (s − k,  0, k)
y + |k − y − z| + |z − k| k ≤ y + z k = z
k = 9 − x k − y − z = 9 − s y + (y + z − k) + (k − z) = 2y

y x + z k z 9 − x
Case 2b:  .  The third move should be .  We learn

, which is
.  So we know , and so

we know whether  is  or .  In either case, we know one of  and , and from  we
may deduce the other one, and we are done.

s − k > 9 (9, s − k − 9, k)
|s − k − x − y| + |s − 9 − y − z| + |9 + k − x − z|
(k − z) + (9 − x) + (9 + k − x − z) = 18 + 2k − 2 (x + z) x + z

k z 9 − x x z x + z

Comments
1. Case 1 is the natural, simple case to deal with first. And then, in Case 2, the key idea is to

use  itself in the triple we ask.  Similarly, in Case 2a the key idea is to somehow include 
in the triple we ask, while Case 2b is just a more complicated version of Case 2a.  One could
view the second move in Case 2 as the obvious modification of the second move in Case 1
when  is ‘out of range’, and similarly the third move in Case 2b is the obvious modification
of the third move in Case 2a.

s k

s

2. As two moves only just fail, it is very natural to guess that three moves is the right answer.
But finding an actual strategy seems complicated.  This question requires clarity of thought,
but no specialist knowledge at all.

3. There is nothing special about the fact that there are 10 possible values for each digit.
Changing 10 to a larger number, such as 2002, would not change the solution.
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C5.  Let  be a fixed positive integer, and let  be an infinite family of sets, each of size ,
no two of which are disjoint.  Prove that there exists a set of size  that meets each set in .

r ≥ 2 F r
r − 1 F

Solution.  We will show the following: if  is a set of size less than  that is contained in
infinitely many sets of , then either  meets all sets in  (in which case we are done) or else
there is an  such that  is itself contained in infinitely many sets of .  Since there
certainly exists such a set  (for example, the empty set), we may then iterate this result  times
and we will be done (as a set of size  clearly cannot be contained in infinitely many sets of !).

A r
F A F

x ∉ A A ∪ {x} F
A r

r F
To prove the result, suppose that some set  in  is disjoint from .  Of the
infinitely many sets in  that contain , each must meet , and so some  is a member of
infinitely many of them.  So we may take .

R = {x1, x2, … , xr} F A
F A R xi

x = xi

Comments
1. Although the above proof is very short, it does seem to require a creative insight, namely the

clever auxiliary result we prove.

2. An alternative proof is to note that, if the result is false, then for each set  in , and each
point , the set  is not suitable, so that there must be a set  in  with

.  In other words, each point  belonging to some set in  is the intersection of
two sets in . This implies that there is no finite set  with the property that any two sets in

 must meet at some point belonging to .  Although this is highly implausible, it does seem
tricky to prove impossible.  The simplest way is probably to prove a stronger result: that if 
and  are families of -sets, with each member of  meeting each member of , then there
exists a finite set  such that each member of  meets each member of  at some point of .
This goes easily by induction on .

R F
x ∈ R R − {x} S F

R ∩ S = {x} x F
F Y

F Y
F

G r F G
Y F G Y

r
As in the proof above, this proof requires a key creative insight, namely the generalisation
from one family to two.  This does suggest that the problem may be quite hard.
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C6.  Let  be an even positive integer.  Show that there is a permutation  of
 such that for every  the number  is one of ,
 (where we take ).

n x1, x2, … , xn

1,  2,  … , n 1 ≤ i ≤ n xi + 1 2xi,  2xi − 1,  2xi − n
2xi − n − 1 xn + 1 = x1

Solution.  Write .  We shall define a directed graph  with vertices labelled 
and edges labelled .  The edges issuing from vertex  are labelled  and , and
those entering it are labelled  and .  

n = 2m G 1, … , m
1, … ,  2m i 2i − 1 2i

i i + m
The underlying graph of  is connected: by induction on  there is a path from 1 to  since if

 then  or  with  and there is an edge from  to .  Also, the
indegree and outdegree of each vertex is the same (namely 2).  The directed graph  thus has an
Euler circuit.  Let  be the label of the -th edge in such a circuit.  If edge  enters and edge

 leaves vertex  then  and  or .  Hence
 and so  or  as is required.

G j j
j > 1 j = 2k − 1 2k 1 ≤ k < j k j

G
xi i xi

xi + 1 j xi ≡ j (mod m) xi + 1 = 2j − 1 2j
2xi ≡ 2j (mod 2m = n) xi + 1 ≡ 2xi − 1 2xi (mod n)

Comments
1. The problem requires one to prove the existence of a Hamilton cycle in a certain graph.

There is no obvious way to do this.  The above solution avoids this difficulty by
constructing a directed graph on a smaller vertex set whose edges are labelled  in
such a way that an Euler circuit (a closed walk that traverses each edge exactly once)
corresponds to the desired permutation.

1,  2,  … , n

2. The above proof uses the simple fact that if all indegrees and outdegrees are equal (and the
underlying graph is connected) then there is an Euler circuit.  This is very easy to prove, for
example by considering a closed walk of maximal length.  Indeed, the proposer's solution
does essentially the same thing with bare hands.

3. Although the above solution is short, it is definitely hard to think of.  There is a slight
similarity with the construction of de Bruijn sequences, but this is only apparent with
hindsight once one has written down the proof.
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C7.  Among a group of 120 people, some pairs are friends. A weak quartet is a set of four
people containing exactly one pair of friends.  What is the maximum possible number of weak
quartets?

Solution.  We proceed in three steps. First, we will show that, for a maximum number of weak
quartets, our graph (thinking of the friends as defining a graph on 120 vertices) breaks up as a
disjoint union of complete graphs. Then we show that these complete graphs have sizes that are
as equal as possible (ie. differ by at most 1 from each other).  And lastly we will find which of
these is the best.
For the first step, we would like to show that any two adjacent vertices have the same
neighbours (apart from themselves, of course).  For a graph  on our 120 vertices, write 
for the number of weak quartets in .  For adjacent vertices  of , let  be the graph
formed from  by ‘copying’  to : in other words, for each , we add the edge  if  is
an edge and we remove the edge  if  is not an edge.  Similarly, let  be the graph formed
from  by copying  to .

G Q (G)
G x, y G G′

G y x z ≠ x, y xz yz
xz yz G″

G x y
We claim that .  Indeed, let us compare the weak quartets in 
with those in  and .  The number of weak quartets containing neither  nor  is the same in

,  and , while the number containing both  and  is at least as great in  and  as it is
in .  The number containing  but not  in  is at least twice what it is in , while the number
containing  but not  in  is at least twice what it is in .  This establishes our claim.

Q (G) ≤ 1
2 (Q (G′) + Q (G″)) G

G′ G″ x y
G G′ G″ x y G′ G″

G y x G′ G
x y G″ G

It follows that, for an extremal , we must have .  So we may repeat
this copying operation pair by pair, to obtain a graph in which any two adjacent vertices have
the same common neighbours.  Indeed, if  and  are two adjacent vertices then we copy  to ;
if there another vertex  adjacent to  (and so also to ) then we copy  to  and then to , and so
on.  This completes the first step.

G Q (G) = Q (G′) = Q (G″)

x y y x
z x y z x y

Our aim now is to show that the sizes of the complete graphs in  may be taken to be as equal
as possible.  There are various ways to do this: one way is as follows.  Let the complete graphs
in  have sizes , where, just for convenience in what is to follow, we allow

.  Then we have

G

G a1, a2, … , an

ai = 0

Q (G) = ∑
n

i = 1
( ) ∑

j < k,  j,k ≠ i

ajak.
ai

2

(Here as usual we just take  to mean , to cover the case when .)  Now, let

us consider two of the , say  and , and let us see how  varies as we change the values
of  and  (keeping the other values, and the sum , fixed).  We have 

( )a
2

a (a − 1) / 2 a < 2

ai a b Q (G)
a b a + b

Q (G) = A (( ) + ( )) + B (a + b) + C (( ) b + ( ) a) ,a
2

b
2

a
2

b
2

where  do not depend on  or .  If we swap  and , we get the same expression, which
tells us that the expression is a quadratic, symmetric about , where  is the fixed sum .
(The expression may appear to be cubic, but it is easy to see that there is no cubic term, either
by direct calculation or because no cubic can be symmetric!)

A, B, C a b a b
s / 2 s a + b

This tells us that the maximum when  occurs either at  or at  (and
), and that the maximum value for integer  occurs when  or when  or when

.  Repeating for each pair of the , we have completed the second step.

0 ≤ a ≤ s a = s / 2 a = 0
a = s a a = 0 a = b
a = b ± 1 ai
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Our final step is some calculation.  Writing  for the number of (non-empty) complete graphs,
we see that

n

Q (G) = n ( ) ( ) (120 / n)2120 / n
2

n − 1
2

whenever  divides 120.  It is easy to check that, for , the maximum occurs at ,
with value .  Moreover, because of the fact that the maximum over all real  in the
previous paragraph occurred when all the non-zero  were equal, we also know that the
maximum possible value of  is at most the maximum value of the expression

n n ≤ 6 n = 5
15.23.243 ai

ai

Q (G)

n ( ) ( ) (120 / n)2120 / n
2

n − 1
2

as  varies from 3 to 120.  But this function is at most , which is a
decreasing function of  for  and is at most  for .  This completes the
third step: the maximum value is .

n 1204 (n − 1) (n − 2) / 4n3

n n ≥ 6 15.23.243 n = 7
15.23.243

Comments
1. The rough strategy outlined at the start of the proof is not too hard to think of.  However, the

actual extremal configuration (with 5 complete graphs of size 24) is far from obvious.  In
addition, fitting in the detail to implement the outline strategy presents a number of
challenges.  The hardest of these is the first step, to show that we have a disjoint union of
complete graphs.

2. The number 120 has been chosen to make the numerical calculations as simple as possible.
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