44t反 International Mathematical Olympiad

Short-listed Problems and

Tokyo Japan July 2003

44th International Mathematical Olympiad

Short-listed Problems and Solutions

Tokyo Japan
July 2003

The Problem Selection Committee and the Organising Committee of IMO 2003 thank the following thirty-eight countries for contributing problem proposals.

Armenia	Greece	New Zealand
Australia	Hong Kong	Poland
Austria	India	Puerto Rico
Brazil	Iran	Romania
Bulgaria	Ireland	Russia
Canada	Israel	South Africa
Colombia	Korea	Sweden
Croatia	Lithuania	Taiwan
Czech Republic	Luxembourg	Thailand
Estonia	Mexico	Ukraine
Finland	Mongolia	United Kingdom
France	Morocco	United States
Georgia	Netherlands	

The problems are grouped into four categories: algebra (A), combinatorics (C), geometry (G), and number theory (N). Within each category, the problems are arranged in ascending order of estimated difficulty, although of course it is very hard to judge this accurately.

Members of the Problem Selection Committee:

Titu Andreescu	Sachiko Nakajima
Mircea Becheanu	Chikara Nakayama
Ryo Ishida	Shingo Saito
Atsushi Ito	Svetoslav Savchev
Ryuichi Ito, chair	Masaki Tezuka
Eiji Iwase	Yoshio Togawa
Hiroki Kodama	Shunsuke Tsuchioka
Marcin Kuczma	Ryuji Tsushima
Kentaro Nagao	Atsuo Yamauchi

Contents

I Problems 1
Algebra 3
Combinatorics 5
Geometry 7
Number Theory 9
II Solutions 11
Algebra 13
A1 13
A2 15
A3 16
A4 17
A5 18
A6 20
Combinatorics 21
C1 21
C2 22
C3 24
C4 26
C5 27
C6 29
Geometry 31
G1 31
G2 33
G3 35
G4 36
G5 42
G6 44
G7 47
Number Theory 51
N1 51
N2 52
N3 54
N4 56
N5 58
N6 59
N7 60
N8 62

Part I

Problems

Algebra

A1. Let $a_{i j}, i=1,2,3 ; j=1,2,3$ be real numbers such that $a_{i j}$ is positive for $i=j$ and negative for $i \neq j$.

Prove that there exist positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

$$
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, \quad a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, \quad a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}
$$

are all negative, all positive, or all zero.

A2. Find all nondecreasing functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that
(i) $f(0)=0, f(1)=1$;
(ii) $f(a)+f(b)=f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.

A3. Consider pairs of sequences of positive real numbers

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots, \quad b_{1} \geq b_{2} \geq b_{3} \geq \cdots
$$

and the sums

$$
A_{n}=a_{1}+\cdots+a_{n}, \quad B_{n}=b_{1}+\cdots+b_{n} ; \quad n=1,2, \ldots
$$

For any pair define $c_{i}=\min \left\{a_{i}, b_{i}\right\}$ and $C_{n}=c_{1}+\cdots+c_{n}, n=1,2, \ldots$.
(1) Does there exist a pair $\left(a_{i}\right)_{i \geq 1},\left(b_{i}\right)_{i \geq 1}$ such that the sequences $\left(A_{n}\right)_{n \geq 1}$ and $\left(B_{n}\right)_{n \geq 1}$ are unbounded while the sequence $\left(C_{n}\right)_{n \geq 1}$ is bounded?
(2) Does the answer to question (1) change by assuming additionally that $b_{i}=1 / i, i=$ $1,2, \ldots$?

Justify your answer.

A4. Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
(1) Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

(2) Show that the equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic sequence.

A5. Let \mathbb{R}^{+}be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$that satisfy the following conditions:
(i) $f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in \mathbb{R}^{+}$;
(ii) $f(x)<f(y)$ for all $1 \leq x<y$.

A6. Let n be a positive integer and let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of positive real numbers. Suppose $\left(z_{2}, \ldots, z_{2 n}\right)$ is a sequence of positive real numbers such that

$$
z_{i+j}^{2} \geq x_{i} y_{j} \quad \text { for all } 1 \leq i, j \leq n
$$

Let $M=\max \left\{z_{2}, \ldots, z_{2 n}\right\}$. Prove that

$$
\left(\frac{M+z_{2}+\cdots+z_{2 n}}{2 n}\right)^{2} \geq\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)\left(\frac{y_{1}+\cdots+y_{n}}{n}\right) .
$$

Combinatorics

C1. Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.

C2. Let D_{1}, \ldots, D_{n} be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs D_{i}. Prove that there exists a disc D_{k} which intersects at most 7.2003-1 other discs D_{i}.

C3. Let $n \geq 5$ be a given integer. Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal right angles.

C4. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the matrix with entries

$$
a_{i j}= \begin{cases}1, & \text { if } x_{i}+y_{j} \geq 0 \\ 0, & \text { if } x_{i}+y_{j}<0\end{cases}
$$

Suppose that B is an $n \times n$ matrix with entries 0,1 such that the sum of the elements in each row and each column of B is equal to the corresponding sum for the matrix A. Prove that $A=B$.

C5. Every point with integer coordinates in the plane is the centre of a disc with radius $1 / 1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than 96.

C6. Let $f(k)$ be the number of integers n that satisfy the following conditions:
(i) $0 \leq n<10^{k}$, so n has exactly k digits (in decimal notation), with leading zeroes allowed;
(ii) the digits of n can be permuted in such a way that they yield an integer divisible by 11.

Prove that $f(2 m)=10 f(2 m-1)$ for every positive integer m.

Geometry

G1. Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing through A and C whose centre does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.

G3. Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines $B C, C A, A B$, respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}
$$

Denote by I_{A}, I_{B}, I_{C} the excentres of the triangle $A B C$. Prove that P is the circumcentre of the triangle $I_{A} I_{B} I_{C}$.

G4. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P.

Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

G5. Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

G6. Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\sqrt{3} / 2$ times the sum of their lengths.

Prove that all the angles of the hexagon are equal.

G7. Let $A B C$ be a triangle with semiperimeter s and inradius r. The semicircles with diameters $B C, C A, A B$ are drawn on the outside of the triangle $A B C$. The circle tangent to all three semicircles has radius t. Prove that

$$
\frac{s}{2}<t \leq \frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right) r
$$

Number Theory

N1. Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i}, & \text { if } 0 \leq i \leq m-1 \\ \sum_{j=1}^{m} x_{i-j}, & \text { if } i \geq m\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

N2. Each positive integer a undergoes the following procedure in order to obtain the number $d=d(a)$:
(i) move the last digit of a to the first position to obtain the number b;
(ii) square b to obtain the number c;
(iii) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base 10.) For example, for $a=2003$, we get $b=3200, c=10240000$, and $d=02400001=2400001=d(2003)$.

Find all numbers a for which $d(a)=a^{2}$.

N3. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
$\mathbf{N} 4$. Let b be an integer greater than 5 . For each positive integer n, consider the number

$$
x_{n}=\underbrace{11 \cdots 1}_{n-1} \underbrace{22 \cdots 2}_{n} 5,
$$

written in base b.
Prove that the following condition holds if and only if $b=10$:
there exists a positive integer M such that for any integer n greater than M, the number x_{n} is a perfect square.

N5. An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property:
m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

N6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

N7. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad \text { for } k \geq 0
$$

Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.

N8. Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A ?

Part II

Solutions

Algebra

A1. Let $a_{i j}, i=1,2,3 ; j=1,2,3$ be real numbers such that $a_{i j}$ is positive for $i=j$ and negative for $i \neq j$.

Prove that there exist positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

$$
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, \quad a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, \quad a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}
$$

are all negative, all positive, or all zero.

Solution. Set $O(0,0,0), P\left(a_{11}, a_{21}, a_{31}\right), Q\left(a_{12}, a_{22}, a_{32}\right), R\left(a_{13}, a_{23}, a_{33}\right)$ in the three dimensional Euclidean space. It is enough to find a point in the interior of the triangle $P Q R$ whose coordinates are all positive, all negative, or all zero.

Let $O^{\prime}, P^{\prime}, Q^{\prime}, R^{\prime}$ be the projections of O, P, Q, R onto the $x y$-plane. Recall that points P^{\prime}, Q^{\prime} and R^{\prime} lie on the fourth, second and third quadrant respectively.
Case 1: O^{\prime} is in the exterior or on the boundary of the triangle $P^{\prime} Q^{\prime} R^{\prime}$.

Denote by S^{\prime} the intersection of the segments $P^{\prime} Q^{\prime}$ and $O^{\prime} R^{\prime}$, and let S be the point on the segment $P Q$ whose projection is S^{\prime}. Recall that the z-coordinate of the point S is negative, since the z-coordinate of the points P^{\prime} and Q^{\prime} are both negative. Thus any point in the interior of the segment $S R$ sufficiently close to S has coordinates all of which are negative, and we are done.

Case 2: O^{\prime} is in the interior of the triangle $P^{\prime} Q^{\prime} R^{\prime}$.

Let T be the point on the plane $P Q R$ whose projection is O^{\prime}. If $T=O$, we are done again. Suppose T has negative (resp. positive) z-coordinate. Let U be a point in the interior of the triangle $P Q R$, sufficiently close to T, whose x-coordinates and y-coordinates are both negative (resp. positive). Then the coordinates of U are all negative (resp. positive), and we are done.

A2. Find all nondecreasing functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that
(i) $f(0)=0, f(1)=1$;
(ii) $f(a)+f(b)=f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.

Solution. Let $g(x)=f(x+1)-1$. Then g is nondecreasing, $g(0)=0, g(-1)=-1$, and $g(-(a-1)(b-1))=-g(a-1) g(b-1)$ for $a<1<b$. Thus $g(-x y)=-g(x) g(y)$ for $x<0<y$, or $g(y z)=-g(y) g(-z)$ for $y, z>0$. Vice versa, if g satisfies those conditions, then f satisfies the given conditions.
Case 1: If $g(1)=0$, then $g(z)=0$ for all $z>0$. Now let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be any nondecreasing function such that $g(-1)=-1$ and $g(x)=0$ for all $x \geq 0$. Then g satisfies the required conditions.

Case 2: If $g(1)>0$, putting $y=1$ yields

$$
\begin{equation*}
g(-z)=-\frac{g(z)}{g(1)} \tag{*}
\end{equation*}
$$

for all $z>0$. Hence $g(y z)=g(y) g(z) / g(1)$ for all $y, z>0$. Let $h(x)=g(x) / g(1)$. Then h is nondecreasing, $h(0)=0, h(1)=1$, and $h(x y)=h(x) h(y)$. It follows that $h\left(x^{q}\right)=h(x)^{q}$ for any $x>0$ and any rational number q. Since h is nondecreasing, there exists a nonnegative number k such that $h(x)=x^{k}$ for all $x>0$. Putting $g(1)=c$, we have $g(x)=c x^{k}$ for all $x>0$. Furthermore (*) implies $g(-x)=-x^{k}$ for all $x>0$. Now let $k \geq 0, c>0$ and

$$
g(x)= \begin{cases}c x^{k}, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -(-x)^{k}, & \text { if } x<0\end{cases}
$$

Then g is nondecreasing, $g(0)=0, g(-1)=-1$, and $g(-x y)=-g(x) g(y)$ for $x<0<y$. Hence g satisfies the required conditions.

We obtain all solutions for f by the re-substitution $f(x)=g(x-1)+1$. In Case 1, we have any nondecreasing function f satisfying

$$
f(x)= \begin{cases}1, & \text { if } x \geq 1 \\ 0, & \text { if } x=0\end{cases}
$$

In Case 2, we obtain

$$
f(x)= \begin{cases}c(x-1)^{k}+1, & \text { if } x>1 \\ 1, & \text { if } x=1 \\ -(1-x)^{k}+1, & \text { if } x<1\end{cases}
$$

where $c>0$ and $k \geq 0$.

A3. Consider pairs of sequences of positive real numbers

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots, \quad b_{1} \geq b_{2} \geq b_{3} \geq \cdots
$$

and the sums

$$
A_{n}=a_{1}+\cdots+a_{n}, \quad B_{n}=b_{1}+\cdots+b_{n} ; \quad n=1,2, \ldots
$$

For any pair define $c_{i}=\min \left\{a_{i}, b_{i}\right\}$ and $C_{n}=c_{1}+\cdots+c_{n}, n=1,2, \ldots$
(1) Does there exist a pair $\left(a_{i}\right)_{i \geq 1},\left(b_{i}\right)_{i \geq 1}$ such that the sequences $\left(A_{n}\right)_{n \geq 1}$ and $\left(B_{n}\right)_{n \geq 1}$ are unbounded while the sequence $\left(C_{n}\right)_{n \geq 1}$ is bounded?
(2) Does the answer to question (1) change by assuming additionally that $b_{i}=1 / i, i=$ $1,2, \ldots$?

Justify your answer.

Solution. (1) Yes.
Let $\left(c_{i}\right)$ be an arbitrary sequence of positive numbers such that $c_{i} \geq c_{i+1}$ and $\sum_{i=1}^{\infty} c_{i}<\infty$. Let (k_{m}) be a sequence of integers satisfying $1=k_{1}<k_{2}<k_{3}<\cdots$ and $\left(k_{m+1}-k_{m}\right) c_{k_{m}} \geq 1$.

Now we define the sequences $\left(a_{i}\right)$ and $\left(b_{i}\right)$ as follows. For n odd and $k_{n} \leq i<k_{n+1}$, define $a_{i}=c_{k_{n}}$ and $b_{i}=c_{i}$. Then we have $A_{k_{n+1}-1} \geq A_{k_{n}-1}+1$. For n even and $k_{n} \leq i<k_{n+1}$, define $a_{i}=c_{i}$ and $b_{i}=c_{k_{n}}$. Then we have $B_{k_{n+1}-1} \geq B_{k_{n}-1}+1$. Thus $\left(A_{n}\right)$ and $\left(B_{n}\right)$ are unbounded and $c_{i}=\min \left\{a_{i}, b_{i}\right\}$.
(2) Yes.

Suppose that there is such a pair.
Case 1: $b_{i}=c_{i}$ for only finitely many i 's.
There exists a sufficiently large I such that $c_{i}=a_{i}$ for any $i \geq I$. Therefore

$$
\sum_{i \geq I} c_{i}=\sum_{i \geq I} a_{i}=\infty
$$

a contradiction.
Case 2: $b_{i}=c_{i}$ for infinitely many i 's.
Let $\left(k_{m}\right)$ be a sequence of integers satisfying $k_{m+1} \geq 2 k_{m}$ and $b_{k_{m}}=c_{k_{m}}$. Then

$$
\sum_{k=k_{i}+1}^{k_{i+1}} c_{k} \geq\left(k_{i+1}-k_{i}\right) \frac{1}{k_{i+1}} \geq \frac{1}{2}
$$

Thus $\sum_{i=1}^{\infty} c_{i}=\infty$, a contradiction.

A4. Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
(1) Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

(2) Show that the equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic sequence.

Solution. (1) Since both sides of the inequality are invariant under any translation of all x_{i} 's, we may assume without loss of generality that $\sum_{i=1}^{n} x_{i}=0$.

We have

$$
\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|=2 \sum_{i<j}\left(x_{j}-x_{i}\right)=2 \sum_{i=1}^{n}(2 i-n-1) x_{i} .
$$

By the Cauchy-Schwarz inequality, we have

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq 4 \sum_{i=1}^{n}(2 i-n-1)^{2} \sum_{i=1}^{n} x_{i}^{2}=4 \cdot \frac{n(n+1)(n-1)}{3} \sum_{i=1}^{n} x_{i}^{2} .
$$

On the other hand, we have

$$
\sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}=n \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} x_{j}+n \sum_{j=1}^{n} x_{j}^{2}=2 n \sum_{i=1}^{n} x_{i}^{2} .
$$

Therefore

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

(2) If the equality holds, then $x_{i}=k(2 i-n-1)$ for some k, which means that x_{1}, \ldots, x_{n} is an arithmetic sequence.

On the other hand, suppose that $x_{1}, \ldots, x_{2 n}$ is an arithmetic sequence with common difference d. Then we have

$$
x_{i}=\frac{d}{2}(2 i-n-1)+\frac{x_{1}+x_{n}}{2} .
$$

Translate x_{i} 's by $-\left(x_{1}+x_{n}\right) / 2$ to obtain $x_{i}=d(2 i-n-1) / 2$ and $\sum_{i=1}^{n} x_{i}=0$, from which the equality follows.

A5. Let \mathbb{R}^{+}be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$that satisfy the following conditions:
(i) $f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in \mathbb{R}^{+}$;
(ii) $f(x)<f(y)$ for all $1 \leq x<y$.

Solution 1. We claim that $f(x)=x^{\lambda}+x^{-\lambda}$, where λ is an arbitrary positive real number.
Lemma. There exists a unique function $g:[1, \infty) \longrightarrow[1, \infty)$ such that

$$
f(x)=g(x)+\frac{1}{g(x)}
$$

Proof. Put $x=y=z=1$ in the given functional equation

$$
f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})
$$

to obtain $4 f(1)=f(1)^{3}$. Since $f(1)>0$, we have $f(1)=2$.
Define the function $A:[1, \infty) \longrightarrow[2, \infty)$ by $A(x)=x+1 / x$. Since f is strictly increasing on $[1, \infty)$ and A is bijective, the function g is uniquely determined.

Since A is strictly increasing, we see that g is also strictly increasing. Since $f(1)=2$, we have $g(1)=1$.

We put $(x, y, z)=(t, t, 1 / t),\left(t^{2}, 1,1\right)$ to obtain $f(t)=f(1 / t)$ and $f\left(t^{2}\right)=f(t)^{2}-2$. Put $(x, y, z)=(s / t, t / s, s t),\left(s^{2}, 1 / s^{2}, t^{2}\right)$ to obtain

$$
f(s t)+f\left(\frac{t}{s}\right)=f(s) f(t) \quad \text { and } \quad f(s t) f\left(\frac{t}{s}\right)=f\left(s^{2}\right)+f\left(t^{2}\right)=f(s)^{2}+f(t)^{2}-4
$$

Let $1 \leq x \leq y$. We will show that $g(x y)=g(x) g(y)$. We have

$$
\begin{aligned}
f(x y)+f\left(\frac{y}{x}\right) & =\left(g(x)+\frac{1}{g(x)}\right)\left(g(y)+\frac{1}{g(y)}\right) \\
& =\left(g(x) g(y)+\frac{1}{g(x) g(y)}\right)+\left(\frac{g(x)}{g(y)}+\frac{g(y)}{g(x)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f(x y) f\left(\frac{y}{x}\right) & =\left(g(x)+\frac{1}{g(x)}\right)^{2}+\left(g(y)+\frac{1}{g(y)}\right)^{2}-4 \\
& =\left(g(x) g(y)+\frac{1}{g(x) g(y)}\right)\left(\frac{g(x)}{g(y)}+\frac{g(y)}{g(x)}\right) .
\end{aligned}
$$

Thus

$$
\left\{f(x y), f\left(\frac{y}{x}\right)\right\}=\left\{g(x) g(y)+\frac{1}{g(x) g(y)}, \frac{g(x)}{g(y)}+\frac{g(y)}{g(x)}\right\}=\left\{A(g(x) g(y)), A\left(\frac{g(y)}{g(x)}\right)\right\} .
$$

Since $f(x y)=A(g(x y))$ and A is bijective, it follows that either $g(x y)=g(x) g(y)$ or $g(x y)=g(y) / g(x)$. Since $x y \geq y$ and g is increasing, we have $g(x y)=g(x) g(y)$.

Fix a real number $\varepsilon>1$ and suppose that $g(\varepsilon)=\varepsilon^{\lambda}$. Since $g(\varepsilon)>1$, we have $\lambda>0$. Using the multiplicity of g, we may easily see that $g\left(\varepsilon^{q}\right)=\varepsilon^{q \lambda}$ for all rationals $q \in[0, \infty)$. Since g is strictly increasing, $g\left(\varepsilon^{t}\right)=\varepsilon^{t \lambda}$ for all $t \in[0, \infty)$, that is, $g(x)=x^{\lambda}$ for all $x \geq 1$.

For all $x \geq 1$, we have $f(x)=x^{\lambda}+x^{-\lambda}$. Recalling that $f(t)=f(1 / t)$, we have $f(x)=$ $x^{\lambda}+x^{-\lambda}$ for $0<x<1$ as well.

Now we must check that for any $\lambda>0$, the function $f(x)=x^{\lambda}+x^{-\lambda}$ satisfies the two given conditions. The condition (i) is satisfied because

$$
\begin{aligned}
f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x}) & =\left((x y)^{\lambda / 2}+(x y)^{-\lambda / 2}\right)\left((y z)^{\lambda / 2}+(y z)^{-\lambda / 2}\right)\left((z x)^{\lambda / 2}+(z x)^{-\lambda / 2}\right) \\
& =(x y z)^{\lambda}+x^{\lambda}+y^{\lambda}+z^{\lambda}+x^{-\lambda}+y^{-\lambda}+z^{-\lambda}+(x y z)^{-\lambda} \\
& =f(x y z)+f(x)+f(y)+f(z) .
\end{aligned}
$$

The condition (ii) is also satisfied because $1 \leq x<y$ implies

$$
f(y)-f(x)=\left(y^{\lambda}-x^{\lambda}\right)\left(1-\frac{1}{(x y)^{\lambda}}\right)>0 .
$$

Solution 2. We can a find positive real number λ such that $f(e)=\exp (\lambda)+\exp (-\lambda)$ since the function $B:[0, \infty) \longrightarrow[2, \infty)$ defined by $B(x)=\exp (x)+\exp (-x)$ is bijective.

Since $f(t)^{2}=f\left(t^{2}\right)+2$ and $f(x)>0$, we have

$$
f\left(\exp \left(\frac{1}{2^{n}}\right)\right)=\exp \left(\frac{\lambda}{2^{n}}\right)+\exp \left(-\frac{\lambda}{2^{n}}\right)
$$

for all nonnegative integers n.
Since $f(s t)=f(s) f(t)-f(t / s)$, we have

$$
\begin{equation*}
f\left(\exp \left(\frac{m+1}{2^{n}}\right)\right)=f\left(\exp \left(\frac{1}{2^{n}}\right)\right) f\left(\exp \left(\frac{m}{2^{n}}\right)\right)-f\left(\exp \left(\frac{m-1}{2^{n}}\right)\right) \tag{*}
\end{equation*}
$$

for all nonnegative integers m and n.
From $(*)$ and $f(1)=2$, we obtain by induction that

$$
f\left(\exp \left(\frac{m}{2^{n}}\right)\right)=\exp \left(\frac{m \lambda}{2^{n}}\right)+\exp \left(-\frac{m \lambda}{2^{n}}\right)
$$

for all nonnegative integers m and n.
Since f is increasing on $[1, \infty)$, we have $f(x)=x^{\lambda}+x^{-\lambda}$ for $x \geq 1$.
We can prove that $f(x)=x^{\lambda}+x^{-\lambda}$ for $0<x<1$ and that this function satisfies the given conditions in the same manner as in the first solution.

A6. Let n be a positive integer and let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of positive real numbers. Suppose $\left(z_{2}, \ldots, z_{2 n}\right)$ is a sequence of positive real numbers such that

$$
z_{i+j}^{2} \geq x_{i} y_{j} \quad \text { for all } 1 \leq i, j \leq n
$$

Let $M=\max \left\{z_{2}, \ldots, z_{2 n}\right\}$. Prove that

$$
\left(\frac{M+z_{2}+\cdots+z_{2 n}}{2 n}\right)^{2} \geq\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)\left(\frac{y_{1}+\cdots+y_{n}}{n}\right) .
$$

Solution. Let $X=\max \left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\max \left\{y_{1}, \ldots, y_{n}\right\}$. By replacing x_{i} by $x_{i}^{\prime}=$ $x_{i} / X, y_{i}$ by $y_{i}^{\prime}=y_{i} / Y$, and z_{i} by $z_{i}^{\prime}=z_{i} / \sqrt{X Y}$, we may assume that $X=Y=1$. Now we will prove that

$$
\begin{equation*}
M+z_{2}+\cdots+z_{2 n} \geq x_{1}+\cdots+x_{n}+y_{1}+\cdots+y_{n} \tag{*}
\end{equation*}
$$

so

$$
\frac{M+z_{2}+\cdots+z_{2 n}}{2 n} \geq \frac{1}{2}\left(\frac{x_{1}+\cdots+x_{n}}{n}+\frac{y_{1}+\cdots+y_{n}}{n}\right)
$$

which implies the desired result by the AM-GM inequality.
To prove $(*)$, we will show that for any $r \geq 0$, the number of terms greater that r on the left hand side is at least the number of such terms on the right hand side. Then the k th largest term on the left hand side is greater than or equal to the k th largest term on the right hand side for each k, proving $(*)$. If $r \geq 1$, then there are no terms greater than r on the right hand side. So suppose $r<1$. Let $A=\left\{1 \leq i \leq n \mid x_{i}>r\right\}, a=|A|$, $B=\left\{1 \leq i \leq n \mid y_{i}>r\right\}, b=|B|$. Since $\max \left\{x_{1}, \ldots, x_{n}\right\}=\max \left\{y_{1}, \ldots, y_{n}\right\}=1$, both a and b are at least 1. Now $x_{i}>r$ and $y_{j}>r$ implies $z_{i+j} \geq \sqrt{x_{i} y_{j}}>r$, so

$$
C=\left\{2 \leq i \leq 2 n \mid z_{i}>r\right\} \supset A+B=\{\alpha+\beta \mid \alpha \in A, \beta \in B\} .
$$

However, we know that $|A+B| \geq|A|+|B|-1$, because if $A=\left\{i_{1}, \ldots, i_{a}\right\}, i_{1}<\cdots<i_{a}$ and $B=\left\{j_{1}, \ldots, j_{b}\right\}, j_{1}<\cdots<j_{b}$, then the $a+b-1$ numbers $i_{1}+j_{1}, i_{1}+j_{2}, \ldots, i_{1}+j_{b}$, $i_{2}+j_{b}, \ldots, i_{a}+j_{b}$ are all distinct and belong to $A+B$. Hence $|C| \geq a+b-1$. In particular, $|C| \geq 1$ so $z_{k}>r$ for some k. Then $M>r$, so the left hand side of $(*)$ has at least $a+b$ terms greater than r. Since $a+b$ is the number of terms greater than r on the right hand side, we have proved (*).

Combinatorics

C1. Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.

Solution 1. Consider the set $D=\{x-y \mid x, y \in A\}$. There are at most $101 \times 100+1=$ 10101 elements in D. Two sets $A+t_{i}$ and $A+t_{j}$ have nonempty intersection if and only if $t_{i}-t_{j}$ is in D. So we need to choose the 100 elements in such a way that we do not use a difference from D.

Now select these elements by induction. Choose one element arbitrarily. Assume that k elements, $k \leq 99$, are already chosen. An element x that is already chosen prevents us from selecting any element from the set $x+D$. Thus after k elements are chosen, at most $10101 k \leq 999999$ elements are forbidden. Hence we can select one more element.

Comment. The size $|S|=10^{6}$ is unnecessarily large. The following statement is true:
If A is a k-element subset of $S=\{1, \ldots, n\}$ and m is a positive integer such that $\left.n>(m-1)\binom{k}{2}+1\right)$, then there exist $t_{1}, \ldots, t_{m} \in S$ such that the sets $A_{j}=\left\{x+t_{j} \mid x \in A\right\}, j=1, \ldots, m$ are pairwise disjoint.

Solution 2. We give a solution to the generalised version.
Consider the set $B=\{|x-y| \mid x, y \in A\}$. Clearly, $|B| \leq\binom{ k}{2}+1$.
It suffices to prove that there exist $t_{1}, \ldots, t_{m} \in S$ such that $\left|t_{i}-t_{j}\right| \notin B$ for every distinct i and j. We will select t_{1}, \ldots, t_{m} inductively.

Choose 1 as t_{1}, and consider the set $C_{1}=S \backslash\left(B+t_{1}\right)$. Then we have $\left|C_{1}\right| \geq n-\left(\binom{k}{2}+1\right)>$ $(m-2)\left(\binom{k}{2}+1\right)$.

For $1 \leq i<m$, suppose that t_{1}, \ldots, t_{i} and C_{i} are already defined and that $\left|C_{i}\right|>$ $(m-i-1)\left(\binom{k}{2}+1\right) \geq 0$. Choose the least element in C_{i} as t_{i+1} and consider the set $C_{i+1}=C_{i} \backslash\left(B+t_{i+1}\right)$. Then

$$
\left|C_{i+1}\right| \geq\left|C_{i}\right|-\left(\binom{k}{2}+1\right)>(m-i-2)\left(\binom{k}{2}+1\right) \geq 0
$$

Clearly, t_{1}, \ldots, t_{m} satisfy the desired condition.

C2. Let D_{1}, \ldots, D_{n} be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs D_{i}. Prove that there exists a disc D_{k} which intersects at most $7 \cdot 2003-1$ other discs D_{i}.

Solution. Pick a disc S with the smallest radius, say s. Subdivide the plane into seven regions as in Figure 1, that is, subdivide the complement of S into six congruent regions T_{1}, \ldots, T_{6}.

Figure 1

Since s is the smallest radius, any disc different from S whose centre lies inside S contains the centre O of the disc S. Therefore the number of such discs is less than or equal to 2002 .

We will show that if a disc D_{k} has its centre inside T_{i} and intersects S, then D_{k} contains P_{i}, where P_{i} is the point such that $O P_{i}=\sqrt{3} s$ and $O P_{i}$ bisects the angle formed by the two half-lines that bound T_{i}.

Subdivide T_{i} into U_{i} and V_{i} as in Figure 2.

Figure 2
The region U_{i} is contained in the disc with radius s and centre P_{i}. Thus, if the centre of D_{k} is inside U_{i}, then D_{k} contains P_{i}.

Suppose that the centre of D_{k} is inside V_{i}. Let Q be the centre of D_{k} and let R be the intersection of $O Q$ and the boundary of S. Since D_{k} intersects S, the radius of D_{k} is greater than $Q R$. Since $\angle Q P_{i} R \geq \angle C P_{i} B=60^{\circ}$ and $\angle P_{i} R O \geq \angle P_{i} B O=120^{\circ}$, we have $\angle Q P_{i} R \geq \angle P_{i} R Q$. Hence $Q R \geq Q P_{i}$ and so D_{k} contains P_{i}.

Figure 3
For $i=1, \ldots, 6$, the number of discs D_{k} having their centres inside T_{i} and intersecting S is less than or equal to 2003. Consequently, the number of discs D_{k} that intersect S is less than or equal to $2002+6 \cdot 2003=7 \cdot 2003-1$.

C3. Let $n \geq 5$ be a given integer. Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal right angles.

Solution. We will show that the greatest integer k satisfying the given condition is equal to 3 for $n=5$, and $\lfloor 2 n / 3\rfloor+1$ for $n \geq 6$.

Assume that there exists an n-gon having k internal right angles. Since all other $n-k$ angles are less than 360°, we have

$$
(n-k) \cdot 360^{\circ}+k \cdot 90^{\circ}>(n-2) \cdot 180^{\circ},
$$

or $k<(2 n+4) / 3$. Since k and n are integers, we have $k \leq\lfloor 2 n / 3\rfloor+1$.
If $n=5$, then $\lfloor 2 n / 3\rfloor+1=4$. However, if a pentagon has 4 internal right angles, then the other angle is equal to 180°, which is not appropriate. Figure 1 gives the pentagon with 3 internal right angles, thus the greatest integer k is equal to 3 .

Figure 1
We will construct an n-gon having $\lfloor 2 n / 3\rfloor+1$ internal right angles for each $n \geq 6$. Figure 2 gives the examples for $n=6,7,8$.

Figure 2
For $n \geq 9$, we will construct examples inductively. Since all internal non-right angles in this construction are greater than 180°, we can cut off 'a triangle without a vertex' around a non-right angle in order to obtain three more vertices and two more internal right angles as in Figure 3.

Figure 3

Comment. Here we give two other ways to construct examples.
One way is to add 'a rectangle with a hat' near an internal non-right angle as in Figure 4.

Figure 4
The other way is 'the escaping construction.' First we draw right angles in spiral.

Then we 'escape' from the point P.

The followings are examples for $n=9,10,11$. The angles around the black points are not right.

The 'escaping lines' are not straight in these figures. However, in fact, we can make them straight when we draw sufficiently large figures.

C4. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the matrix with entries

$$
a_{i j}= \begin{cases}1, & \text { if } x_{i}+y_{j} \geq 0 \\ 0, & \text { if } x_{i}+y_{j}<0\end{cases}
$$

Suppose that B is an $n \times n$ matrix with entries 0,1 such that the sum of the elements in each row and each column of B is equal to the corresponding sum for the matrix A. Prove that $A=B$.

Solution 1. Let $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$. Define $S=\sum_{1 \leq i, j \leq n}\left(x_{i}+y_{j}\right)\left(a_{i j}-b_{i j}\right)$.
On one hand, we have

$$
S=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} a_{i j}-\sum_{j=1}^{n} b_{i j}\right)+\sum_{j=1}^{n} y_{j}\left(\sum_{i=1}^{n} a_{i j}-\sum_{i=1}^{n} b_{i j}\right)=0 .
$$

On the other hand, if $x_{i}+y_{j} \geq 0$, then $a_{i j}=1$, which implies $a_{i j}-b_{i j} \geq 0$; if $x_{i}+y_{j}<0$, then $a_{i j}=0$, which implies $a_{i j}-b_{i j} \leq 0$. Therefore $\left(x_{i}+y_{j}\right)\left(a_{i j}-b_{i j}\right) \geq 0$ for every i and j.

Thus we have $\left(x_{i}+y_{j}\right)\left(a_{i j}-b_{i j}\right)=0$ for every i and j. In particular, if $a_{i j}=0$, then $x_{i}+y_{j}<0$ and so $a_{i j}-b_{i j}=0$. This means that $a_{i j} \geq b_{i j}$ for every i and j.

Since the sum of the elements in each row of B is equal to the corresponding sum for A, we have $a_{i j}=b_{i j}$ for every i and j.

Solution 2. Let $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$. Suppose that $A \neq B$, that is, there exists $\left(i_{0}, j_{0}\right)$ such that $a_{i_{0} j_{0}} \neq b_{i_{0} j_{0}}$. We may assume without loss of generality that $a_{i_{0} j_{0}}=0$ and $b_{i_{0} j_{0}}=1$.

Since the sum of the elements in the i_{0}-th row of B is equal to that in A, there exists j_{1} such that $a_{i_{0} j_{1}}=1$ and $b_{i_{0} j_{1}}=0$. Similarly there exists i_{1} such that $a_{i_{1} j_{1}}=0$ and $b_{i_{1} j_{1}}=1$. Let us define i_{k} and j_{k} inductively in this way so that $a_{i_{k} j_{k}}=0, b_{i_{k} j_{k}}=1, a_{i_{k} j_{k+1}}=1$, $b_{i_{k} j_{k+1}}=0$.

Because the size of the matrix is finite, there exist s and t such that $s \neq t$ and $\left(i_{s}, j_{s}\right)=$ $\left(i_{t}, j_{t}\right)$.

Since $a_{i_{k} j_{k}}=0$ implies $x_{i_{k}}+y_{j_{k}}<0$ by definition, we have $\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k}}\right)<0$. Similarly, since $a_{i_{k} j_{k+1}}=1$ implies $x_{i_{k}}+y_{j_{k+1}} \geq 0$, we have $\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k+1}}\right) \geq 0$. However, since $j_{s}=j_{t}$, we have

$$
\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k+1}}\right)=\sum_{k=s}^{t-1} x_{i_{k}}+\sum_{k=s+1}^{t} y_{j_{k}}=\sum_{k=s}^{t-1} x_{i_{k}}+\sum_{k=s}^{t-1} y_{j_{k}}=\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k}}\right)
$$

This is a contradiction.

C5. Every point with integer coordinates in the plane is the centre of a disc with radius $1 / 1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than 96 .

Solution 1. (1) Define $f: \mathbb{Z} \longrightarrow[0,1)$ by $f(x)=x \sqrt{3}-\lfloor x \sqrt{3}\rfloor$. By the pigeonhole principle, there exist distinct integers x_{1} and x_{2} such that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<0.001$. Put $a=\left|x_{1}-x_{2}\right|$. Then the distance either between $(a, a \sqrt{3})$ and $(a,\lfloor a \sqrt{3}\rfloor)$ or between $(a, a \sqrt{3})$ and $(a,\lfloor a \sqrt{3}\rfloor+1)$ is less than 0.001 . Therefore the points $(0,0),(2 a, 0),(a, a \sqrt{3})$ lie in different discs and form an equilateral triangle.
(2) Suppose that $P^{\prime} Q^{\prime} R^{\prime}$ is a triangle such that $P^{\prime} Q^{\prime}=Q^{\prime} R^{\prime}=R^{\prime} P^{\prime}=l \leq 96$ and P^{\prime}, Q^{\prime}, R^{\prime} lie in discs with centres P, Q, R, respectively. Then

$$
l-0.002 \leq P Q, Q R, R P \leq l+0.002
$$

Since $P Q R$ is not an equilateral triangle, we may assume that $P Q \neq Q R$. Therefore

$$
\begin{aligned}
\left|P Q^{2}-Q R^{2}\right| & =(P Q+Q R)|P Q-Q R| \\
& \leq((l+0.002)+(l+0.002))((l+0.002)-(l-0.002)) \\
& \leq 2 \cdot 96.002 \cdot 0.004 \\
& <1 .
\end{aligned}
$$

However, $P Q^{2}-Q R^{2} \in \mathbb{Z}$. This is a contradiction.

Solution 2. We give another solution to (2).
Lemma. Suppose that $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are equilateral triangles and that A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ lie anticlockwise. If $A A^{\prime}, B B^{\prime} \leq r$, then $C C^{\prime} \leq 2 r$.

Proof. Let $\alpha, \beta, \gamma ; \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ be the complex numbers corresponding to $A, B, C ; A^{\prime}, B^{\prime}$, C^{\prime}. Then

$$
\gamma=\omega \beta+(1-\omega) \alpha \quad \text { and } \quad \gamma^{\prime}=\omega \beta^{\prime}+(1-\omega) \alpha^{\prime},
$$

where $\omega=(1+\sqrt{3} i) / 2$. Therefore

$$
\begin{aligned}
C C^{\prime} & =\left|\gamma-\gamma^{\prime}\right|=\left|\omega\left(\beta-\beta^{\prime}\right)+(1-\omega)\left(\alpha-\alpha^{\prime}\right)\right| \\
& \leq|\omega|\left|\beta-\beta^{\prime}\right|+|1-\omega|\left|\alpha-\alpha^{\prime}\right|=B B^{\prime}+A A^{\prime} \\
& \leq 2 r .
\end{aligned}
$$

Suppose that P, Q, R lie on discs with radius r and centres $P^{\prime}, Q^{\prime}, R^{\prime}$, respectively, and that $P Q R$ is an equilateral triangle. Let $R^{\prime \prime}$ be the point such that $P^{\prime} Q^{\prime} R^{\prime \prime}$ is an equilateral triangle and $P^{\prime}, Q^{\prime}, R^{\prime}$ lie anticlockwise. It follows from the lemma that $R R^{\prime \prime} \leq 2 r$, and so $R^{\prime} R^{\prime \prime} \leq R R^{\prime}+R R^{\prime \prime} \leq r+2 r=3 r$ by the triangle inequality.

Put $\overrightarrow{P^{\prime} Q^{\prime}}=\binom{m}{n}$ and $\overrightarrow{P^{\prime} R^{\prime}}=\binom{s}{t}$, where m, n, s, t are integers. We may suppose that $m, n \geq 0$. Then we have

$$
\sqrt{\left(\frac{m-n \sqrt{3}}{2}-s\right)^{2}+\left(\frac{n+m \sqrt{3}}{2}-t\right)^{2}} \leq 3 r
$$

Setting $a=2 t-n$ and $b=m-2 s$, we obtain

$$
\sqrt{(a-m \sqrt{3})^{2}+(b-n \sqrt{3})^{2}} \leq 6 r .
$$

Since $|a-m \sqrt{3}| \geq 1 /|a+m \sqrt{3}|,|b-n \sqrt{3}| \geq 1 /|b+n \sqrt{3}|$ and $|a| \leq m \sqrt{3}+6 r$, $|b| \leq n \sqrt{3}+6 r$, we have

$$
\sqrt{\frac{1}{(2 m \sqrt{3}+6 r)^{2}}+\frac{1}{(2 n \sqrt{3}+6 r)^{2}}} \leq 6 r
$$

Since $1 / x^{2}+1 / y^{2} \geq 8 /(x+y)^{2}$ for all positive real numbers x and y, it follows that

$$
\frac{2 \sqrt{2}}{2 \sqrt{3}(m+n)+12 r} \leq 6 r
$$

As $P^{\prime} Q^{\prime}=\sqrt{m^{2}+n^{2}} \geq(m+n) / \sqrt{2}$, we have

$$
\frac{2 \sqrt{2}}{2 \sqrt{6} P^{\prime} Q^{\prime}+12 r} \leq 6 r .
$$

Therefore

$$
P^{\prime} Q^{\prime} \geq \frac{1}{6 \sqrt{3} r}-\sqrt{6} r .
$$

Finally we obtain

$$
P Q \geq P^{\prime} Q^{\prime}-2 r \geq \frac{1}{6 \sqrt{3} r}-\sqrt{6} r-2 r
$$

For $r=1 / 1000$, we have $P Q \geq 96.22 \cdots>96$.

C6. Let $f(k)$ be the number of integers n that satisfy the following conditions:
(i) $0 \leq n<10^{k}$, so n has exactly k digits (in decimal notation), with leading zeroes allowed;
(ii) the digits of n can be permuted in such a way that they yield an integer divisible by 11.

Prove that $f(2 m)=10 f(2 m-1)$ for every positive integer m.

Solution 1. We use the notation $\left[a_{k-1} a_{k-2} \cdots a_{0}\right]$ to indicate the positive integer with digits $a_{k-1}, a_{k-2}, \ldots, a_{0}$.

The following fact is well-known:

$$
\left[a_{k-1} a_{k-2} \cdots a_{0}\right] \equiv i \quad(\bmod 11) \Longleftrightarrow \sum_{l=0}^{k-1}(-1)^{l} a_{l} \equiv i \quad(\bmod 11)
$$

Fix $m \in \mathbb{N}$ and define the sets A_{i} and B_{i} as follows:

- A_{i} is the set of all integers n with the following properties:
(1) $0 \leq n<10^{2 m}$, i.e., n has $2 m$ digits;
(2) the right $2 m-1$ digits of n can be permuted so that the resulting integer is congruent to i modulo 11 .
- B_{i} is the set of all integers n with the following properties:
(1) $0 \leq n<10^{2 m-1}$, i.e., n has $2 m-1$ digits;
(2) the digits of n can be permuted so that the resulting integer is congruent to i modulo 11.

It is clear that $f(2 m)=\left|A_{0}\right|$ and $f(2 m-1)=\left|B_{0}\right|$. Since $\underbrace{99 \cdots 9}_{2 m} \equiv 0(\bmod 11)$, we have

$$
n \in A_{i} \Longleftrightarrow \underbrace{99 \cdots 9}_{2 m}-n \in A_{-i} .
$$

Hence

$$
\begin{equation*}
\left|A_{i}\right|=\left|A_{-i}\right| . \tag{1}
\end{equation*}
$$

Since $\underbrace{99 \cdots 9}_{2 m-1} \equiv 9(\bmod 11)$, we have

$$
n \in B_{i} \Longleftrightarrow \underbrace{99 \cdots 9}_{2 m-1}-n \in B_{9-i} .
$$

Thus

$$
\begin{equation*}
\left|B_{i}\right|=\left|B_{9-i}\right| . \tag{2}
\end{equation*}
$$

For any $2 m$-digit integer $n=\left[j a_{2 m-2} \cdots a_{0}\right]$, we have

$$
n \in A_{i} \Longleftrightarrow\left[a_{2 m-2} \cdots a_{0}\right] \in B_{i-j} .
$$

Hence

$$
\left|A_{i}\right|=\left|B_{i}\right|+\left|B_{i-1}\right|+\cdots+\left|B_{i-9}\right| .
$$

Since $B_{i}=B_{i+11}$, this can be written as

$$
\begin{equation*}
\left|A_{i}\right|=\sum_{k=0}^{10}\left|B_{k}\right|-\left|B_{i+1}\right| \tag{3}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left|A_{i}\right|=\left|A_{j}\right| \Longleftrightarrow\left|B_{i+1}\right|=\left|B_{j+1}\right| . \tag{4}
\end{equation*}
$$

From (1), (2), and (4), we obtain $\left|A_{i}\right|=\left|A_{0}\right|$ and $\left|B_{i}\right|=\left|B_{0}\right|$. Substituting this into (3) yields $\left|A_{0}\right|=10\left|B_{0}\right|$, and so $f(2 m)=10 f(2 m-1)$.

Comment. This solution works for all even bases b, and the result is $f(2 m)=b f(2 m-1)$.
Solution 2. We will use the notation in Solution 1. For a $2 m$-tuple ($a_{0}, \ldots, a_{2 m-1}$) of integers, we consider the following property:

$$
\begin{equation*}
\left(a_{0}, \ldots, a_{2 m-1}\right) \text { can be permuted so that } \sum_{l=0}^{2 m-1}(-1)^{l} a_{l} \equiv 0 \quad(\bmod 11) \tag{*}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\left(a_{0}, \ldots, a_{2 m-1}\right) \text { satisfies }(*) \Longleftrightarrow\left(a_{0}+k, \ldots, a_{2 m-1}+k\right) \text { satisfies }(*) \tag{1}
\end{equation*}
$$

for all integers k, and that

$$
\begin{equation*}
\left(a_{0}, \ldots, a_{2 m-1}\right) \text { satisfies }(*) \Longleftrightarrow\left(k a_{0}, \ldots, k a_{2 m-1}\right) \text { satisfies }(*) \tag{2}
\end{equation*}
$$

for all integers $k \not \equiv 0(\bmod 11)$.
For an integer k, denote by $\langle k\rangle$ the nonnegative integer less than 11 congruent to k modulo 11.

For a fixed $j \in\{0,1, \ldots, 9\}$, let k be the unique integer such that $k \in\{1,2, \ldots, 10\}$ and $(j+1) k \equiv 1(\bmod 11)$.

Suppose that $\left[a_{2 m-1} \cdots a_{1} j\right] \in A_{0}$, that is, $\left(a_{2 m-1}, \ldots, a_{1}, j\right)$ satisfies (*). From (1) and (2), it follows that $\left(\left(a_{2 m-1}+1\right) k-1, \ldots,\left(a_{1}+1\right) k-1,0\right)$ also satisfies $(*)$. Putting $b_{i}=$ $\left\langle\left(a_{i}+1\right) k\right\rangle-1$, we have $\left[b_{2 m-1} \cdots b_{1}\right] \in B_{0}$.

For any $j \in\{0,1, \ldots, 9\}$, we can reconstruct $\left[a_{2 m-1} \ldots a_{1} j\right]$ from $\left[b_{2 m-1} \cdots b_{1}\right]$. Hence we have $\left|A_{0}\right|=10\left|B_{0}\right|$, and so $f(2 m)=10 f(2 m-1)$.

Geometry

G1. Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

Solution 1.

It is well-known that P, Q, R are collinear (Simson's theorem). Moreover, since $\angle D P C$ and $\angle D Q C$ are right angles, the points D, P, Q, C are concyclic and so $\angle D C A=\angle D P Q=$ $\angle D P R$. Similarly, since D, Q, R, A are concyclic, we have $\angle D A C=\angle D R P$. Therefore $\triangle D C A \sim \triangle D P R$.

Likewise, $\triangle D A B \sim \triangle D Q P$ and $\triangle D B C \sim \triangle D R Q$. Then

$$
\frac{D A}{D C}=\frac{D R}{D P}=\frac{D B \cdot \frac{Q R}{B C}}{D B \cdot \frac{P Q}{B A}}=\frac{Q R}{P Q} \cdot \frac{B A}{B C} .
$$

Thus $P Q=Q R$ if and only if $D A / D C=B A / B C$.
Now the bisectors of the angles $A B C$ and $A D C$ divide $A C$ in the ratios of $B A / B C$ and $D A / D C$, respectively. This completes the proof.

Solution 2. Suppose that the bisectors of $\angle A B C$ and $\angle A D C$ meet $A C$ at L and M, respectively. Since $A L / C L=A B / C B$ and $A M / C M=A D / C D$, the bisectors in question
meet on $A C$ if and only if $A B / C B=A D / C D$, that is, $A B \cdot C D=C B \cdot A D$. We will prove that $A B \cdot C D=C B \cdot A D$ is equivalent to $P Q=Q R$.

Because $D P \perp B C, D Q \perp A C, D R \perp A B$, the circles with diameters $D C$ and $D A$ contain the pairs of points P, Q and Q, R, respectively. It follows that $\angle P D Q$ is equal to γ or $180^{\circ}-\gamma$, where $\gamma=\angle A C B$. Likewise, $\angle Q D R$ is equal to α or $180^{\circ}-\alpha$, where $\alpha=\angle C A B$. Then, by the law of sines, we have $P Q=C D \sin \gamma$ and $Q R=A D \sin \alpha$. Hence the condition $P Q=Q R$ is equivalent to $C D / A D=\sin \alpha / \sin \gamma$.

On the other hand, $\sin \alpha / \sin \gamma=C B / A B$ by the law of sines again. Thus $P Q=Q R$ if and only if $C D / A D=C B / A B$, which is the same as $A B \cdot C D=C B \cdot A D$.

Comment. Solution 2 shows that this problem can be solved without the knowledge of Simson's theorem.

G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing through A and C whose centre does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.

Solution 1.

Suppose that the bisector of $\angle A Q C$ intersects the line $A C$ and the circle Γ at R and S, respectively, where S is not equal to Q.

Since $\triangle A P C$ is an isosceles triangle, we have $A B: B C=\sin \angle A P B: \sin \angle C P B$. Likewise, since $\triangle A S C$ is an isosceles triangle, we have $A R: R C=\sin \angle A S Q: \sin \angle C S Q$.

Applying the sine version of Ceva's theorem to the triangle $P A C$ and Q, we obtain

$$
\sin \angle A P B: \sin \angle C P B=\sin \angle P A Q \sin \angle Q C A: \sin \angle P C Q \sin \angle Q A C
$$

The tangent theorem shows that $\angle P A Q=\angle A S Q=\angle Q C A$ and $\angle P C Q=\angle C S Q=$ $\angle Q A C$.

Hence $A B: B C=A R^{2}: R C^{2}$, and so R does not depend on Γ.

Solution 2.

Let R be the intersection of the bisector of the angle $A Q C$ and the line $A C$.
We may assume that $A(-1,0), B(b, 0), C(1,0)$, and $\Gamma: x^{2}+(y+p)^{2}=1+p^{2}$. Then $P(0,1 / p)$.

Let M be the midpoint of the largest arc $A C$. Then $M\left(0,-p-\sqrt{1+p^{2}}\right)$. The points Q, R, M are collinear, since $\angle A Q R=\angle C Q R$.

Because $P B: y=-x / p b+1 / p$, computation shows that

$$
Q\left(\frac{\left(1+p^{2}\right) b-p b \sqrt{\left(1+p^{2}\right)\left(1-b^{2}\right)}}{1+p^{2} b^{2}}, \frac{-p\left(1-b^{2}\right)+\sqrt{\left(1+p^{2}\right)\left(1-b^{2}\right)}}{1+p^{2} b^{2}}\right)
$$

so we have

$$
\frac{Q P}{B Q}=\frac{\sqrt{1+p^{2}}}{p \sqrt{1-b^{2}}}
$$

Since

$$
\frac{M O}{P M}=\frac{p+\sqrt{1+p^{2}}}{\frac{1}{p}+p+\sqrt{1+p^{2}}}=\frac{p}{\sqrt{1+p^{2}}},
$$

we obtain

$$
\frac{O R}{R B}=\frac{M O}{P M} \cdot \frac{Q P}{B Q}=\frac{p}{\sqrt{1+p^{2}}} \cdot \frac{\sqrt{1+p^{2}}}{p \sqrt{1-b^{2}}}=\frac{1}{\sqrt{1-b^{2}}}
$$

Therefore R does not depend on p or Γ.

G3. Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines $B C, C A, A B$, respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}
$$

Denote by I_{A}, I_{B}, I_{C} the excentres of the triangle $A B C$. Prove that P is the circumcentre of the triangle $I_{A} I_{B} I_{C}$.

Solution. Since the given condition implies

$$
0=\left(B P^{2}+P E^{2}\right)-\left(C P^{2}+P F^{2}\right)=\left(B P^{2}-P F^{2}\right)-\left(C P^{2}-P E^{2}\right)=B F^{2}-C E^{2},
$$

we may put $x=B F=C E$. Similarly we may put $y=C D=A F$ and $z=A E=B D$.
If one of three points D, E, F does not lie on the sides of the triangle $A B C$, then this contradicts the triangle inequality. Indeed, if, for example, B, C, D lie in this order, we have $A B+B C=(x+y)+(z-y)=x+z=A C$, a contradiction. Thus all three points lie on the sides of the triangle $A B C$.

Putting $a=B C, b=C A, c=A B$ and $s=(a+b+c) / 2$, we have $x=s-a, y=s-b$, $z=s-c$. Since $B D=s-c$ and $C D=s-b$, we see that D is the point at which the excircle of the triangle $A B C$ opposite to A meets $B C$. Similarly E and F are the points at which the excircle opposite to B and C meet $C A$ and $A B$, respectively. Since both $P D$ and $I_{A} D$ are perpendicular to $B C$, the three points P, D, I_{A} are collinear. Analogously P, E, I_{B} are collinear and P, F, I_{C} are collinear.

The three points I_{A}, C, I_{B} are collinear and the triangle $P I_{A} I_{B}$ is isosceles because $\angle P I_{A} C=\angle P I_{B} C=\angle C / 2$. Likewise we have $P I_{A}=P I_{C}$ and so $P I_{A}=P I_{B}=P I_{C}$. Thus P is the circumcentre of the triangle $I_{A} I_{B} I_{C}$.
Comment 1. The conclusion is true even if the point P lies outside the triangle $A B C$.
Comment 2. In fact, the common value of $A P^{2}+P D^{2}, B P^{2}+P E^{2}, C P^{2}+P F^{2}$ is equal to $8 R^{2}-s^{2}$, where R is the circumradius of the triangle $A B C$ and $s=(B C+C A+A B) / 2$. We can prove this as follows:

Observe that the circumradius of the triangle $I_{A} I_{B} I_{C}$ is equal to $2 R$ since its orthic triangle is $A B C$. It follows that $P D=P I_{A}-D I_{A}=2 R-r_{A}$, where r_{A} is the radius of the excircle of the triangle $A B C$ opposite to A. Putting r_{B} and r_{C} in a similar manner, we have $P E=2 R-r_{B}$ and $P F=2 R-r_{C}$. Now we have

$$
A P^{2}+P D^{2}=A E^{2}+P E^{2}+P D^{2}=(s-c)^{2}+\left(2 R-r_{B}\right)^{2}+\left(2 R-r_{A}\right)^{2} .
$$

Since

$$
\begin{aligned}
\left(2 R-r_{A}\right)^{2} & =4 R^{2}-4 R r_{A}+r_{A}^{2} \\
& =4 R^{2}-4 \cdot \frac{a b c}{4 \operatorname{area}(\triangle A B C)} \cdot \frac{\operatorname{area}(\triangle A B C)}{s-a}+\left(\frac{\operatorname{area}(\triangle A B C)}{s-a}\right)^{2} \\
& =4 R^{2}+\frac{s(s-b)(s-c)-a b c}{s-a} \\
& =4 R^{2}+b c-s^{2}
\end{aligned}
$$

and we can obtain $\left(2 R-r_{B}\right)^{2}=4 R^{2}+c a-s^{2}$ in a similar way, it follows that

$$
A P^{2}+P D^{2}=(s-c)^{2}+\left(4 R^{2}+c a-s^{2}\right)+\left(4 R^{2}+b c-s^{2}\right)=8 R^{2}-s^{2}
$$

G4. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P.

Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

Solution 1.

Figure 1
Let Q be the intersection of the line $A B$ and the common tangent of Γ_{1} and Γ_{3}. Then

$$
\angle A P B=\angle A P Q+\angle B P Q=\angle P D A+\angle P C B
$$

Define $\theta_{1}, \ldots, \theta_{8}$ as in Figure 1. Then

$$
\begin{equation*}
\theta_{2}+\theta_{3}+\angle A P B=\theta_{2}+\theta_{3}+\theta_{5}+\theta_{8}=180^{\circ} . \tag{1}
\end{equation*}
$$

Similarly, $\angle B P C=\angle P A B+\angle P D C$ and

$$
\begin{equation*}
\theta_{4}+\theta_{5}+\theta_{2}+\theta_{7}=180^{\circ} \tag{2}
\end{equation*}
$$

Multiply the side-lengths of the triangles $P A B, P B C, P C D, P A D$ by $P C \cdot P D, P D \cdot P A$, $P A \cdot P B, P B \cdot P C$, respectively, to get the new quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ as in Figure 2.

Figure 2
(1) and (2) show that $A^{\prime} D^{\prime} \| B^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime} \| C^{\prime} D^{\prime}$. Thus the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a parallelogram. It follows that $A^{\prime} B^{\prime}=C^{\prime} D^{\prime}$ and $A^{\prime} D^{\prime}=C^{\prime} B^{\prime}$, that is, $A B \cdot P C \cdot P D=$ $C D \cdot P A \cdot P B$ and $A D \cdot P B \cdot P C=B C \cdot P A \cdot P D$, from which we see that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

Solution 2. Let $O_{1}, O_{2}, O_{3}, O_{4}$ be the centres of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$, respectively, and let A^{\prime}, $B^{\prime}, C^{\prime}, D^{\prime}$ be the midpoints of $P A, P B, P C, P D$, respectively. Since Γ_{1}, Γ_{3} are externally tangent at P, it follows that O_{1}, O_{3}, P are collinear. Similarly we see that O_{2}, O_{4}, P are collinear.

Put $\theta_{1}=\angle O_{4} O_{1} O_{2}, \theta_{2}=\angle O_{1} O_{2} O_{3}, \theta_{3}=\angle O_{2} O_{3} O_{4}, \theta_{4}=\angle O_{3} O_{4} O_{1}$ and $\phi_{1}=\angle P O_{1} O_{4}$, $\phi_{2}=\angle P O_{2} O_{3}, \phi_{3}=\angle P O_{3} O_{2}, \phi_{4}=\angle P O_{4} O_{1}$. By the law of sines, we have

$$
\begin{array}{ll}
O_{1} O_{2}: O_{1} O_{3}=\sin \phi_{3}: \sin \theta_{2}, & O_{3} O_{4}: O_{2} O_{4}=\sin \phi_{2}: \sin \theta_{3}, \\
O_{3} O_{4}: O_{1} O_{3}=\sin \phi_{1}: \sin \theta_{4}, & O_{1} O_{2}: O_{2} O_{4}=\sin \phi_{4}: \sin \theta_{1}
\end{array}
$$

Since the segment $P A$ is the common chord of Γ_{1} and Γ_{2}, the segment $P A^{\prime}$ is the altitude from P to $O_{1} O_{2}$. Similarly $P B^{\prime}, P C^{\prime}, P D^{\prime}$ are the altitudes from P to $O_{2} O_{3}, O_{3} O_{4}, O_{4} O_{1}$, respectively. Then $O_{1}, A^{\prime}, P, D^{\prime}$ are concyclic. So again by the law of sines, we have

$$
D^{\prime} A^{\prime}: P D^{\prime}=\sin \theta_{1}: \sin \phi_{1} .
$$

Likewise we have

$$
A^{\prime} B^{\prime}: P B^{\prime}=\sin \theta_{2}: \sin \phi_{2}, \quad B^{\prime} C^{\prime}: P B^{\prime}=\sin \theta_{3}: \sin \phi_{3}, \quad C^{\prime} D^{\prime}: P D^{\prime}=\sin \theta_{4}: \sin \phi_{4}
$$

Since $A^{\prime} B^{\prime}=A B / 2, B^{\prime} C^{\prime}=B C / 2, C^{\prime} D^{\prime}=C D / 2, D^{\prime} A^{\prime}=D A / 2, P B^{\prime}=P B / 2, P D^{\prime}=$ $P D / 2$, we have

$$
\begin{aligned}
\frac{A B \cdot B C}{A D \cdot D C} \cdot \frac{P D^{2}}{P B^{2}} & =\frac{A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime}}{A^{\prime} D^{\prime} \cdot D^{\prime} C^{\prime}} \cdot \frac{P D^{\prime 2}}{P B^{\prime 2}}=\frac{\sin \theta_{2} \sin \theta_{3} \sin \phi_{4} \sin \phi_{1}}{\sin \phi_{2} \sin \phi_{3} \sin \theta_{4} \sin \theta_{1}} \\
& =\frac{O_{1} O_{3}}{O_{1} O_{2}} \cdot \frac{O_{2} O_{4}}{O_{3} O_{4}} \cdot \frac{O_{1} O_{2}}{O_{2} O_{4}} \cdot \frac{O_{3} O_{4}}{O_{1} O_{3}}=1
\end{aligned}
$$

and the conclusion follows.
Comment. It is not necessary to assume that Γ_{1}, Γ_{3} and Γ_{2}, Γ_{4} are externally tangent. We may change the first sentence in the problem to the following:

Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are tangent at P, and Γ_{2}, Γ_{4} are tangent at the same point P.

The following two solutions are valid for the changed version.

Solution 3.

Let O_{i} and r_{i} be the centre and the signed radius of $\Gamma_{i}, i=1,2,3,4$. We may assume that $r_{1}>0$. If O_{1}, O_{3} are in the same side of the common tangent, then we have $r_{3}>0$; otherwise we have $r_{3}<0$.

Put $\theta=\angle O_{1} P O_{2}$. We have $\angle O_{i} P O_{i+1}=\theta$ or $180^{\circ}-\theta$, which shows that

$$
\begin{equation*}
\sin \angle O_{i} P O_{i+1}=\sin \theta . \tag{1}
\end{equation*}
$$

Since $P B \perp O_{2} O_{3}$ and $\triangle P O_{2} O_{3} \equiv \triangle B O_{2} O_{3}$, we have

$$
\frac{1}{2} \cdot \frac{1}{2} \cdot O_{2} O_{3} \cdot P B=\operatorname{area}\left(\triangle P O_{2} O_{3}\right)=\frac{1}{2} \cdot P O_{2} \cdot P O_{3} \cdot \sin \theta=\frac{1}{2}\left|r_{2}\right|\left|r_{3}\right| \sin \theta
$$

It follows that

$$
\begin{equation*}
P B=\frac{2\left|r_{2}\right|\left|r_{3}\right| \sin \theta}{O_{2} O_{3}} \tag{2}
\end{equation*}
$$

Because the triangle $O_{2} A B$ is isosceles, we have

$$
\begin{equation*}
A B=2\left|r_{2}\right| \sin \frac{\angle A O_{2} B}{2} \tag{3}
\end{equation*}
$$

Since $\angle O_{1} O_{2} P=\angle O_{1} O_{2} A$ and $\angle O_{3} O_{2} P=\angle O_{3} O_{2} B$, we have

$$
\sin \left(\angle A O_{2} B / 2\right)=\sin \angle O_{1} O_{2} O_{3} .
$$

Therefore, keeping in mind that

$$
\begin{aligned}
\frac{1}{2} \cdot O_{1} O_{2} \cdot O_{2} O_{3} \cdot \sin \angle O_{1} O_{2} O_{3} & =\operatorname{area}\left(\triangle O_{1} O_{2} O_{3}\right)=\frac{1}{2} \cdot O_{1} O_{3} \cdot P O_{2} \cdot \sin \theta \\
& =\frac{1}{2}\left|r_{1}-r_{3}\right|\left|r_{2}\right| \sin \theta
\end{aligned}
$$

we have

$$
A B=2\left|r_{2}\right| \frac{\left|r_{1}-r_{3}\right|\left|r_{2}\right| \sin \theta}{O_{1} O_{2} \cdot O_{2} O_{3}}
$$

by (3).
Likewise, by (1), (2), (4), we can obtain the lengths of $P D, B C, C D, D A$ and compute as follows:

$$
\begin{aligned}
\frac{A B \cdot B C}{C D \cdot D A} & =\frac{2\left|r_{1}-r_{3}\right| r_{2}^{2} \sin \theta}{O_{1} O_{2} \cdot O_{2} O_{3}} \cdot \frac{2\left|r_{2}-r_{4}\right| r_{3}^{2} \sin \theta}{O_{2} O_{3} \cdot O_{3} O_{4}} \cdot \frac{O_{3} O_{4} \cdot O_{4} O_{1}}{2\left|r_{1}-r_{3}\right| r_{4}^{2} \sin \theta} \cdot \frac{O_{4} O_{1} \cdot O_{1} O_{2}}{2\left|r_{2}-r_{4}\right| r_{1}^{2} \sin \theta} \\
& =\left(\frac{2\left|r_{2}\right|\left|r_{3}\right| \sin \theta}{O_{2} O_{3}}\right)^{2}\left(\frac{O_{4} O_{1}}{2\left|r_{4}\right|\left|r_{1}\right| \sin \theta}\right)^{2} \\
& =\frac{P B^{2}}{P D^{2}}
\end{aligned}
$$

Solution 4. Let l_{1} be the common tangent of the circles Γ_{1} and Γ_{3} and let l_{2} be that of Γ_{2} and Γ_{4}. Set the coordinate system as in the following figure.

We may assume that

$$
\begin{array}{ll}
\Gamma_{1}: x^{2}+y^{2}+2 a x \sin \theta-2 a y \cos \theta=0, & \Gamma_{2}: x^{2}+y^{2}+2 b x \sin \theta+2 b y \cos \theta=0, \\
\Gamma_{3}: x^{2}+y^{2}-2 c x \sin \theta+2 c y \cos \theta=0, & \Gamma_{4}: x^{2}+y^{2}-2 d x \sin \theta-2 d y \cos \theta=0 .
\end{array}
$$

Simple computation shows that

$$
\begin{aligned}
& A\left(-\frac{4 a b(a+b) \sin \theta \cos ^{2} \theta}{a^{2}+b^{2}+2 a b \cos 2 \theta},-\frac{4 a b(a-b) \sin ^{2} \theta \cos \theta}{a^{2}+b^{2}+2 a b \cos 2 \theta}\right) \\
& B\left(\frac{4 b c(b-c) \sin \theta \cos ^{2} \theta}{b^{2}+c^{2}-2 b c \cos 2 \theta},-\frac{4 b c(b+c) \sin ^{2} \theta \cos \theta}{b^{2}+c^{2}-2 b c \cos 2 \theta}\right) \\
& C\left(\frac{4 c d(c+d) \sin \theta \cos ^{2} \theta}{c^{2}+d^{2}+2 c d \cos 2 \theta}, \frac{4 c d(c-d) \sin ^{2} \theta \cos \theta}{c^{2}+d^{2}+2 c d \cos 2 \theta}\right) \\
& D\left(-\frac{4 d a(d-a) \sin \theta \cos ^{2} \theta}{d^{2}+a^{2}-2 d a \cos 2 \theta}, \frac{4 d a(d+a) \sin ^{2} \theta \cos \theta}{d^{2}+a^{2}-2 d a \cos 2 \theta}\right)
\end{aligned}
$$

Slightly long computation shows that

$$
\begin{aligned}
& A B=\frac{4 b^{2}|a+c| \sin \theta \cos \theta}{\sqrt{\left(a^{2}+b^{2}+2 a b \cos 2 \theta\right)\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)}} \\
& B C=\frac{4 c^{2}|b+d| \sin \theta \cos \theta}{\sqrt{\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)\left(c^{2}+d^{2}+2 c d \cos 2 \theta\right)}} \\
& C D=\frac{4 d^{2}|c+a| \sin \theta \cos \theta}{\sqrt{\left(c^{2}+d^{2}+2 c d \cos 2 \theta\right)\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)}} \\
& D A=\frac{4 a^{2}|d+b| \sin \theta \cos \theta}{\sqrt{\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)\left(a^{2}+b^{2}+2 a b \cos 2 \theta\right)}}
\end{aligned}
$$

which implies

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{b^{2} c^{2}\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)}{d^{2} a^{2}\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)}
$$

On the other hand, we have

$$
M B=\frac{4|b||c| \sin \theta \cos \theta}{\sqrt{b^{2}+c^{2}-2 b c \cos 2 \theta}} \quad \text { and } \quad M D=\frac{4|d||a| \sin \theta \cos \theta}{\sqrt{d^{2}+a^{2}-2 d a \cos 2 \theta}},
$$

which implies

$$
\frac{M B^{2}}{M D^{2}}=\frac{b^{2} c^{2}\left(d^{2}+a^{2}-2 d a \cos 2 \theta\right)}{d^{2} a^{2}\left(b^{2}+c^{2}-2 b c \cos 2 \theta\right)} .
$$

Hence we obtain

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{M B^{2}}{M D^{2}} .
$$

G5. Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

Solution 1.

The corresponding sides of the triangles $P D E$ and $C F G$ are parallel. Therefore, if $D F$ and $E G$ are not parallel, then they are homothetic, and so $D F, E G, C P$ are concurrent at the centre of the homothety. This observation leads to the following claim:

Claim. Suppose that $C P$ meets again the circumcircle of the triangle $A B C$ at Q. Then Q is the intersection of $D F$ and $E G$.

Proof. Since $\angle A Q P=\angle A B C=\angle B A C=\angle P F C$, it follows that the quadrilateral $A Q P F$ is cyclic, and so $\angle F Q P=\angle P A F$. Since $\angle I B A=\angle C B A / 2=\angle C A B / 2=\angle I A C$, the circumcircle of the triangle $A I B$ is tangent to $C A$ at A, which implies that $\angle P A F=$ $\angle D B P$. Since $\angle Q B D=\angle Q C A=\angle Q P D$, it follows that the quadrilateral $D Q B P$ is cyclic, and so $\angle D B P=\angle D Q P$. Thus $\angle F Q P=\angle P A F=\angle D B P=\angle D Q P$, which implies that F, D, Q are collinear. Analogously we obtain that G, E, Q are collinear.

Hence the lines $D F, E G, C P$ meet the circumcircle of the triangle $A B C$ at the same point.

Solution 2.

Set the coordinate system so that $A(-1,0), B(1,0), C(0, c)$. Suppose that $I(0, \alpha)$.
Since

$$
\operatorname{area}(\triangle A B C)=\frac{1}{2}(A B+B C+C A) \alpha
$$

we obtain

$$
\alpha=\frac{c}{1+\sqrt{1+c^{2}}} .
$$

Suppose that $O_{1}(0, \beta)$ is the centre of the circumcircle Γ_{1} of the triangle $A I B$. Since

$$
(\beta-\alpha)^{2}=O_{1} I^{2}=O_{1} A^{2}=1+\beta^{2},
$$

we have $\beta=-1 / c$ and so $\Gamma_{1}: x^{2}+(y+1 / c)^{2}=1+(1 / c)^{2}$.
Let $P(p, q)$. Since $D(p-q / c, 0), E(p+q / c, 0), F(q / c-1, q), G(-q / c+1, q)$, it follows that the equations of the lines $D F$ and $E G$ are

$$
y=\frac{q}{\frac{2 q}{c}-p-1}\left(x-\left(p-\frac{q}{c}\right)\right) \quad \text { and } \quad y=\frac{q}{-\frac{2 q}{c}-p+1}\left(x-\left(p+\frac{q}{c}\right)\right),
$$

respectively. Therefore the intersection Q of these lines is $\left((q-c) p /(2 q-c), q^{2} /(2 q-c)\right)$.
Let $O_{2}(0, \gamma)$ be the circumcentre of the triangle $A B C$. Then $\gamma=\left(c^{2}-1\right) / 2 c$ since $1+\gamma^{2}=O_{2} A^{2}=O_{2} C^{2}=(\gamma-c)^{2}$.

Note that $p^{2}+(q+1 / c)^{2}=1+(1 / c)^{2}$ since $P(p, q)$ is on the circle Γ_{1}. It follows that

$$
O_{2} Q^{2}=\left(\frac{q-c}{2 q-c}\right)^{2} p^{2}+\left(\frac{q^{2}}{2 q-c}-\frac{c^{2}-1}{2 c}\right)^{2}=\left(\frac{c^{2}+1}{2 c}\right)^{2}=O_{2} C^{2},
$$

which shows that Q is on the circumcircle of the triangle $A B C$.
Comment. The point P can be any point on the circumcircle of the triangle $A I B$ other than A and B; that is, P need not lie inside the triangle $A B C$.

G6. Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\sqrt{3} / 2$ times the sum of their lengths.

Prove that all the angles of the hexagon are equal.

Solution 1. We first prove the following lemma:
Lemma. Consider a triangle $P Q R$ with $\angle Q P R \geq 60^{\circ}$. Let L be the midpoint of $Q R$. Then $P L \leq \sqrt{3} Q R / 2$, with equality if and only if the triangle $P Q R$ is equilateral.

Proof.

Let S be the point such that the triangle $Q R S$ is equilateral, where the points P and S lie in the same half-plane bounded by the line $Q R$. Then the point P lies inside the circumcircle of the triangle $Q R S$, which lies inside the circle with centre L and radius $\sqrt{3} Q R / 2$. This completes the proof of the lemma.

The main diagonals of a convex hexagon form a triangle though the triangle can be degenerated. Thus we may choose two of these three diagonals that form an angle greater than or equal to 60°. Without loss of generality, we may assume that the diagonals $A D$ and $B E$ of the given hexagon $A B C D E F$ satisfy $\angle A P B \geq 60^{\circ}$, where P is the intersection of these diagonals. Then, using the lemma, we obtain

$$
M N=\frac{\sqrt{3}}{2}(A B+D E) \geq P M+P N \geq M N
$$

where M and N are the midpoints of $A B$ and $D E$, respectively. Thus it follows from the lemma that the triangles $A B P$ and $D E P$ are equilateral.

Therefore the diagonal $C F$ forms an angle greater than or equal to 60° with one of the diagonals $A D$ and $B E$. Without loss of generality, we may assume that $\angle A Q F \geq 60^{\circ}$, where Q is the intersection of $A D$ and $C F$. Arguing in the same way as above, we infer that the triangles $A Q F$ and $C Q D$ are equilateral. This implies that $\angle B R C=60^{\circ}$, where R is the intersection of $B E$ and $C F$. Using the same argument as above for the third time, we obtain that the triangles $B C R$ and $E F R$ are equilateral. This completes the solution.

Solution 2. Let $A B C D E F$ be the given hexagon and let $\boldsymbol{a}=\overrightarrow{A B}, \boldsymbol{b}=\overrightarrow{B C}, \ldots, \boldsymbol{f}=\overrightarrow{F A}$.

Let M and N be the midpoints of the sides $A B$ and $D E$, respectively. We have

$$
\overrightarrow{M N}=\frac{1}{2} \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\frac{1}{2} \boldsymbol{d} \quad \text { and } \quad \overrightarrow{M N}=-\frac{1}{2} \boldsymbol{a}-\boldsymbol{f}-\boldsymbol{e}-\frac{1}{2} \boldsymbol{d} .
$$

Thus we obtain

$$
\begin{equation*}
\overrightarrow{M N}=\frac{1}{2}(\boldsymbol{b}+\boldsymbol{c}-\boldsymbol{e}-\boldsymbol{f}) . \tag{1}
\end{equation*}
$$

From the given property, we have

$$
\begin{equation*}
\overrightarrow{M N}=\frac{\sqrt{3}}{2}(|\boldsymbol{a}|+|\boldsymbol{d}|) \geq \frac{\sqrt{3}}{2}|\boldsymbol{a}-\boldsymbol{d}| \tag{2}
\end{equation*}
$$

Set $\boldsymbol{x}=\boldsymbol{a}-\boldsymbol{d}, \boldsymbol{y}=\boldsymbol{c}-\boldsymbol{f}, \boldsymbol{z}=\boldsymbol{e}-\boldsymbol{b}$. From (1) and (2), we obtain

$$
\begin{equation*}
|\boldsymbol{y}-\boldsymbol{z}| \geq \sqrt{3}|\boldsymbol{x}| \tag{3}
\end{equation*}
$$

Similarly we see that

$$
\begin{align*}
& |\boldsymbol{z}-\boldsymbol{x}| \geq \sqrt{3}|\boldsymbol{y}|, \tag{4}\\
& |\boldsymbol{x}-\boldsymbol{y}| \geq \sqrt{3}|\boldsymbol{z}| . \tag{5}
\end{align*}
$$

Note that

$$
\begin{aligned}
(3) & \Longleftrightarrow|\boldsymbol{y}|^{2}-2 \boldsymbol{y} \cdot \boldsymbol{z}+|\boldsymbol{z}|^{2} \geq 3|\boldsymbol{x}|^{2}, \\
(4) & \Longleftrightarrow|\boldsymbol{z}|^{2}-2 \boldsymbol{z} \cdot \boldsymbol{x}+|\boldsymbol{x}|^{2} \geq 3|\boldsymbol{y}|^{2}, \\
(5) & \Longleftrightarrow|\boldsymbol{x}|^{2}-2 \boldsymbol{x} \cdot \boldsymbol{y}+|\boldsymbol{y}|^{2} \geq 3|\boldsymbol{z}|^{2} .
\end{aligned}
$$

By adding up the last three inequalities, we obtain

$$
-|\boldsymbol{x}|^{2}-|\boldsymbol{y}|^{2}-|\boldsymbol{z}|^{2}-2 \boldsymbol{y} \cdot \boldsymbol{z}-2 \boldsymbol{z} \cdot \boldsymbol{x}-2 \boldsymbol{x} \cdot \boldsymbol{y} \geq 0
$$

or $-|\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}|^{2} \geq 0$. Thus $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{0}$ and the equalities hold in all inequalities above. Hence we conclude that

$$
\begin{gathered}
\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{0} \\
|\boldsymbol{y}-\boldsymbol{z}|=\sqrt{3}|\boldsymbol{x}|, \quad \boldsymbol{a}\|\boldsymbol{d}\| \boldsymbol{x} \\
|\boldsymbol{z}-\boldsymbol{x}|=\sqrt{3}|\boldsymbol{y}|, \quad \boldsymbol{c}\|\boldsymbol{f}\| \boldsymbol{y} \\
|\boldsymbol{x}-\boldsymbol{y}|=\sqrt{3}|\boldsymbol{z}|, \\
\boldsymbol{e}\|\boldsymbol{b}\| \boldsymbol{z} .
\end{gathered}
$$

Suppose that $P Q R$ is the triangle such that $\overrightarrow{P Q}=\boldsymbol{x}, \overrightarrow{Q R}=\boldsymbol{y}, \overrightarrow{R P}=\boldsymbol{z}$. We may assume $\angle Q P R \geq 60^{\circ}$, without loss of generality. Let L be the midpoint of $Q R$, then $P L=|\boldsymbol{z}-\boldsymbol{x}| / 2=\sqrt{3}|\boldsymbol{y}| / 2=\sqrt{3} Q R / 2$. It follows from the lemma in Solution 1 that the triangle $P Q R$ is equilateral. Thus we have $\angle A B C=\angle B C D=\cdots=\angle F A B=120^{\circ}$.

Comment. We have obtained the complete characterisation of the hexagons satisfying the given property. They are all obtained from an equilateral triangle by cutting its 'corners' at the same height.

G7. Let $A B C$ be a triangle with semiperimeter s and inradius r. The semicircles with diameters $B C, C A, A B$ are drawn on the outside of the triangle $A B C$. The circle tangent to all three semicircles has radius t. Prove that

$$
\frac{s}{2}<t \leq \frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right) r .
$$

Solution 1.

Let O be the centre of the circle and let D, E, F be the midpoints of $B C, C A, A B$, respectively. Denote by $D^{\prime}, E^{\prime}, F^{\prime}$ the points at which the circle is tangent to the semicircles. Let $d^{\prime}, e^{\prime}, f^{\prime}$ be the radii of the semicircles. Then all of $D D^{\prime}, E E^{\prime}, F F^{\prime}$ pass through O, and $s=d^{\prime}+e^{\prime}+f^{\prime}$.

Put

$$
d=\frac{s}{2}-d^{\prime}=\frac{-d^{\prime}+e^{\prime}+f^{\prime}}{2}, \quad e=\frac{s}{2}-e^{\prime}=\frac{d^{\prime}-e^{\prime}+f^{\prime}}{2}, \quad f=\frac{s}{2}-f^{\prime}=\frac{d^{\prime}+e^{\prime}-f^{\prime}}{2} .
$$

Note that $d+e+f=s / 2$. Construct smaller semicircles inside the triangle $A B C$ with radii d, e, f and centres D, E, F. Then the smaller semicircles touch each other, since $d+e=f^{\prime}=D E, e+f=d^{\prime}=E F, f+d=e^{\prime}=F D$. In fact, the points of tangency are the points where the incircle of the triangle $D E F$ touches its sides.

Suppose that the smaller semicircles cut $D D^{\prime}, E E^{\prime}, F F^{\prime}$ at $D^{\prime \prime}, E^{\prime \prime}, F^{\prime \prime}$, respectively. Since these semicircles do not overlap, the point O is outside the semicircles. Therefore $D^{\prime} O>D^{\prime} D^{\prime \prime}$, and so $t>s / 2$. Put $g=t-s / 2$.

Clearly, $O D^{\prime \prime}=O E^{\prime \prime}=O F^{\prime \prime}=g$. Therefore the circle with centre O and radius g touches all of the three mutually tangent semicircles.

Claim. We have

$$
\frac{1}{d^{2}}+\frac{1}{e^{2}}+\frac{1}{f^{2}}+\frac{1}{g^{2}}=\frac{1}{2}\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)^{2} .
$$

Proof. Consider a triangle $P Q R$ and let $p=Q R, q=R P, r=P Q$. Then

$$
\cos \angle Q P R=\frac{-p^{2}+q^{2}+r^{2}}{2 q r}
$$

and

$$
\sin \angle Q P R=\frac{\sqrt{(p+q+r)(-p+q+r)(p-q+r)(p+q-r)}}{2 q r} .
$$

Since

$$
\cos \angle E D F=\cos (\angle O D E+\angle O D F)=\cos \angle O D E \cos \angle O D F-\sin \angle O D E \sin \angle O D F
$$ we have

$$
\begin{aligned}
\frac{d^{2}+d e+d f-e f}{(d+e)(d+f)}=\frac{\left(d^{2}+d e+d g-e g\right)\left(d^{2}+d f+d g-f g\right)}{(d+g)^{2}(d+e)(d+f)} \\
-\frac{4 d g \sqrt{(d+e+g)(d+f+g) e f}}{(d+g)^{2}(d+e)(d+f)}
\end{aligned}
$$

which simplifies to

$$
(d+g)\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)-2\left(\frac{d}{g}+1+\frac{g}{d}\right)=-2 \sqrt{\frac{(d+e+g)(d+f+g)}{e f}}
$$

Squaring and simplifying, we obtain

$$
\begin{aligned}
\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)^{2} & =4\left(\frac{1}{d e}+\frac{1}{d f}+\frac{1}{d g}+\frac{1}{e f}+\frac{1}{e g}+\frac{1}{f g}\right) \\
& =2\left(\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}\right)^{2}-\left(\frac{1}{d^{2}}+\frac{1}{e^{2}}+\frac{1}{f^{2}}+\frac{1}{g^{2}}\right)\right)
\end{aligned}
$$

from which the conclusion follows.
Solving for the smaller value of g, i.e., the larger value of $1 / g$, we obtain

$$
\begin{aligned}
\frac{1}{g} & =\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\sqrt{2\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}\right)^{2}-2\left(\frac{1}{d^{2}}+\frac{1}{e^{2}}+\frac{1}{f^{2}}\right)} \\
& =\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+2 \sqrt{\frac{d+e+f}{d e f}}
\end{aligned}
$$

Comparing the formulas area $(\triangle D E F)=\operatorname{area}(\triangle A B C) / 4=r s / 4$ and area $(\triangle D E F)=$ $\sqrt{(d+e+f) d e f}$, we have

$$
\frac{r}{2}=\frac{2}{s} \sqrt{(d+e+f) d e f}=\sqrt{\frac{d e f}{d+e+f}} .
$$

All we have to prove is that

$$
\frac{r}{2 g} \geq \frac{1}{2-\sqrt{3}}=2+\sqrt{3}
$$

Since

$$
\frac{r}{2 g}=\sqrt{\frac{d e f}{d+e+f}}\left(\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+2 \sqrt{\frac{d+e+f}{d e f}}\right)=\frac{x+y+z}{\sqrt{x y+y z+z x}}+2,
$$

where $x=1 / d, y=1 / e, z=1 / f$, it suffices to prove that

$$
\frac{(x+y+z)^{2}}{x y+y z+z x} \geq 3
$$

This inequality is true because

$$
(x+y+z)^{2}-3(x y+y z+z x)=\frac{1}{2}\left((x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right) \geq 0
$$

Solution 2. We prove that $t>s / 2$ in the same way as in Solution 1. Put $g=t-s / 2$.

Now set the coordinate system so that $E(-e, 0), F(f, 0)$, and the y-coordinate of D is positive. Let $\Gamma_{d}, \Gamma_{e}, \Gamma_{f}, \Gamma_{g}$ be the circles with radii d, e, f, g and centres D, E, F, O, respectively. Let $\Gamma_{r / 2}$ be the incircle of the triangle $D E F$. Note that the radius of $\Gamma_{r / 2}$ is $r / 2$.

Now consider the inversion with respect to the circle with radius 1 and centre $(0,0)$.

Let $\Gamma_{d}^{\prime}, \Gamma_{e}^{\prime}, \Gamma_{f}^{\prime}, \Gamma_{g}^{\prime}, \Gamma_{r / 2}^{\prime}$ be the images of $\Gamma_{d}, \Gamma_{e}, \Gamma_{f}, \Gamma_{g}, \Gamma_{r / 2}$, respectively. Set $\alpha=1 / 4 e$, $\beta=1 / 4 f$ and $R=\alpha+\beta$. The equations of the lines $\Gamma_{e}^{\prime}, \Gamma_{f}^{\prime}$ and $\Gamma_{r / 2}^{\prime}$ are $x=-2 \alpha, x=2 \beta$ and $y=1 / r$, respectively. Both of the radii of the circles Γ_{d}^{\prime} and Γ_{g}^{\prime} are R, and their centres are $(-\alpha+\beta, 1 / r)$ and $(-\alpha+\beta, 1 / r+2 R)$, respectively.

Let D be the distance between $(0,0)$ and the centre of Γ_{g}^{\prime}. Then we have

$$
2 g=\frac{1}{D-R}-\frac{1}{D+R}=\frac{2 R}{D^{2}-R^{2}},
$$

which shows $g=R /\left(D^{2}-R^{2}\right)$.
What we have to show is $g \leq(1-\sqrt{3} / 2) r$, that is $(4+2 \sqrt{3}) g \leq r$. This is verified by the following computation:

$$
\begin{aligned}
r-(4+2 \sqrt{3}) g & =r-(4+2 \sqrt{3}) \frac{R}{D^{2}-R^{2}}=\frac{r}{D^{2}-R^{2}}\left(\left(D^{2}-R^{2}\right)-(4+2 \sqrt{3}) \frac{1}{r} R\right) \\
& =\frac{r}{D^{2}-R^{2}}\left(\left(\frac{1}{r}+2 R\right)^{2}+(\alpha-\beta)^{2}-R^{2}-(4+2 \sqrt{3}) \frac{1}{r} R\right) \\
& =\frac{r}{D^{2}-R^{2}}\left(3\left(R-\frac{1}{\sqrt{3} r}\right)^{2}+(\alpha-\beta)^{2}\right) \\
& \geq 0 .
\end{aligned}
$$

Number Theory

N1. Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i}, & \text { if } 0 \leq i \leq m-1 ; \\ \sum_{j=1}^{m} x_{i-j}, & \text { if } i \geq m .\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

Solution. Let r_{i} be the remainder of $x_{i} \bmod m$. Then there are at most m^{m} types of m consecutive blocks in the sequence $\left(r_{i}\right)$. So, by the pigeonhole principle, some type reappears. Since the definition formula works forward and backward, the sequence $\left(r_{i}\right)$ is purely periodic.

Now the definition formula backward $x_{i}=x_{i+m}-\sum_{j=1}^{m-1} x_{i+j}$ applied to the block $\left(r_{0}, \ldots, r_{m-1}\right)$ produces the m-consecutive block $\underbrace{0, \ldots, 0}_{m-1}, 1$. Together with the pure periodicity, we see that $\max k \geq m-1$.

On the other hand, if there are m-consecutive zeroes in $\left(r_{i}\right)$, then the definition formula and the pure periodicity force $r_{i}=0$ for any $i \geq 0$, a contradiction. Thus max $k=m-1$.

N2. Each positive integer a undergoes the following procedure in order to obtain the number $d=d(a)$:
(i) move the last digit of a to the first position to obtain the number b;
(ii) square b to obtain the number c;
(iii) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base 10.) For example, for $a=2003$, we get $b=3200, c=10240000$, and $d=02400001=2400001=d(2003)$.

Find all numbers a for which $d(a)=a^{2}$.

Solution. Let a be a positive integer for which the procedure yields $d=d(a)=a^{2}$. Further assume that a has $n+1$ digits, $n \geq 0$.

Let s be the last digit of a and f the first digit of c. Since $(* \cdots * s)^{2}=a^{2}=d=* \cdots * f$ and $(s * \cdots *)^{2}=b^{2}=c=f * \cdots *$, where the stars represent digits that are unimportant at the moment, f is both the last digit of the square of a number that ends in s and the first digit of the square of a number that starts in s.

The square $a^{2}=d$ must have either $2 n+1$ or $2 n+2$ digits. If $s=0$, then $n \neq 0, b$ has n digits, its square c has at most $2 n$ digits, and so does d, a contradiction. Thus the last digit of a is not 0 .

Consider now, for example, the case $s=4$. Then f must be 6 , but this is impossible, since the squares of numbers that start in 4 can only start in 1 or 2 , which is easily seen from

$$
160 \cdots 0=(40 \cdots 0)^{2} \leq(4 * \cdots *)^{2}<(50 \cdots 0)^{2}=250 \cdots 0 .
$$

Thus s cannot be 4 .
The following table gives all possibilities:

s	1	2	3	4	5	6	7	8	9
$f=$ last digit of $(\cdots s)^{2}$	1	4	9	6	5	6	9	4	1
$f=$ first digit of $(s \cdots)^{2}$	$1,2,3$	$4,5,6,7,8$	9,1	1,2	2,3	3,4	$4,5,6$	$6,7,8$	8,9

Thus $s=1, s=2$, or $s=3$ and in each case $f=s^{2}$. When s is 1 or 2 , the square $c=b^{2}$ of the ($n+1$)-digit number b which starts in s has $2 n+1$ digits. Moreover, when $s=3$, the square $c=b^{2}$ either has $2 n+1$ digits and starts in 9 or has $2 n+2$ digits and starts in 1 . However the latter is impossible since $f=s^{2}=9$. Thus c must have $2 n+1$ digits.

Let $a=10 x+s$, where x is an n-digit number (in case $x=0$ we set $n=0$). Then

$$
\begin{aligned}
& b=10^{n} s+x \\
& c=10^{2 n} s^{2}+2 \cdot 10^{n} s x+x^{2} \\
& d=10\left(c-10^{m-1} f\right)+f=10^{2 n+1} s^{2}+20 \cdot 10^{n} s x+10 x^{2}-10^{m} f+f
\end{aligned}
$$

where m is the number of digits of c. However, we already know that m must be $2 n+1$ and $f=s^{2}$, so

$$
d=20 \cdot 10^{n} s x+10 x^{2}+s^{2}
$$

and the equality $a^{2}=d$ yields

$$
x=2 s \cdot \frac{10^{n}-1}{9},
$$

i.e.,

$$
a=\underbrace{6 \cdots 6}_{n} 3 \text { or } a=\underbrace{4 \cdots 4}_{n} 2 \text { or } a=\underbrace{2 \cdots 2}_{n} 1 \text {, }
$$

for $n \geq 0$. The first two possibilities must be rejected for $n \geq 1$, since $a^{2}=d$ would have $2 n+2$ digits, which means that c would have to have at least $2 n+2$ digits, but we already know that c must have $2 n+1$ digits. Thus the only remaining possibilities are

$$
a=3 \quad \text { or } \quad a=2 \quad \text { or } \quad a=\underbrace{2 \cdots 2}_{n} 1 \text {, }
$$

for $n \geq 0$. It is easily seen that they all satisfy the requirements of the problem.

N3. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.

Solution. Let (a, b) be a pair of positive integers satisfying the condition. Because $k=$ $a^{2} /\left(2 a b^{2}-b^{3}+1\right)>0$, we have $2 a b^{2}-b^{3}+1>0, a>b / 2-1 / 2 b^{2}$, and hence $a \geq b / 2$. Using this, we infer from $k \geq 1$, or $a^{2} \geq b^{2}(2 a-b)+1$, that $a^{2}>b^{2}(2 a-b) \geq 0$. Hence

$$
\begin{equation*}
a>b \quad \text { or } \quad 2 a=b . \tag{*}
\end{equation*}
$$

Now consider the two solutions a_{1}, a_{2} to the equation

$$
a^{2}-2 k b^{2} a+k\left(b^{3}-1\right)=0
$$

for fixed positive integers k and b, and assume that one of them is an integer. Then the other is also an integer because $a_{1}+a_{2}=2 k b^{2}$. We may assume that $a_{1} \geq a_{2}$, and we have $a_{1} \geq k b^{2}>0$. Furthermore, since $a_{1} a_{2}=k\left(b^{3}-1\right)$, we get

$$
0 \leq a_{2}=\frac{k\left(b^{3}-1\right)}{a_{1}} \leq \frac{k\left(b^{3}-1\right)}{k b^{2}}<b .
$$

Together with $(*)$, we conclude that $a_{2}=0$ or $a_{2}=b / 2$ (in the latter case b must be even).
If $a_{2}=0$, then $b^{3}-1=0$, and hence $a_{1}=2 k, b=1$.
If $a_{2}=b / 2$, then $k=b^{2} / 4$ and $a_{1}=b^{4} / 2-b / 2$.
Therefore the only possibilities are

$$
(a, b)=(2 l, 1) \quad \text { or } \quad(l, 2 l) \quad \text { or } \quad\left(8 l^{4}-l, 2 l\right)
$$

for some positive integer l. All of these pairs satisfy the given condition.
Comment 1. An alternative way to see ($*$) is as follows: Fix $a \geq 1$ and consider the function $f_{a}(b)=2 a b^{2}-b^{3}+1$. Then f_{a} is increasing on $[0,4 a / 3]$ and decreasing on $[4 a / 3, \infty)$. We have

$$
\begin{aligned}
f_{a}(a) & =a^{3}+1>a^{2}, \\
f_{a}(2 a-1) & =4 a^{2}-4 a+2>a^{2}, \\
f_{a}(2 a+1) & =-4 a^{2}-4 a<0 .
\end{aligned}
$$

Hence if $b \geq a$ and $a^{2} / f_{a}(b)$ is a positive integer, then $b=2 a$.
Indeed, if $a \leq b \leq 4 a / 3$, then $f_{a}(b) \geq f_{a}(a)>a^{2}$, and so $a^{2} / f_{a}(b)$ is not an integer, a contradiction, and if $b>4 a / 3$, then
(i) if $b \geq 2 a+1$, then $f_{a}(b) \leq f_{a}(2 a+1)<0$, a contradiction;
(ii) if $b \leq 2 a-1$, then $f_{a}(b) \geq f_{a}(2 a-1)>a^{2}$, and so $a^{2} / f_{a}(b)$ is not an integer, a contradiction.

Comment 2. There are several alternative solutions to this problem. Here we sketch three of them.

1. The discriminant D of the equation (\sharp) is the square of some integer $d \geq 0$: $D=$ $\left(2 b^{2} k-b\right)^{2}+4 k-b^{2}=d^{2}$. If $e=2 b^{2} k-b=d$, we have $4 k=b^{2}$ and $a=2 b^{2} k-b / 2, b / 2$. Otherwise, the clear estimation $\left|d^{2}-e^{2}\right| \geq 2 e-1$ for $d \neq e$ implies $\left|4 k-b^{2}\right| \geq 4 b^{2} k-2 b-1$. If $4 k-b^{2}>0$, this implies $b=1$. The other case yields no solutions.
2. Assume that $b \neq 1$ and let $s=\operatorname{gcd}\left(2 a, b^{3}-1\right), 2 a=s u, b^{3}-1=s t^{\prime}$, and $2 a b^{2}-b^{3}+1=s t$. Then $t+t^{\prime}=u b^{2}$ and $\operatorname{gcd}(u, t)=1$. Together with $s t \mid a^{2}$, we have $t \mid s$. Let $s=r t$. Then the problem reduces to the following lemma:

Lemma. Let b, r, t, t^{\prime}, u be positive integers satisfying $b^{3}-1=r t t^{\prime}$ and $t+t^{\prime}=u b^{2}$. Then $r=1$. Furthermore, either one of t or t^{\prime} or u is 1 .

The lemma is proved as follows. We have $b^{3}-1=r t\left(u b^{2}-t\right)=r t^{\prime}\left(u b^{2}-t^{\prime}\right)$. Since $r t^{2} \equiv r t^{\prime 2} \equiv 1\left(\bmod b^{2}\right)$, if $r t^{2} \neq 1$ and $r t^{\prime 2} \neq 1$, then $t, t^{\prime}>b / \sqrt{r}$. It is easy to see that

$$
r \frac{b}{\sqrt{r}}\left(u b^{2}-\frac{b}{\sqrt{r}}\right) \geq b^{3}-1,
$$

unless $r=u=1$.
3. With the same notation as in the previous solution, since $r t^{2} \mid\left(b^{3}-1\right)^{2}$, it suffices to prove the following lemma:

Lemma. Let $b \geq 2$. If a positive integer $x \equiv 1\left(\bmod b^{2}\right)$ divides $\left(b^{3}-1\right)^{2}$, then $x=1$ or $x=\left(b^{3}-1\right)^{2}$ or $(b, x)=(4,49)$ or $(4,81)$.

To prove this lemma, let p, q be positive integers with $p>q>0$ satisfying $\left(b^{3}-1\right)^{2}=$ $\left(p b^{2}+1\right)\left(q b^{2}+1\right)$. Then

$$
\begin{equation*}
b^{4}=2 b+p+q+p q b^{2} . \tag{1}
\end{equation*}
$$

A natural observation leads us to multiply (1) by $q b^{2}-1$. We get

$$
\left(q\left(p q-b^{2}\right)+1\right) b^{4}=p-(q+2 b)\left(q b^{2}-1\right) .
$$

Together with the simple estimation

$$
-3<\frac{p-(q+2 b)\left(q b^{2}-1\right)}{b^{4}}<1
$$

the conclusion of the lemma follows.
Comment 3. The problem was originally proposed in the following form:
Let a, b be relatively prime positive integers. Suppose that $a^{2} /\left(2 a b^{2}-b^{3}+1\right)$ is a positive integer greater than 1 . Prove that $b=1$.

N4. Let b be an integer greater than 5 . For each positive integer n, consider the number

$$
x_{n}=\underbrace{11 \cdots 1}_{n-1} \underbrace{22 \cdots 2}_{n} 5 \text {, }
$$

written in base b.
Prove that the following condition holds if and only if $b=10$:
there exists a positive integer M such that for any integer n greater than M, the number x_{n} is a perfect square.

Solution. For $b=6,7,8,9$, the number 5 is congruent to no square numbers modulo b, and hence x_{n} is not a square. For $b=10$, we have $x_{n}=\left(\left(10^{n}+5\right) / 3\right)^{2}$ for all n. By algebraic calculation, it is easy to see that $x_{n}=\left(b^{2 n}+b^{n+1}+3 b-5\right) /(b-1)$.

Consider now the case $b \geq 11$ and put $y_{n}=(b-1) x_{n}$. Assume that the condition in the problem is satisfied. Then it follows that $y_{n} y_{n+1}$ is a perfect square for $n>M$. Since $b^{2 n}+b^{n+1}+3 b-5<\left(b^{n}+b / 2\right)^{2}$, we infer

$$
\begin{equation*}
y_{n} y_{n+1}<\left(b^{n}+\frac{b}{2}\right)^{2}\left(b^{n+1}+\frac{b}{2}\right)^{2}=\left(b^{2 n+1}+\frac{b^{n+1}(b+1)}{2}+\frac{b^{2}}{4}\right)^{2} . \tag{1}
\end{equation*}
$$

On the other hand, we can prove by computation that

$$
\begin{equation*}
y_{n} y_{n+1}>\left(b^{2 n+1}+\frac{b^{n+1}(b+1)}{2}-b^{3}\right)^{2} \tag{2}
\end{equation*}
$$

From (1) and (2), we conclude that for all integers $n>M$, there is an integer a_{n} such that

$$
\begin{equation*}
y_{n} y_{n+1}=\left(b^{2 n+1}+\frac{b^{n+1}(b+1)}{2}+a_{n}\right)^{2} \quad \text { and } \quad-b^{3}<a_{n}<\frac{b^{2}}{4} . \tag{3}
\end{equation*}
$$

It follows that $b^{n} \mid\left(a_{n}^{2}-(3 b-5)^{2}\right)$, and thus $a_{n}= \pm(3 b-5)$ for all sufficiently large n. Substituting in (3), we obtain $a_{n}=3 b-5$ and

$$
\begin{equation*}
8(3 b-5) b+b^{2}(b+1)^{2}=4 b^{3}+4(3 b-5)\left(b^{2}+1\right) . \tag{4}
\end{equation*}
$$

The left hand side of the equation (4) is divisible by b. The other side is a polynomial in b with integral coefficients and its constant term is -20 . Hence b must divide 20. Since $b \geq 11$, we conclude that $b=20$, but then $x_{n} \equiv 5(\bmod 8)$ and hence x_{n} is not a square.

Comment. Here is a shorter solution using a limit argument:
Assume that x_{n} is a square for all $n>M$, where M is a positive integer.
For $n>M$, take $y_{n}=\sqrt{x_{n}} \in \mathbb{N}$. Clearly,

$$
\lim _{n \rightarrow \infty} \frac{\frac{b^{2 n}}{b-1}}{x_{n}}=1
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{\frac{b^{n}}{\sqrt{b-1}}}{y_{n}}=1
$$

On the other hand,

$$
\begin{equation*}
\left(b y_{n}+y_{n+1}\right)\left(b y_{n}-y_{n+1}\right)=b^{2} x_{n}-x_{n+1}=b^{n+2}+3 b^{2}-2 b-5 . \tag{*}
\end{equation*}
$$

These equations imply

$$
\lim _{n \rightarrow \infty}\left(b y_{n}-y_{n+1}\right)=\frac{b \sqrt{b-1}}{2}
$$

As $b y_{n}-y_{n+1}$ is an integer, there exists $N>M$ such that $b y_{n}-y_{n+1}=b \sqrt{b-1} / 2$ for any $n>N$. This means that $b-1$ is a perfect square.

If b is odd, then $\sqrt{b-1} / 2$ is an integer and so b divides $b \sqrt{b-1} / 2$. Hence using ($*$), we obtain $b \mid 5$. This is a contradiction.

If b is even, then $b / 2$ divides 5 . Hence $b=10$.
In the case $b=10$, we have $x_{n}=\left(\left(10^{n}+5\right) / 3\right)^{2}$ for $n \geq 1$.

N5. An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property:
m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

Solution. Assume that m is expressed as $m=u+v+w$ and $u v w$ is an odd perfect square. Then u, v, w are odd and because $u v w \equiv 1(\bmod 4)$, exactly two or none of them are congruent to 3 modulo 4 . In both cases, we have $m=u+v+w \equiv 3(\bmod 4)$.

Conversely, we prove that $4 k+3$ has the required property. To prove this, we look for representations of the form

$$
4 k+3=x y+y z+z x .
$$

In any such representations, the product of the three summands is a perfect square. Setting $x=1+2 l$ and $y=1-2 l$, we have $z=2 l^{2}+2 k+1$ from above. Then

$$
\begin{aligned}
& x y=1-4 l^{2}=f(l), \\
& y z=-4 l^{3}+2 l^{2}-(4 k+2) l+2 k+1=g(l), \\
& z x=4 l^{3}+2 l^{2}+(4 k+2) l+2 k+1=h(l) .
\end{aligned}
$$

The numbers $f(l), g(l), h(l)$ are odd for each integer l and their product is a perfect square, as noted above. They are distinct, except for finitely many l. It remains to note that $|g(l)|$ and $|h(l)|$ are not perfect squares for infinitely many l (note that $|f(l)|$ is not a perfect square, unless $l=0$).

Choose distinct prime numbers p, q such that $p, q>4 k+3$ and pick l such that

$$
\begin{array}{llll}
1+2 l \equiv 0 & (\bmod p), & 1+2 l \not \equiv 0 & \left(\bmod p^{2}\right), \\
1-2 l \equiv 0 & (\bmod q), & 1-2 l \not \equiv 0 & \left(\bmod q^{2}\right) .
\end{array}
$$

We can choose such l by the Chinese remainder theorem. Then $2 l^{2}+2 k+1$ is not divisible by p, because $p>4 k+3$. Hence $|h(l)|$ is not a perfect square. Similarly, $|g(l)|$ is not a perfect square.

N6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

Solution. Since $\left(p^{p}-1\right) /(p-1)=1+p+p^{2}+\cdots+p^{p-1} \equiv p+1\left(\bmod p^{2}\right)$, we can get at least one prime divisor of $\left(p^{p}-1\right) /(p-1)$ which is not congruent to 1 modulo p^{2}. Denote such a prime divisor by q. This q is what we wanted. The proof is as follows. Assume that there exists an integer n such that $n^{p} \equiv p(\bmod q)$. Then we have $n^{p^{2}} \equiv p^{p} \equiv 1(\bmod q)$ by the definition of q. On the other hand, from Fermat's little theorem, $n^{q-1} \equiv 1(\bmod q)$, because q is a prime. Since $p^{2} \nmid q-1$, we have $\left(p^{2}, q-1\right) \mid p$, which leads to $n^{p} \equiv 1(\bmod q)$. Hence we have $p \equiv 1(\bmod q)$. However, this implies $1+p+\cdots+p^{p-1} \equiv p(\bmod q)$. From the definition of q, this leads to $p \equiv 0(\bmod q)$, a contradiction.

Comment 1. First, students will come up, perhaps, with the idea that q has to be of the form $p k+1$. Then,

$$
\exists n \quad n^{p} \equiv p \quad(\bmod q) \Longleftrightarrow p^{k} \equiv 1 \quad(\bmod q)
$$

i.e.,

$$
\forall n \quad n^{p} \not \equiv p \quad(\bmod q) \Longleftrightarrow p^{k} \not \equiv 1 \quad(\bmod q) .
$$

So, we have to find such q. These observations will take you quite naturally to the idea of taking a prime divisor of $p^{p}-1$. Therefore the idea of the solution is not so tricky or technical.

Comment 2. The prime q satisfies the required condition if and only if q remains a prime in $k=\mathbb{Q}(\sqrt[p]{p})$. By applying Chebotarev's density theorem to the Galois closure of k, we see that the set of such q has the density $1 / p$. In particular, there are infinitely many q satisfying the required condition. This gives an alternative solution to the problem.

N7. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad \text { for } k \geq 0
$$

Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.

Solution. By induction, we show that

$$
a_{n}=\frac{(2+\sqrt{3})^{2^{n}}+(2-\sqrt{3})^{2^{n}}}{2}
$$

Case 1: $x^{2} \equiv 3(\bmod p)$ has an integer solution
Let m be an integer such that $m^{2} \equiv 3(\bmod p)$. Then $(2+m)^{2^{n}}+(2-m)^{2^{n}} \equiv 0(\bmod p)$. Therefore $(2+m)(2-m) \equiv 1(\bmod p)$ shows that $(2+m)^{2^{n+1}} \equiv-1(\bmod p)$ and that $2+m$ has the order 2^{n+2} modulo p. This implies $2^{n+2} \mid(p-1)$ and so $2^{n+3} \mid\left(p^{2}-1\right)$.
Case 2: otherwise
Similarly, we see that there exist integers a, b satisfying $(2+\sqrt{3})^{2^{n+1}}=-1+p a+p b \sqrt{3}$. Furthermore, since $\left((1+\sqrt{3}) a_{n-1}\right)^{2}=\left(a_{n}+1\right)(2+\sqrt{3})$, there exist integers a^{\prime}, b^{\prime} satisfying $\left((1+\sqrt{3}) a_{n-1}\right)^{2^{n+2}}=-1+p a^{\prime}+p b^{\prime} \sqrt{3}$.

Let us consider the set $S=\{i+j \sqrt{3} \mid 0 \leq i, j \leq p-1,(i, j) \neq(0,0)\}$. Let $I=\{a+b \sqrt{3} \mid$ $a \equiv b \equiv 0(\bmod p)\}$. We claim that for each $i+j \sqrt{3} \in S$, there exists an $i^{\prime}+j^{\prime} \sqrt{3} \in S$ satisfying $(i+j \sqrt{3})\left(i^{\prime}+j^{\prime} \sqrt{3}\right)-1 \in I$. In fact, since $i^{2}-3 j^{2} \not \equiv 0(\bmod p)($ otherwise 3 is a square $\bmod p$), we can take an integer k satisfying $k\left(i^{2}-3 j^{2}\right)-1 \in I$. Then $i^{\prime}+j^{\prime} \sqrt{3}$ with $i^{\prime}+j^{\prime} \sqrt{3}-k(i-j \sqrt{3}) \in I$ will do. Now the claim together with the previous observation implies that the minimal r with $\left((1+\sqrt{3}) a_{n-1}\right)^{r}-1 \in I$ is equal to 2^{n+3}. The claim also implies that a map $f: S \longrightarrow S$ satisfying $(i+j \sqrt{3})(1+\sqrt{3}) a_{n-1}-f(i+j \sqrt{3}) \in I$ for any $i+j \sqrt{3} \in S$ exists and is bijective. Thus $\prod_{x \in S} x=\prod_{x \in S} f(x)$, so

$$
\left(\prod_{x \in S} x\right)\left(\left((1+\sqrt{3}) a_{n-1}\right)^{p^{2}-1}-1\right) \in I .
$$

Again, by the claim, we have $\left((1+\sqrt{3}) a_{n-1}\right)^{p^{2}-1}-1 \in I$. Hence $2^{n+3} \mid\left(p^{2}-1\right)$.
Comment 1. Not only Case 2 but also Case 1 can be treated by using $(1+\sqrt{3}) a_{n-1}$. In fact, we need not divide into cases: in any case, the element $(1+\sqrt{3}) a_{n-1}=(1+\sqrt{3}) / \sqrt{2}$ of the multiplicative group $\mathbb{F}_{p^{2}}^{\times}$of the finite field $\mathbb{F}_{p^{2}}$ having p^{2} elements has the order 2^{n+3}, which suffices (in Case 1, the number $(1+\sqrt{3}) a_{n-1}$ even belongs to the subgroup \mathbb{F}_{p}^{\times}of $\mathbb{F}_{p^{2}}^{\times}$, so $\left.2^{n+3} \mid(p-1)\right)$.

Comment 2. The numbers a_{k} are the numerators of the approximation to $\sqrt{3}$ obtained by using the Newton method with $f(x)=x^{2}-3, x_{0}=2$. More precisely,

$$
x_{k+1}=\frac{x_{k}+\frac{3}{x_{k}}}{2}, \quad x_{k}=\frac{a_{k}}{d_{k}},
$$

where

$$
d_{k}=\frac{(2+\sqrt{3})^{2^{k}}-(2-\sqrt{3})^{2^{k}}}{2 \sqrt{3}}
$$

Comment 3. Define $f_{n}(x)$ inductively by

$$
f_{0}(x)=x, \quad f_{k+1}(x)=f_{k}(x)^{2}-2 \quad \text { for } k \geq 0
$$

Then the condition $p \mid a_{n}$ can be read that the $\bmod p$ reduction of the minimal polynomial f_{n} of the algebraic integer $\alpha=\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}$ over \mathbb{Q} has the root $2 a_{0}$ in \mathbb{F}_{p}, where $\zeta_{2^{n+2}}$ is a primitive 2^{n+2}-th root of 1 . Thus the conclusion $\left(p^{2}-1\right) \mid 2^{n+3}$ of the problem is a part of the decomposition theorem in the class field theory applied to the abelian extension $\mathbb{Q}(\alpha)$, which asserts that a prime p is completely decomposed in $\mathbb{Q}(\alpha)$ (equivalently, f_{n} has a root $\bmod p)$ if and only if the class of p in $\left(\mathbb{Z} / 2^{n+2} \mathbb{Z}\right)^{\times}$belongs to its subgroup $\{1,-1\}$. Thus the problem illustrates a result in the class field theory.

N8. Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A ?

Solution. The answer is $(p-1)^{2}$. For simplicity, let $r=p-1$. Suppose that the prime numbers p_{1}, \ldots, p_{r} are distinct. Define

$$
B_{i}=\left\{p_{i}, p_{i}^{p+1}, p_{i}^{2 p+1}, \ldots, p_{i}^{(r-1) p+1}\right\}
$$

and let $B=\bigcup_{i=1}^{r} B_{i}$. Then B has r^{2} elements and clearly satisfies (i) and (ii).
Now suppose that $|A| \geq r^{2}+1$ and that A satisfies (i) and (ii). We will show that a (nonempty) product of elements in A is a perfect p-th power. This will complete the proof.

Let p_{1}, \ldots, p_{r} be distinct prime numbers for which each $t \in A$ can be written as $t=$ $p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$. Take $t_{1}, \ldots, t_{r^{2}+1} \in A$, and for each i, let $v_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i r}\right)$ denote the vector of exponents of prime divisors of t_{i}. We would like to show that a (nonempty) sum of v_{i} is the zero vector modulo p.

We shall show that the following system of congruence equations has a nonzero solution:

$$
\begin{aligned}
& F_{1}=\sum_{i=1}^{r^{2}+1} a_{i 1} x_{i}^{r} \equiv 0 \quad(\bmod p), \\
& F_{2}=\sum_{i=1}^{r^{2}+1} a_{i 2} x_{i}^{r} \equiv 0 \quad(\bmod p), \\
& \vdots \\
& F_{r}=\sum_{i=1}^{r^{2}+1} a_{i r} x_{i}^{r} \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

If $\left(x_{1}, \ldots, x_{r^{2}+1}\right)$ is a nonzero solution to the above system, then, since $x_{i}^{r} \equiv 0$ or $1(\bmod p)$, a sum of vectors v_{i} is the zero vector modulo p.

In order to find a nonzero solution to the above system, it is enough to show that the following congruence equation has a nonzero solution:

$$
\begin{equation*}
F=F_{1}^{r}+F_{2}^{r}+\cdots+F_{r}^{r} \equiv 0 \quad(\bmod p) . \tag{*}
\end{equation*}
$$

In fact, because each F_{i}^{r} is 0 or 1 modulo p, the nonzero solution to this equation $(*)$ has to satisfy $F_{i}^{r} \equiv 0$ for $1 \leq i \leq r$.

We will show that the number of the solutions to the equation $(*)$ is divisible by p. Then since $(0,0, \ldots, 0)$ is a trivial solution, there exists a nonzero solution to $(*)$ and we are done.

We claim that

$$
\sum F^{r}\left(x_{1}, \ldots, x_{r^{2}+1}\right) \equiv 0 \quad(\bmod p)
$$

where the sum is over the set of all vectors $\left(x_{1}, \ldots, x_{r^{2}+1}\right)$ in the vector space $\mathbb{F}_{p}^{r^{2}+1}$ over the finite field \mathbb{F}_{p}. By Fermat's little theorem, this claim evidently implies that the number of solutions to the equation $(*)$ is divisible by p.

We prove the claim. In each monomial in F^{r}, there are at most r^{2} variables, and therefore at least one of the variables is absent. Suppose that the monomial is of the form $b x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$, where $1 \leq k \leq r^{2}$. Then $\sum b x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$, where the sum is over the same set as above, is equal to $p^{r^{2}+1-k} \sum_{x_{i_{1}}, \ldots, x_{i_{k}}} b x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$, which is divisible by p. This proves the claim.

Comment. In general, if we replace $p-1$ in (i) with any positive integer d, the answer is $(p-1) d$. In fact, if $k>(p-1) d$, then the constant term of the element $\left(1-g_{1}\right) \cdots\left(1-g_{k}\right)$ of the group algebra $\mathbb{Q}_{p}\left(\zeta_{p}\right)\left[(\mathbb{Z} / p \mathbb{Z})^{d}\right]$ can be evaluated p-adically so we see that it is not equal to 1 . Here $g_{1}, \ldots, g_{k} \in(\mathbb{Z} / p \mathbb{Z})^{d}, \mathbb{Q}_{p}$ is the p-adic number field, and ζ_{p} is a primitive p-th root of 1 . This also gives an alternative solution to the problem.

