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Problems
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Algebra

A1. Let aij, i = 1, 2, 3; j = 1, 2, 3 be real numbers such that aij is positive for i = j and
negative for i 6= j.

Prove that there exist positive real numbers c1, c2, c3 such that the numbers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

A2. Find all nondecreasing functions f : R −→ R such that

(i) f(0) = 0, f(1) = 1;

(ii) f(a) + f(b) = f(a)f(b) + f(a + b− ab) for all real numbers a, b such that a < 1 < b.

A3. Consider pairs of sequences of positive real numbers

a1 ≥ a2 ≥ a3 ≥ · · · , b1 ≥ b2 ≥ b3 ≥ · · ·

and the sums

An = a1 + · · ·+ an, Bn = b1 + · · ·+ bn; n = 1, 2, . . . .

For any pair define ci = min{ai, bi} and Cn = c1 + · · ·+ cn, n = 1, 2, . . . .

(1) Does there exist a pair (ai)i≥1, (bi)i≥1 such that the sequences (An)n≥1 and (Bn)n≥1 are
unbounded while the sequence (Cn)n≥1 is bounded?

(2) Does the answer to question (1) change by assuming additionally that bi = 1/i, i =
1, 2, . . . ?

Justify your answer.



4

A4. Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers.

(1) Prove that (
n∑

i,j=1

|xi − xj|
)2

≤ 2(n2 − 1)

3

n∑
i,j=1

(xi − xj)
2.

(2) Show that the equality holds if and only if x1, . . . , xn is an arithmetic sequence.

A5. Let R+ be the set of all positive real numbers. Find all functions f : R+ −→ R+ that
satisfy the following conditions:

(i) f(xyz) + f(x) + f(y) + f(z) = f(
√

xy)f(
√

yz)f(
√

zx) for all x, y, z ∈ R+;

(ii) f(x) < f(y) for all 1 ≤ x < y.

A6. Let n be a positive integer and let (x1, . . . , xn), (y1, . . . , yn) be two sequences of positive
real numbers. Suppose (z2, . . . , z2n) is a sequence of positive real numbers such that

z2
i+j ≥ xiyj for all 1 ≤ i, j ≤ n.

Let M = max{z2, . . . , z2n}. Prove that

(
M + z2 + · · ·+ z2n

2n

)2

≥
(

x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)
.
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Combinatorics

C1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove that there
exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x + tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

C2. Let D1, . . . , Dn be closed discs in the plane. (A closed disc is the region limited by a
circle, taken jointly with this circle.) Suppose that every point in the plane is contained in
at most 2003 discs Di. Prove that there exists a disc Dk which intersects at most 7 ·2003−1
other discs Di.

C3. Let n ≥ 5 be a given integer. Determine the greatest integer k for which there exists a
polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal
right angles.

C4. Let x1, . . . , xn and y1, . . . , yn be real numbers. Let A = (aij)1≤i,j≤n be the matrix
with entries

aij =

{
1, if xi + yj ≥ 0;

0, if xi + yj < 0.

Suppose that B is an n × n matrix with entries 0, 1 such that the sum of the elements in
each row and each column of B is equal to the corresponding sum for the matrix A. Prove
that A = B.

C5. Every point with integer coordinates in the plane is the centre of a disc with radius
1/1000.

(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.

(2) Prove that every equilateral triangle with vertices in different discs has side-length
greater than 96.



6

C6. Let f(k) be the number of integers n that satisfy the following conditions:

(i) 0 ≤ n < 10k, so n has exactly k digits (in decimal notation), with leading zeroes
allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer divisible by
11.

Prove that f(2m) = 10f(2m− 1) for every positive integer m.
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Geometry

G1. Let ABCD be a cyclic quadrilateral. Let P , Q, R be the feet of the perpendiculars
from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the
bisectors of ∠ABC and ∠ADC are concurrent with AC.

G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing
through A and C whose centre does not lie on the line AC. Denote by P the intersection
of the tangents to Γ at A and C. Suppose Γ meets the segment PB at Q. Prove that the
intersection of the bisector of ∠AQC and the line AC does not depend on the choice of Γ.

G3. Let ABC be a triangle and let P be a point in its interior. Denote by D, E, F the
feet of the perpendiculars from P to the lines BC, CA, AB, respectively. Suppose that

AP 2 + PD2 = BP 2 + PE2 = CP 2 + PF 2.

Denote by IA, IB, IC the excentres of the triangle ABC. Prove that P is the circumcentre
of the triangle IAIBIC .

G4. Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are externally tangent at P , and
Γ2, Γ4 are externally tangent at the same point P . Suppose that Γ1 and Γ2; Γ2 and Γ3; Γ3

and Γ4; Γ4 and Γ1 meet at A, B, C, D, respectively, and that all these points are different
from P .

Prove that
AB ·BC

AD ·DC
=

PB2

PD2
.

G5. Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be
a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines
through P parallel to CA and CB meet AB at D and E, respectively. The line through P
parallel to AB meets CA and CB at F and G, respectively. Prove that the lines DF and
EG intersect on the circumcircle of the triangle ABC.
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G6. Each pair of opposite sides of a convex hexagon has the following property:

the distance between their midpoints is equal to
√

3/2 times the sum of their
lengths.

Prove that all the angles of the hexagon are equal.

G7. Let ABC be a triangle with semiperimeter s and inradius r. The semicircles with
diameters BC, CA, AB are drawn on the outside of the triangle ABC. The circle tangent
to all three semicircles has radius t. Prove that

s

2
< t ≤ s

2
+

(
1−

√
3

2

)
r.



9

Number Theory

N1. Let m be a fixed integer greater than 1. The sequence x0, x1, x2, . . . is defined as
follows:

xi =

{
2i, if 0 ≤ i ≤ m− 1;∑m

j=1 xi−j, if i ≥ m.

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

N2. Each positive integer a undergoes the following procedure in order to obtain the num-
ber d = d(a):

(i) move the last digit of a to the first position to obtain the number b;

(ii) square b to obtain the number c;

(iii) move the first digit of c to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10.) For example,
for a = 2003, we get b = 3200, c = 10240000, and d = 02400001 = 2400001 = d(2003).

Find all numbers a for which d(a) = a2.

N3. Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer.
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N4. Let b be an integer greater than 5. For each positive integer n, consider the number

xn = 11 · · · 1︸ ︷︷ ︸
n−1

22 · · · 2︸ ︷︷ ︸
n

5,

written in base b.

Prove that the following condition holds if and only if b = 10:

there exists a positive integer M such that for any integer n greater than M , the
number xn is a perfect square.

N5. An integer n is said to be good if |n| is not the square of an integer. Determine all
integers m with the following property:

m can be represented, in infinitely many ways, as a sum of three distinct good
integers whose product is the square of an odd integer.

N6. Let p be a prime number. Prove that there exists a prime number q such that for
every integer n, the number np − p is not divisible by q.

N7. The sequence a0, a1, a2, . . . is defined as follows:

a0 = 2, ak+1 = 2a2
k − 1 for k ≥ 0.

Prove that if an odd prime p divides an, then 2n+3 divides p2 − 1.

N8. Let p be a prime number and let A be a set of positive integers that satisfies the
following conditions:

(i) the set of prime divisors of the elements in A consists of p− 1 elements;

(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A?



Part II
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Algebra

A1. Let aij, i = 1, 2, 3; j = 1, 2, 3 be real numbers such that aij is positive for i = j and
negative for i 6= j.

Prove that there exist positive real numbers c1, c2, c3 such that the numbers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

Solution. Set O(0, 0, 0), P (a11, a21, a31), Q(a12, a22, a32), R(a13, a23, a33) in the three di-
mensional Euclidean space. It is enough to find a point in the interior of the triangle PQR
whose coordinates are all positive, all negative, or all zero.

Let O′, P ′, Q′, R′ be the projections of O, P , Q, R onto the xy-plane. Recall that points
P ′, Q′ and R′ lie on the fourth, second and third quadrant respectively.

Case 1: O′ is in the exterior or on the boundary of the triangle P ′Q′R′.

O′

y

x

Q′

R′

P ′

S ′

Denote by S ′ the intersection of the segments P ′Q′ and O′R′, and let S be the point
on the segment PQ whose projection is S ′. Recall that the z-coordinate of the point S is
negative, since the z-coordinate of the points P ′ and Q′ are both negative. Thus any point
in the interior of the segment SR sufficiently close to S has coordinates all of which are
negative, and we are done.

Case 2: O′ is in the interior of the triangle P ′Q′R′.

O′

y

x

R′

P ′

Q′
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Let T be the point on the plane PQR whose projection is O′. If T = O, we are done
again. Suppose T has negative (resp. positive) z-coordinate. Let U be a point in the interior
of the triangle PQR, sufficiently close to T , whose x-coordinates and y-coordinates are both
negative (resp. positive). Then the coordinates of U are all negative (resp. positive), and
we are done.
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A2. Find all nondecreasing functions f : R −→ R such that

(i) f(0) = 0, f(1) = 1;

(ii) f(a) + f(b) = f(a)f(b) + f(a + b− ab) for all real numbers a, b such that a < 1 < b.

Solution. Let g(x) = f(x + 1) − 1. Then g is nondecreasing, g(0) = 0, g(−1) = −1, and
g
(−(a − 1)(b − 1)

)
= −g(a − 1)g(b − 1) for a < 1 < b. Thus g(−xy) = −g(x)g(y) for

x < 0 < y, or g(yz) = −g(y)g(−z) for y, z > 0. Vice versa, if g satisfies those conditions,
then f satisfies the given conditions.

Case 1: If g(1) = 0, then g(z) = 0 for all z > 0. Now let g : R −→ R be any nondecreasing
function such that g(−1) = −1 and g(x) = 0 for all x ≥ 0. Then g satisfies the required
conditions.

Case 2: If g(1) > 0, putting y = 1 yields

g(−z) = −g(z)

g(1)
(∗)

for all z > 0. Hence g(yz) = g(y)g(z)/g(1) for all y, z > 0. Let h(x) = g(x)/g(1). Then h is
nondecreasing, h(0) = 0, h(1) = 1, and h(xy) = h(x)h(y). It follows that h(xq) = h(x)q for
any x > 0 and any rational number q. Since h is nondecreasing, there exists a nonnegative
number k such that h(x) = xk for all x > 0. Putting g(1) = c, we have g(x) = cxk for all
x > 0. Furthermore (∗) implies g(−x) = −xk for all x > 0. Now let k ≥ 0, c > 0 and

g(x) =





cxk, if x > 0;

0, if x = 0;

−(−x)k, if x < 0.

Then g is nondecreasing, g(0) = 0, g(−1) = −1, and g(−xy) = −g(x)g(y) for x < 0 < y.
Hence g satisfies the required conditions.

We obtain all solutions for f by the re-substitution f(x) = g(x − 1) + 1. In Case 1, we
have any nondecreasing function f satisfying

f(x) =

{
1, if x ≥ 1;

0, if x = 0.

In Case 2, we obtain

f(x) =





c(x− 1)k + 1, if x > 1;

1, if x = 1;

−(1− x)k + 1, if x < 1,

where c > 0 and k ≥ 0.
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A3. Consider pairs of sequences of positive real numbers

a1 ≥ a2 ≥ a3 ≥ · · · , b1 ≥ b2 ≥ b3 ≥ · · ·

and the sums

An = a1 + · · ·+ an, Bn = b1 + · · ·+ bn; n = 1, 2, . . . .

For any pair define ci = min{ai, bi} and Cn = c1 + · · ·+ cn, n = 1, 2, . . . .

(1) Does there exist a pair (ai)i≥1, (bi)i≥1 such that the sequences (An)n≥1 and (Bn)n≥1 are
unbounded while the sequence (Cn)n≥1 is bounded?

(2) Does the answer to question (1) change by assuming additionally that bi = 1/i, i =
1, 2, . . . ?

Justify your answer.

Solution. (1) Yes.

Let (ci) be an arbitrary sequence of positive numbers such that ci ≥ ci+1 and
∑∞

i=1 ci < ∞.
Let (km) be a sequence of integers satisfying 1 = k1 < k2 < k3 < · · · and (km+1−km)ckm ≥ 1.

Now we define the sequences (ai) and (bi) as follows. For n odd and kn ≤ i < kn+1, define
ai = ckn and bi = ci. Then we have Akn+1−1 ≥ Akn−1 + 1. For n even and kn ≤ i < kn+1,
define ai = ci and bi = ckn . Then we have Bkn+1−1 ≥ Bkn−1 + 1. Thus (An) and (Bn) are
unbounded and ci = min{ai, bi}.
(2) Yes.

Suppose that there is such a pair.

Case 1: bi = ci for only finitely many i’s.

There exists a sufficiently large I such that ci = ai for any i ≥ I. Therefore

∑
i≥I

ci =
∑
i≥I

ai = ∞,

a contradiction.

Case 2: bi = ci for infinitely many i’s.

Let (km) be a sequence of integers satisfying km+1 ≥ 2km and bkm = ckm . Then

ki+1∑

k=ki+1

ck ≥ (ki+1 − ki)
1

ki+1

≥ 1

2
.

Thus
∑∞

i=1 ci = ∞, a contradiction.
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A4. Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers.

(1) Prove that (
n∑

i,j=1

|xi − xj|
)2

≤ 2(n2 − 1)

3

n∑
i,j=1

(xi − xj)
2.

(2) Show that the equality holds if and only if x1, . . . , xn is an arithmetic sequence.

Solution. (1) Since both sides of the inequality are invariant under any translation of all
xi’s, we may assume without loss of generality that

∑n
i=1 xi = 0.

We have
n∑

i,j=1

|xi − xj| = 2
∑
i<j

(xj − xi) = 2
n∑

i=1

(2i− n− 1)xi.

By the Cauchy-Schwarz inequality, we have

(
n∑

i,j=1

|xi − xj|
)2

≤ 4
n∑

i=1

(2i− n− 1)2

n∑
i=1

x2
i = 4 · n(n + 1)(n− 1)

3

n∑
i=1

x2
i .

On the other hand, we have

n∑
i,j=1

(xi − xj)
2 = n

n∑
i=1

x2
i −

n∑
i=1

xi

n∑
j=1

xj + n
n∑

j=1

x2
j = 2n

n∑
i=1

x2
i .

Therefore (
n∑

i,j=1

|xi − xj|
)2

≤ 2(n2 − 1)

3

n∑
i,j=1

(xi − xj)
2.

(2) If the equality holds, then xi = k(2i − n − 1) for some k, which means that x1, . . . , xn

is an arithmetic sequence.

On the other hand, suppose that x1, . . . , x2n is an arithmetic sequence with common
difference d. Then we have

xi =
d

2
(2i− n− 1) +

x1 + xn

2
.

Translate xi’s by −(x1 + xn)/2 to obtain xi = d(2i− n− 1)/2 and
∑n

i=1 xi = 0, from which
the equality follows.
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A5. Let R+ be the set of all positive real numbers. Find all functions f : R+ −→ R+ that
satisfy the following conditions:

(i) f(xyz) + f(x) + f(y) + f(z) = f(
√

xy)f(
√

yz)f(
√

zx) for all x, y, z ∈ R+;

(ii) f(x) < f(y) for all 1 ≤ x < y.

Solution 1. We claim that f(x) = xλ + x−λ, where λ is an arbitrary positive real number.

Lemma. There exists a unique function g : [1,∞) −→ [1,∞) such that

f(x) = g(x) +
1

g(x)
.

Proof. Put x = y = z = 1 in the given functional equation

f(xyz) + f(x) + f(y) + f(z) = f(
√

xy)f(
√

yz)f(
√

zx)

to obtain 4f(1) = f(1)3. Since f(1) > 0, we have f(1) = 2.

Define the function A : [1,∞) −→ [2,∞) by A(x) = x + 1/x. Since f is strictly
increasing on [1,∞) and A is bijective, the function g is uniquely determined.

Since A is strictly increasing, we see that g is also strictly increasing. Since f(1) = 2, we
have g(1) = 1.

We put (x, y, z) = (t, t, 1/t), (t2, 1, 1) to obtain f(t) = f(1/t) and f(t2) = f(t)2 − 2. Put
(x, y, z) = (s/t, t/s, st), (s2, 1/s2, t2) to obtain

f(st) + f

(
t

s

)
= f(s)f(t) and f(st)f

(
t

s

)
= f(s2) + f(t2) = f(s)2 + f(t)2 − 4.

Let 1 ≤ x ≤ y. We will show that g(xy) = g(x)g(y). We have

f(xy) + f

(
y

x

)
=

(
g(x) +

1

g(x)

)(
g(y) +

1

g(y)

)

=

(
g(x)g(y) +

1

g(x)g(y)

)
+

(
g(x)

g(y)
+

g(y)

g(x)

)
,

and

f(xy)f

(
y

x

)
=

(
g(x) +

1

g(x)

)2

+

(
g(y) +

1

g(y)

)2

− 4

=

(
g(x)g(y) +

1

g(x)g(y)

)(
g(x)

g(y)
+

g(y)

g(x)

)
.

Thus
{

f(xy), f

(
y

x

)}
=

{
g(x)g(y) +

1

g(x)g(y)
,
g(x)

g(y)
+

g(y)

g(x)

}
=

{
A

(
g(x)g(y)

)
, A

(
g(y)

g(x)

)}
.
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Since f(xy) = A
(
g(xy)

)
and A is bijective, it follows that either g(xy) = g(x)g(y) or

g(xy) = g(y)/g(x). Since xy ≥ y and g is increasing, we have g(xy) = g(x)g(y).

Fix a real number ε > 1 and suppose that g(ε) = ελ. Since g(ε) > 1, we have λ > 0.
Using the multiplicity of g, we may easily see that g(εq) = εqλ for all rationals q ∈ [0,∞).
Since g is strictly increasing, g(εt) = εtλ for all t ∈ [0,∞), that is, g(x) = xλ for all x ≥ 1.

For all x ≥ 1, we have f(x) = xλ + x−λ. Recalling that f(t) = f(1/t), we have f(x) =
xλ + x−λ for 0 < x < 1 as well.

Now we must check that for any λ > 0, the function f(x) = xλ + x−λ satisfies the two
given conditions. The condition (i) is satisfied because

f(
√

xy)f(
√

yz)f(
√

zx) =
(
(xy)λ/2 + (xy)−λ/2

)(
(yz)λ/2 + (yz)−λ/2

)(
(zx)λ/2 + (zx)−λ/2

)

= (xyz)λ + xλ + yλ + zλ + x−λ + y−λ + z−λ + (xyz)−λ

= f(xyz) + f(x) + f(y) + f(z).

The condition (ii) is also satisfied because 1 ≤ x < y implies

f(y)− f(x) = (yλ − xλ)

(
1− 1

(xy)λ

)
> 0.

Solution 2. We can a find positive real number λ such that f(e) = exp(λ)+exp(−λ) since
the function B : [0,∞) −→ [2,∞) defined by B(x) = exp(x) + exp(−x) is bijective.

Since f(t)2 = f(t2) + 2 and f(x) > 0, we have

f

(
exp

(
1

2n

))
= exp

(
λ

2n

)
+ exp

(
− λ

2n

)

for all nonnegative integers n.

Since f(st) = f(s)f(t)− f(t/s), we have

f

(
exp

(
m + 1

2n

))
= f

(
exp

(
1

2n

))
f

(
exp

(
m

2n

))
− f

(
exp

(
m− 1

2n

))
(∗)

for all nonnegative integers m and n.

From (∗) and f(1) = 2, we obtain by induction that

f

(
exp

(
m

2n

))
= exp

(
mλ

2n

)
+ exp

(
−mλ

2n

)

for all nonnegative integers m and n.

Since f is increasing on [1,∞), we have f(x) = xλ + x−λ for x ≥ 1.

We can prove that f(x) = xλ + x−λ for 0 < x < 1 and that this function satisfies the
given conditions in the same manner as in the first solution.
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A6. Let n be a positive integer and let (x1, . . . , xn), (y1, . . . , yn) be two sequences of positive
real numbers. Suppose (z2, . . . , z2n) is a sequence of positive real numbers such that

z2
i+j ≥ xiyj for all 1 ≤ i, j ≤ n.

Let M = max{z2, . . . , z2n}. Prove that

(
M + z2 + · · ·+ z2n

2n

)2

≥
(

x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)
.

Solution. Let X = max{x1, . . . , xn} and Y = max{y1, . . . , yn}. By replacing xi by x′i =
xi/X, yi by y′i = yi/Y , and zi by z′i = zi/

√
XY , we may assume that X = Y = 1. Now we

will prove that
M + z2 + · · ·+ z2n ≥ x1 + · · ·+ xn + y1 + · · ·+ yn, (∗)

so
M + z2 + · · ·+ z2n

2n
≥ 1

2

(
x1 + · · ·+ xn

n
+

y1 + · · ·+ yn

n

)

which implies the desired result by the AM-GM inequality.

To prove (∗), we will show that for any r ≥ 0, the number of terms greater that r on
the left hand side is at least the number of such terms on the right hand side. Then the
kth largest term on the left hand side is greater than or equal to the kth largest term on
the right hand side for each k, proving (∗). If r ≥ 1, then there are no terms greater than
r on the right hand side. So suppose r < 1. Let A = {1 ≤ i ≤ n | xi > r}, a = |A|,
B = {1 ≤ i ≤ n | yi > r}, b = |B|. Since max{x1, . . . , xn} = max{y1, . . . , yn} = 1, both a
and b are at least 1. Now xi > r and yj > r implies zi+j ≥ √

xiyj > r, so

C = {2 ≤ i ≤ 2n | zi > r} ⊃ A + B = {α + β | α ∈ A, β ∈ B}.

However, we know that |A + B| ≥ |A| + |B| − 1, because if A = {i1, . . . , ia}, i1 < · · · < ia
and B = {j1, . . . , jb}, j1 < · · · < jb, then the a + b− 1 numbers i1 + j1, i1 + j2, . . . , i1 + jb,
i2 + jb, . . . , ia + jb are all distinct and belong to A+B. Hence |C| ≥ a+ b− 1. In particular,
|C| ≥ 1 so zk > r for some k. Then M > r, so the left hand side of (∗) has at least a + b
terms greater than r. Since a + b is the number of terms greater than r on the right hand
side, we have proved (∗).
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Combinatorics

C1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove that there
exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x + tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

Solution 1. Consider the set D = {x− y | x, y ∈ A}. There are at most 101× 100 + 1 =
10101 elements in D. Two sets A + ti and A + tj have nonempty intersection if and only if
ti − tj is in D. So we need to choose the 100 elements in such a way that we do not use a
difference from D.

Now select these elements by induction. Choose one element arbitrarily. Assume that
k elements, k ≤ 99, are already chosen. An element x that is already chosen prevents us
from selecting any element from the set x + D. Thus after k elements are chosen, at most
10101k ≤ 999999 elements are forbidden. Hence we can select one more element.

Comment. The size |S| = 106 is unnecessarily large. The following statement is true:

If A is a k-element subset of S = {1, . . . , n} and m is a positive integer such
that n > (m − 1)

((
k
2

)
+ 1

)
, then there exist t1, . . . , tm ∈ S such that the sets

Aj = {x + tj | x ∈ A}, j = 1, . . . , m are pairwise disjoint.

Solution 2. We give a solution to the generalised version.

Consider the set B =
{|x− y|

∣∣ x, y ∈ A
}
. Clearly, |B| ≤ (

k
2

)
+ 1.

It suffices to prove that there exist t1, . . . , tm ∈ S such that |ti− tj| /∈ B for every distinct
i and j. We will select t1, . . . , tm inductively.

Choose 1 as t1, and consider the set C1 = S\(B+t1). Then we have |C1| ≥ n−((
k
2

)
+1

)
>

(m− 2)
((

k
2

)
+ 1

)
.

For 1 ≤ i < m, suppose that t1, . . . , ti and Ci are already defined and that |Ci| >
(m − i − 1)

((
k
2

)
+ 1

) ≥ 0. Choose the least element in Ci as ti+1 and consider the set
Ci+1 = Ci \ (B + ti+1). Then

|Ci+1| ≥ |Ci| −
((

k

2

)
+ 1

)
> (m− i− 2)

((
k

2

)
+ 1

)
≥ 0.

Clearly, t1, . . . , tm satisfy the desired condition.
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C2. Let D1, . . . , Dn be closed discs in the plane. (A closed disc is the region limited by a
circle, taken jointly with this circle.) Suppose that every point in the plane is contained in
at most 2003 discs Di. Prove that there exists a disc Dk which intersects at most 7 ·2003−1
other discs Di.

Solution. Pick a disc S with the smallest radius, say s. Subdivide the plane into seven
regions as in Figure 1, that is, subdivide the complement of S into six congruent regions T1,
. . . , T6.

T5

T4

T3T2

T1

T6

P3
P2

P1

P6 P5

P4

Figure 1

Since s is the smallest radius, any disc different from S whose centre lies inside S contains
the centre O of the disc S. Therefore the number of such discs is less than or equal to 2002.

We will show that if a disc Dk has its centre inside Ti and intersects S, then Dk contains
Pi, where Pi is the point such that OPi =

√
3 s and OPi bisects the angle formed by the two

half-lines that bound Ti.

Subdivide Ti into Ui and Vi as in Figure 2.
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O

Ui

A

B

C

Pi

Vi

2s

s

Figure 2
The region Ui is contained in the disc with radius s and centre Pi. Thus, if the centre of

Dk is inside Ui, then Dk contains Pi.

Suppose that the centre of Dk is inside Vi. Let Q be the centre of Dk and let R be
the intersection of OQ and the boundary of S. Since Dk intersects S, the radius of Dk is
greater than QR. Since ∠QPiR ≥ ∠CPiB = 60◦ and ∠PiRO ≥ ∠PiBO = 120◦, we have
∠QPiR ≥ ∠PiRQ. Hence QR ≥ QPi and so Dk contains Pi.

O

Ui

A

B

C

Pi

Figure 3

R

Q

For i = 1, . . . , 6, the number of discs Dk having their centres inside Ti and intersecting S
is less than or equal to 2003. Consequently, the number of discs Dk that intersect S is less
than or equal to 2002 + 6 · 2003 = 7 · 2003− 1.
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C3. Let n ≥ 5 be a given integer. Determine the greatest integer k for which there exists a
polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal
right angles.

Solution. We will show that the greatest integer k satisfying the given condition is equal
to 3 for n = 5, and b2n/3c+ 1 for n ≥ 6.

Assume that there exists an n-gon having k internal right angles. Since all other n − k
angles are less than 360◦, we have

(n− k) · 360◦ + k · 90◦ > (n− 2) · 180◦,

or k < (2n + 4)/3. Since k and n are integers, we have k ≤ b2n/3c+ 1.

If n = 5, then b2n/3c + 1 = 4. However, if a pentagon has 4 internal right angles, then
the other angle is equal to 180◦, which is not appropriate. Figure 1 gives the pentagon with
3 internal right angles, thus the greatest integer k is equal to 3.

Figure 1

We will construct an n-gon having b2n/3c+1 internal right angles for each n ≥ 6. Figure
2 gives the examples for n = 6, 7, 8.

n = 6 n = 7 n = 8

Figure 2

For n ≥ 9, we will construct examples inductively. Since all internal non-right angles in
this construction are greater than 180◦, we can cut off ‘a triangle without a vertex’ around
a non-right angle in order to obtain three more vertices and two more internal right angles
as in Figure 3.

Figure 3
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Comment. Here we give two other ways to construct examples.

One way is to add ‘a rectangle with a hat’ near an internal non-right angle as in Figure
4.

Figure 4

The other way is ‘the escaping construction.’ First we draw right angles in spiral.

P

Then we ‘escape’ from the point P .

The followings are examples for n = 9, 10, 11. The angles around the black points are
not right.

n = 9 n = 10 n = 11

The ‘escaping lines’ are not straight in these figures. However, in fact, we can make them
straight when we draw sufficiently large figures.
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C4. Let x1, . . . , xn and y1, . . . , yn be real numbers. Let A = (aij)1≤i,j≤n be the matrix
with entries

aij =

{
1, if xi + yj ≥ 0;

0, if xi + yj < 0.

Suppose that B is an n × n matrix with entries 0, 1 such that the sum of the elements in
each row and each column of B is equal to the corresponding sum for the matrix A. Prove
that A = B.

Solution 1. Let B = (bij)1≤i,j≤n. Define S =
∑

1≤i,j≤n(xi + yj)(aij − bij).

On one hand, we have

S =
n∑

i=1

xi

(
n∑

j=1

aij −
n∑

j=1

bij

)
+

n∑
j=1

yj

(
n∑

i=1

aij −
n∑

i=1

bij

)
= 0.

On the other hand, if xi + yj ≥ 0, then aij = 1, which implies aij − bij ≥ 0; if xi + yj < 0,
then aij = 0, which implies aij − bij ≤ 0. Therefore (xi + yj)(aij − bij) ≥ 0 for every i and j.

Thus we have (xi + yj)(aij − bij) = 0 for every i and j. In particular, if aij = 0, then
xi + yj < 0 and so aij − bij = 0. This means that aij ≥ bij for every i and j.

Since the sum of the elements in each row of B is equal to the corresponding sum for A,
we have aij = bij for every i and j.

Solution 2. Let B = (bij)1≤i,j≤n. Suppose that A 6= B, that is, there exists (i0, j0) such
that ai0j0 6= bi0j0 . We may assume without loss of generality that ai0j0 = 0 and bi0j0 = 1.

Since the sum of the elements in the i0-th row of B is equal to that in A, there exists j1

such that ai0j1 = 1 and bi0j1 = 0. Similarly there exists i1 such that ai1j1 = 0 and bi1j1 = 1.
Let us define ik and jk inductively in this way so that aikjk

= 0, bikjk
= 1, aikjk+1

= 1,
bikjk+1

= 0.

Because the size of the matrix is finite, there exist s and t such that s 6= t and (is, js) =
(it, jt).

Since aikjk
= 0 implies xik +yjk

< 0 by definition, we have
∑t−1

k=s(xik +yjk
) < 0. Similarly,

since aikjk+1
= 1 implies xik + yjk+1

≥ 0, we have
∑t−1

k=s(xik + yjk+1
) ≥ 0. However, since

js = jt, we have

t−1∑

k=s

(xik + yjk+1
) =

t−1∑

k=s

xik +
t∑

k=s+1

yjk
=

t−1∑

k=s

xik +
t−1∑

k=s

yjk
=

t−1∑

k=s

(xik + yjk
).

This is a contradiction.
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C5. Every point with integer coordinates in the plane is the centre of a disc with radius
1/1000.

(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.

(2) Prove that every equilateral triangle with vertices in different discs has side-length
greater than 96.

Solution 1. (1) Define f : Z −→ [0, 1) by f(x) = x
√

3 − bx√3c. By the pigeonhole
principle, there exist distinct integers x1 and x2 such that

∣∣f(x1) − f(x2)
∣∣ < 0.001. Put

a = |x1−x2|. Then the distance either between
(
a, a

√
3
)

and
(
a, ba√3c) or between

(
a, a

√
3
)

and
(
a, ba√3c + 1

)
is less than 0.001. Therefore the points (0, 0), (2a, 0),

(
a, a

√
3
)

lie in
different discs and form an equilateral triangle.

(2) Suppose that P ′Q′R′ is a triangle such that P ′Q′ = Q′R′ = R′P ′ = l ≤ 96 and P ′, Q′,
R′ lie in discs with centres P , Q, R, respectively. Then

l − 0.002 ≤ PQ,QR, RP ≤ l + 0.002.

Since PQR is not an equilateral triangle, we may assume that PQ 6= QR. Therefore

|PQ2 −QR2| = (PQ + QR)|PQ−QR|
≤ (

(l + 0.002) + (l + 0.002)
)(

(l + 0.002)− (l − 0.002)
)

≤ 2 · 96.002 · 0.004

< 1.

However, PQ2 −QR2 ∈ Z. This is a contradiction.

Solution 2. We give another solution to (2).

Lemma. Suppose that ABC and A′B′C ′ are equilateral triangles and that A, B, C and
A′, B′, C ′ lie anticlockwise. If AA′, BB′ ≤ r, then CC ′ ≤ 2r.

Proof. Let α, β, γ; α′, β′, γ′ be the complex numbers corresponding to A, B, C; A′, B′,
C ′. Then

γ = ωβ + (1− ω)α and γ′ = ωβ′ + (1− ω)α′,

where ω =
(
1 +

√
3 i

)
/2. Therefore

CC ′ = |γ − γ′| =
∣∣ω(β − β′) + (1− ω)(α− α′)

∣∣
≤ |ω||β − β′|+ |1− ω||α− α′| = BB′ + AA′

≤ 2r.
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Suppose that P , Q, R lie on discs with radius r and centres P ′, Q′, R′, respectively, and
that PQR is an equilateral triangle. Let R′′ be the point such that P ′Q′R′′ is an equilateral
triangle and P ′, Q′, R′ lie anticlockwise. It follows from the lemma that RR′′ ≤ 2r, and so
R′R′′ ≤ RR′ + RR′′ ≤ r + 2r = 3r by the triangle inequality.

Put
−−→
P ′Q′ =

(
m
n

)
and

−−→
P ′R′ =

(
s
t

)
, where m, n, s, t are integers. We may suppose that

m,n ≥ 0. Then we have

√(
m− n

√
3

2
− s

)2

+

(
n + m

√
3

2
− t

)2

≤ 3r.

Setting a = 2t− n and b = m− 2s, we obtain

√(
a−m

√
3
)2

+
(
b− n

√
3
)2 ≤ 6r.

Since
∣∣a − m

√
3
∣∣ ≥ 1

/∣∣a + m
√

3
∣∣,

∣∣b − n
√

3
∣∣ ≥ 1

/∣∣b + n
√

3
∣∣ and |a| ≤ m

√
3 + 6r,

|b| ≤ n
√

3 + 6r, we have

√
1(

2m
√

3 + 6r
)2 +

1(
2n
√

3 + 6r
)2 ≤ 6r.

Since 1/x2 + 1/y2 ≥ 8/(x + y)2 for all positive real numbers x and y, it follows that

2
√

2

2
√

3(m + n) + 12r
≤ 6r.

As P ′Q′ =
√

m2 + n2 ≥ (m + n)/
√

2, we have

2
√

2

2
√

6 P ′Q′ + 12r
≤ 6r.

Therefore

P ′Q′ ≥ 1

6
√

3 r
−
√

6 r.

Finally we obtain

PQ ≥ P ′Q′ − 2r ≥ 1

6
√

3 r
−
√

6 r − 2r.

For r = 1/1000, we have PQ ≥ 96.22 · · · > 96.



29

C6. Let f(k) be the number of integers n that satisfy the following conditions:

(i) 0 ≤ n < 10k, so n has exactly k digits (in decimal notation), with leading zeroes
allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer divisible by
11.

Prove that f(2m) = 10f(2m− 1) for every positive integer m.

Solution 1. We use the notation [ak−1ak−2 · · · a0] to indicate the positive integer with digits
ak−1, ak−2, . . . , a0.

The following fact is well-known:

[ak−1ak−2 · · · a0] ≡ i (mod 11) ⇐⇒
k−1∑

l=0

(−1)lal ≡ i (mod 11).

Fix m ∈ N and define the sets Ai and Bi as follows:

• Ai is the set of all integers n with the following properties:

(1) 0 ≤ n < 102m, i.e., n has 2m digits;

(2) the right 2m−1 digits of n can be permuted so that the resulting integer is congruent
to i modulo 11.

• Bi is the set of all integers n with the following properties:

(1) 0 ≤ n < 102m−1, i.e., n has 2m− 1 digits;

(2) the digits of n can be permuted so that the resulting integer is congruent to i
modulo 11.

It is clear that f(2m) = |A0| and f(2m−1) = |B0|. Since 99 · · · 9︸ ︷︷ ︸
2m

≡ 0 (mod 11), we have

n ∈ Ai ⇐⇒ 99 · · · 9︸ ︷︷ ︸
2m

−n ∈ A−i.

Hence
|Ai| = |A−i|. (1)

Since 99 · · · 9︸ ︷︷ ︸
2m−1

≡ 9 (mod 11), we have

n ∈ Bi ⇐⇒ 99 · · · 9︸ ︷︷ ︸
2m−1

−n ∈ B9−i.

Thus
|Bi| = |B9−i|. (2)

For any 2m-digit integer n = [ja2m−2 · · · a0], we have

n ∈ Ai ⇐⇒ [a2m−2 · · · a0] ∈ Bi−j.
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Hence
|Ai| = |Bi|+ |Bi−1|+ · · ·+ |Bi−9|.

Since Bi = Bi+11, this can be written as

|Ai| =
10∑

k=0

|Bk| − |Bi+1|, (3)

hence
|Ai| = |Aj| ⇐⇒ |Bi+1| = |Bj+1|. (4)

From (1), (2), and (4), we obtain |Ai| = |A0| and |Bi| = |B0|. Substituting this into (3)
yields |A0| = 10|B0|, and so f(2m) = 10f(2m− 1).

Comment. This solution works for all even bases b, and the result is f(2m) = bf(2m−1).

Solution 2. We will use the notation in Solution 1. For a 2m-tuple (a0, . . . , a2m−1) of
integers, we consider the following property:

(a0, . . . , a2m−1) can be permuted so that
2m−1∑

l=0

(−1)lal ≡ 0 (mod 11). (∗)

It is easy to verify that

(a0, . . . , a2m−1) satisfies (∗) ⇐⇒ (a0 + k, . . . , a2m−1 + k) satisfies (∗) (1)

for all integers k, and that

(a0, . . . , a2m−1) satisfies (∗) ⇐⇒ (ka0, . . . , ka2m−1) satisfies (∗) (2)

for all integers k 6≡ 0 (mod 11).

For an integer k, denote by 〈k〉 the nonnegative integer less than 11 congruent to k
modulo 11.

For a fixed j ∈ {0, 1, . . . , 9}, let k be the unique integer such that k ∈ {1, 2, . . . , 10} and
(j + 1)k ≡ 1 (mod 11).

Suppose that [a2m−1 · · · a1j] ∈ A0, that is, (a2m−1, . . . , a1, j) satisfies (∗). From (1) and
(2), it follows that

(
(a2m−1 + 1)k − 1, . . . , (a1 + 1)k − 1, 0

)
also satisfies (∗). Putting bi =〈

(ai + 1)k
〉− 1, we have [b2m−1 · · · b1] ∈ B0.

For any j ∈ {0, 1, . . . , 9}, we can reconstruct [a2m−1 . . . a1j] from [b2m−1 · · · b1]. Hence we
have |A0| = 10|B0|, and so f(2m) = 10f(2m− 1).
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Geometry

G1. Let ABCD be a cyclic quadrilateral. Let P , Q, R be the feet of the perpendiculars
from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the
bisectors of ∠ABC and ∠ADC are concurrent with AC.

Solution 1.

P

D

A

B

R

C

Q

It is well-known that P , Q, R are collinear (Simson’s theorem). Moreover, since ∠DPC
and ∠DQC are right angles, the points D, P , Q, C are concyclic and so ∠DCA = ∠DPQ =
∠DPR. Similarly, since D, Q, R, A are concyclic, we have ∠DAC = ∠DRP . Therefore
4DCA ∼ 4DPR.

Likewise, 4DAB ∼ 4DQP and 4DBC ∼ 4DRQ. Then

DA

DC
=

DR

DP
=

DB · QR
BC

DB · PQ
BA

=
QR

PQ
· BA

BC
.

Thus PQ = QR if and only if DA/DC = BA/BC.

Now the bisectors of the angles ABC and ADC divide AC in the ratios of BA/BC and
DA/DC, respectively. This completes the proof.

Solution 2. Suppose that the bisectors of ∠ABC and ∠ADC meet AC at L and M ,
respectively. Since AL/CL = AB/CB and AM/CM = AD/CD, the bisectors in question
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meet on AC if and only if AB/CB = AD/CD, that is, AB ·CD = CB ·AD. We will prove
that AB · CD = CB · AD is equivalent to PQ = QR.

Because DP ⊥ BC, DQ ⊥ AC, DR ⊥ AB, the circles with diameters DC and DA
contain the pairs of points P , Q and Q, R, respectively. It follows that ∠PDQ is equal
to γ or 180◦ − γ, where γ = ∠ACB. Likewise, ∠QDR is equal to α or 180◦ − α, where
α = ∠CAB. Then, by the law of sines, we have PQ = CD sin γ and QR = AD sin α. Hence
the condition PQ = QR is equivalent to CD/AD = sin α/sin γ.

On the other hand, sin α/sin γ = CB/AB by the law of sines again. Thus PQ = QR if
and only if CD/AD = CB/AB, which is the same as AB · CD = CB · AD.

Comment. Solution 2 shows that this problem can be solved without the knowledge of
Simson’s theorem.



33

G2. Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing
through A and C whose centre does not lie on the line AC. Denote by P the intersection
of the tangents to Γ at A and C. Suppose Γ meets the segment PB at Q. Prove that the
intersection of the bisector of ∠AQC and the line AC does not depend on the choice of Γ.

Solution 1.

C

P

A

Q

S

B
R

Γ

Suppose that the bisector of ∠AQC intersects the line AC and the circle Γ at R and S,
respectively, where S is not equal to Q.

Since 4APC is an isosceles triangle, we have AB : BC = sin ∠APB : sin ∠CPB.
Likewise, since 4ASC is an isosceles triangle, we have AR : RC = sin ∠ASQ : sin ∠CSQ.

Applying the sine version of Ceva’s theorem to the triangle PAC and Q, we obtain

sin ∠APB : sin ∠CPB = sin ∠PAQ sin ∠QCA : sin ∠PCQ sin ∠QAC.

The tangent theorem shows that ∠PAQ = ∠ASQ = ∠QCA and ∠PCQ = ∠CSQ =
∠QAC.

Hence AB : BC = AR2 : RC2, and so R does not depend on Γ.
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Solution 2.

A

Q

B
R

y

x
O

(0,−p)

M
(
0,−p−

√
1 + p2

)

C(1, 0)

P (0, 1/p)

Γ

Let R be the intersection of the bisector of the angle AQC and the line AC.

We may assume that A(−1, 0), B(b, 0), C(1, 0), and Γ: x2 + (y + p)2 = 1 + p2. Then
P (0, 1/p).

Let M be the midpoint of the largest arc AC. Then M
(
0,−p −

√
1 + p2

)
. The points

Q, R, M are collinear, since ∠AQR = ∠CQR.

Because PB : y = −x/pb + 1/p, computation shows that

Q

(
(1 + p2)b− pb

√
(1 + p2)(1− b2)

1 + p2b2
,
−p(1− b2) +

√
(1 + p2)(1− b2)

1 + p2b2

)
,

so we have
QP

BQ
=

√
1 + p2

p
√

1− b2
.

Since
MO

PM
=

p +
√

1 + p2

1
p

+ p +
√

1 + p2
=

p√
1 + p2

,

we obtain
OR

RB
=

MO

PM
· QP

BQ
=

p√
1 + p2

·
√

1 + p2

p
√

1− b2
=

1√
1− b2

.

Therefore R does not depend on p or Γ.
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G3. Let ABC be a triangle and let P be a point in its interior. Denote by D, E, F the
feet of the perpendiculars from P to the lines BC, CA, AB, respectively. Suppose that

AP 2 + PD2 = BP 2 + PE2 = CP 2 + PF 2.

Denote by IA, IB, IC the excentres of the triangle ABC. Prove that P is the circumcentre
of the triangle IAIBIC .

Solution. Since the given condition implies

0 = (BP 2 + PE2)− (CP 2 + PF 2) = (BP 2 − PF 2)− (CP 2 − PE2) = BF 2 − CE2,

we may put x = BF = CE. Similarly we may put y = CD = AF and z = AE = BD.

If one of three points D, E, F does not lie on the sides of the triangle ABC, then this
contradicts the triangle inequality. Indeed, if, for example, B, C, D lie in this order, we have
AB + BC = (x + y) + (z − y) = x + z = AC, a contradiction. Thus all three points lie on
the sides of the triangle ABC.

Putting a = BC, b = CA, c = AB and s = (a + b + c)/2, we have x = s− a, y = s− b,
z = s − c. Since BD = s − c and CD = s − b, we see that D is the point at which the
excircle of the triangle ABC opposite to A meets BC. Similarly E and F are the points at
which the excircle opposite to B and C meet CA and AB, respectively. Since both PD and
IAD are perpendicular to BC, the three points P , D, IA are collinear. Analogously P , E,
IB are collinear and P , F , IC are collinear.

The three points IA, C, IB are collinear and the triangle PIAIB is isosceles because
∠PIAC = ∠PIBC = ∠C/2. Likewise we have PIA = PIC and so PIA = PIB = PIC . Thus
P is the circumcentre of the triangle IAIBIC .

Comment 1. The conclusion is true even if the point P lies outside the triangle ABC.

Comment 2. In fact, the common value of AP 2 + PD2, BP 2 + PE2, CP 2 + PF 2 is equal
to 8R2− s2, where R is the circumradius of the triangle ABC and s = (BC + CA + AB)/2.
We can prove this as follows:

Observe that the circumradius of the triangle IAIBIC is equal to 2R since its orthic
triangle is ABC. It follows that PD = PIA −DIA = 2R− rA, where rA is the radius of the
excircle of the triangle ABC opposite to A. Putting rB and rC in a similar manner, we have
PE = 2R− rB and PF = 2R− rC . Now we have

AP 2 + PD2 = AE2 + PE2 + PD2 = (s− c)2 + (2R− rB)2 + (2R− rA)2.

Since

(2R− rA)2 = 4R2 − 4RrA + r2
A

= 4R2 − 4 · abc

4 area(4ABC)
· area(4ABC)

s− a
+

(
area(4ABC)

s− a

)2

= 4R2 +
s(s− b)(s− c)− abc

s− a

= 4R2 + bc− s2

and we can obtain (2R− rB)2 = 4R2 + ca− s2 in a similar way, it follows that

AP 2 + PD2 = (s− c)2 + (4R2 + ca− s2) + (4R2 + bc− s2) = 8R2 − s2.
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G4. Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are externally tangent at P , and
Γ2, Γ4 are externally tangent at the same point P . Suppose that Γ1 and Γ2; Γ2 and Γ3; Γ3

and Γ4; Γ4 and Γ1 meet at A, B, C, D, respectively, and that all these points are different
from P .

Prove that
AB ·BC

AD ·DC
=

PB2

PD2
.

Solution 1.

Figure 1

Γ1

Γ4

Γ3

Γ2P

B

A

D

C

θ8

θ7

θ5θ6

θ3θ4

θ2

θ1

Let Q be the intersection of the line AB and the common tangent of Γ1 and Γ3. Then

∠APB = ∠APQ + ∠BPQ = ∠PDA + ∠PCB.

Define θ1, . . . , θ8 as in Figure 1. Then

θ2 + θ3 + ∠APB = θ2 + θ3 + θ5 + θ8 = 180◦. (1)

Similarly, ∠BPC = ∠PAB + ∠PDC and

θ4 + θ5 + θ2 + θ7 = 180◦. (2)

Multiply the side-lengths of the triangles PAB, PBC, PCD, PAD by PC ·PD, PD ·PA,
PA · PB, PB · PC, respectively, to get the new quadrilateral A′B′C ′D′ as in Figure 2.
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Figure 2

PD · PA · PB

PB · PC · PD

CD · PA · PB

D′

C ′ B′

A′

PC · PD · PA

AB · PC · PD

DA · PB · PC

PA · PB · PC

BC · PD · PA

θ8

θ7

θ6

θ5

θ1
θ3

θ2

θ4

P ′

(1) and (2) show that A′D′ ‖ B′C ′ and A′B′ ‖ C ′D′. Thus the quadrilateral A′B′C ′D′

is a parallelogram. It follows that A′B′ = C ′D′ and A′D′ = C ′B′, that is, AB · PC · PD =
CD · PA · PB and AD · PB · PC = BC · PA · PD, from which we see that

AB ·BC

AD ·DC
=

PB2

PD2
.

Solution 2. Let O1, O2, O3, O4 be the centres of Γ1, Γ2, Γ3, Γ4, respectively, and let A′,
B′, C ′, D′ be the midpoints of PA, PB, PC, PD, respectively. Since Γ1, Γ3 are externally
tangent at P , it follows that O1, O3, P are collinear. Similarly we see that O2, O4, P are
collinear.

O1

O2 O3

O4

A′

B′

C ′

D′

φ1

θ1

φ2
θ2 φ3

θ3

φ4

θ4

P

Put θ1 = ∠O4O1O2, θ2 = ∠O1O2O3, θ3 = ∠O2O3O4, θ4 = ∠O3O4O1 and φ1 = ∠PO1O4,
φ2 = ∠PO2O3, φ3 = ∠PO3O2, φ4 = ∠PO4O1. By the law of sines, we have

O1O2 : O1O3 = sin φ3 : sin θ2, O3O4 : O2O4 = sin φ2 : sin θ3,

O3O4 : O1O3 = sin φ1 : sin θ4, O1O2 : O2O4 = sin φ4 : sin θ1.

Since the segment PA is the common chord of Γ1 and Γ2, the segment PA′ is the altitude
from P to O1O2. Similarly PB′, PC ′, PD′ are the altitudes from P to O2O3, O3O4, O4O1,
respectively. Then O1, A′, P , D′ are concyclic. So again by the law of sines, we have

D′A′ : PD′ = sin θ1 : sin φ1.
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Likewise we have

A′B′ : PB′ = sin θ2 : sin φ2, B′C ′ : PB′ = sin θ3 : sin φ3, C ′D′ : PD′ = sin θ4 : sin φ4.

Since A′B′ = AB/2, B′C ′ = BC/2, C ′D′ = CD/2, D′A′ = DA/2, PB′ = PB/2, PD′ =
PD/2, we have

AB ·BC

AD ·DC
· PD2

PB2
=

A′B′ ·B′C ′

A′D′ ·D′C ′ ·
PD′2

PB′2 =
sin θ2 sin θ3 sin φ4 sin φ1

sin φ2 sin φ3 sin θ4 sin θ1

=
O1O3

O1O2

· O2O4

O3O4

· O1O2

O2O4

· O3O4

O1O3

= 1

and the conclusion follows.

Comment. It is not necessary to assume that Γ1, Γ3 and Γ2, Γ4 are externally tangent.
We may change the first sentence in the problem to the following:

Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are tangent at P , and Γ2, Γ4

are tangent at the same point P .

The following two solutions are valid for the changed version.

Solution 3.

Γ1

Γ2

Γ3

Γ4

O1

O2

O3

O4

A

BC

D

P

Let Oi and ri be the centre and the signed radius of Γi, i = 1, 2, 3, 4. We may assume
that r1 > 0. If O1, O3 are in the same side of the common tangent, then we have r3 > 0;
otherwise we have r3 < 0.

Put θ = ∠O1PO2. We have ∠OiPOi+1 = θ or 180◦ − θ, which shows that

sin ∠OiPOi+1 = sin θ. (1)
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Since PB ⊥ O2O3 and 4PO2O3 ≡ 4BO2O3, we have

1

2
· 1

2
·O2O3 · PB = area(4PO2O3) =

1

2
· PO2 · PO3 · sin θ =

1

2
|r2||r3| sin θ.

It follows that

PB =
2|r2||r3| sin θ

O2O3

. (2)

Because the triangle O2AB is isosceles, we have

AB = 2|r2| sin ∠AO2B

2
. (3)

Since ∠O1O2P = ∠O1O2A and ∠O3O2P = ∠O3O2B, we have

sin(∠AO2B/2) = sin ∠O1O2O3.

Therefore, keeping in mind that

1

2
·O1O2 ·O2O3 · sin ∠O1O2O3 = area(4O1O2O3) =

1

2
·O1O3 · PO2 · sin θ

=
1

2
|r1 − r3||r2| sin θ,

we have

AB = 2|r2| |r1 − r3||r2| sin θ

O1O2 ·O2O3

by (3).

Likewise, by (1), (2), (4), we can obtain the lengths of PD, BC, CD, DA and compute
as follows:

AB ·BC

CD ·DA
=

2|r1 − r3|r2
2 sin θ

O1O2 ·O2O3

· 2|r2 − r4|r2
3 sin θ

O2O3 ·O3O4

· O3O4 ·O4O1

2|r1 − r3|r2
4 sin θ

· O4O1 ·O1O2

2|r2 − r4|r2
1 sin θ

=

(
2|r2||r3| sin θ

O2O3

)2(
O4O1

2|r4||r1| sin θ

)2

=
PB2

PD2
.

Solution 4. Let l1 be the common tangent of the circles Γ1 and Γ3 and let l2 be that of Γ2

and Γ4. Set the coordinate system as in the following figure.
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C

Γ4

x

y

D

Γ3

Γ2

B

A

Γ1

θ

θ

We may assume that

Γ1 : x2 + y2 + 2ax sin θ − 2ay cos θ = 0, Γ2 : x2 + y2 + 2bx sin θ + 2by cos θ = 0,

Γ3 : x2 + y2 − 2cx sin θ + 2cy cos θ = 0, Γ4 : x2 + y2 − 2dx sin θ − 2dy cos θ = 0.

Simple computation shows that

A

(
−4ab(a + b) sin θ cos2 θ

a2 + b2 + 2ab cos 2θ
,−4ab(a− b) sin2 θ cos θ

a2 + b2 + 2ab cos 2θ

)
,

B

(
4bc(b− c) sin θ cos2 θ

b2 + c2 − 2bc cos 2θ
,−4bc(b + c) sin2 θ cos θ

b2 + c2 − 2bc cos 2θ

)
,

C

(
4cd(c + d) sin θ cos2 θ

c2 + d2 + 2cd cos 2θ
,
4cd(c− d) sin2 θ cos θ

c2 + d2 + 2cd cos 2θ

)
,

D

(
−4da(d− a) sin θ cos2 θ

d2 + a2 − 2da cos 2θ
,
4da(d + a) sin2 θ cos θ

d2 + a2 − 2da cos 2θ

)
.
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Slightly long computation shows that

AB =
4b2|a + c| sin θ cos θ√

(a2 + b2 + 2ab cos 2θ)(b2 + c2 − 2bc cos 2θ)
,

BC =
4c2|b + d| sin θ cos θ√

(b2 + c2 − 2bc cos 2θ)(c2 + d2 + 2cd cos 2θ)
,

CD =
4d2|c + a| sin θ cos θ√

(c2 + d2 + 2cd cos 2θ)(d2 + a2 − 2da cos 2θ)
,

DA =
4a2|d + b| sin θ cos θ√

(d2 + a2 − 2da cos 2θ)(a2 + b2 + 2ab cos 2θ)
,

which implies
AB ·BC

AD ·DC
=

b2c2(d2 + a2 − 2da cos 2θ)

d2a2(b2 + c2 − 2bc cos 2θ)
.

On the other hand, we have

MB =
4|b||c| sin θ cos θ√
b2 + c2 − 2bc cos 2θ

and MD =
4|d||a| sin θ cos θ√

d2 + a2 − 2da cos 2θ
,

which implies
MB2

MD2
=

b2c2(d2 + a2 − 2da cos 2θ)

d2a2(b2 + c2 − 2bc cos 2θ)
.

Hence we obtain
AB ·BC

AD ·DC
=

MB2

MD2
.
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G5. Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be
a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines
through P parallel to CA and CB meet AB at D and E, respectively. The line through P
parallel to AB meets CA and CB at F and G, respectively. Prove that the lines DF and
EG intersect on the circumcircle of the triangle ABC.

Solution 1.

C

G

B

Q

D

I

A

F

E

P

The corresponding sides of the triangles PDE and CFG are parallel. Therefore, if DF
and EG are not parallel, then they are homothetic, and so DF , EG, CP are concurrent at
the centre of the homothety. This observation leads to the following claim:

Claim. Suppose that CP meets again the circumcircle of the triangle ABC at Q. Then
Q is the intersection of DF and EG.

Proof. Since ∠AQP = ∠ABC = ∠BAC = ∠PFC, it follows that the quadrilateral
AQPF is cyclic, and so ∠FQP = ∠PAF . Since ∠IBA = ∠CBA/2 = ∠CAB/2 = ∠IAC,
the circumcircle of the triangle AIB is tangent to CA at A, which implies that ∠PAF =
∠DBP . Since ∠QBD = ∠QCA = ∠QPD, it follows that the quadrilateral DQBP is
cyclic, and so ∠DBP = ∠DQP . Thus ∠FQP = ∠PAF = ∠DBP = ∠DQP , which
implies that F , D, Q are collinear. Analogously we obtain that G, E, Q are collinear.

Hence the lines DF , EG, CP meet the circumcircle of the triangle ABC at the same
point.
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Solution 2.

C(0, c)

G

B(1, 0)D

I(0, α)

A(−1, 0)

F

E

P

y

x

O1(0, β)

Set the coordinate system so that A(−1, 0), B(1, 0), C(0, c). Suppose that I(0, α).

Since

area(4ABC) =
1

2
(AB + BC + CA)α,

we obtain
α =

c

1 +
√

1 + c2
.

Suppose that O1(0, β) is the centre of the circumcircle Γ1 of the triangle AIB. Since

(β − α)2 = O1I
2 = O1A

2 = 1 + β2,

we have β = −1/c and so Γ1 : x2 + (y + 1/c)2 = 1 + (1/c)2.

Let P (p, q). Since D(p − q/c, 0), E(p + q/c, 0), F (q/c − 1, q), G(−q/c + 1, q), it follows
that the equations of the lines DF and EG are

y =
q

2q
c
− p− 1

(
x−

(
p− q

c

))
and y =

q

−2q
c
− p + 1

(
x−

(
p +

q

c

))
,

respectively. Therefore the intersection Q of these lines is
(
(q − c)p/(2q − c), q2/(2q − c)

)
.

Let O2(0, γ) be the circumcentre of the triangle ABC. Then γ = (c2 − 1)/2c since
1 + γ2 = O2A

2 = O2C
2 = (γ − c)2.

Note that p2 + (q + 1/c)2 = 1 + (1/c)2 since P (p, q) is on the circle Γ1. It follows that

O2Q
2 =

(
q − c

2q − c

)2

p2 +

(
q2

2q − c
− c2 − 1

2c

)2

=

(
c2 + 1

2c

)2

= O2C
2,

which shows that Q is on the circumcircle of the triangle ABC.

Comment. The point P can be any point on the circumcircle of the triangle AIB other
than A and B; that is, P need not lie inside the triangle ABC.
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G6. Each pair of opposite sides of a convex hexagon has the following property:

the distance between their midpoints is equal to
√

3/2 times the sum of their
lengths.

Prove that all the angles of the hexagon are equal.

Solution 1. We first prove the following lemma:

Lemma. Consider a triangle PQR with ∠QPR ≥ 60◦. Let L be the midpoint of QR.
Then PL ≤ √

3 QR/2, with equality if and only if the triangle PQR is equilateral.

Proof.

Q

P

S

RL

Let S be the point such that the triangle QRS is equilateral, where the points P and
S lie in the same half-plane bounded by the line QR. Then the point P lies inside the
circumcircle of the triangle QRS, which lies inside the circle with centre L and radius√

3 QR/2. This completes the proof of the lemma.

B M
A

F
P

END

C
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The main diagonals of a convex hexagon form a triangle though the triangle can be
degenerated. Thus we may choose two of these three diagonals that form an angle greater
than or equal to 60◦. Without loss of generality, we may assume that the diagonals AD and
BE of the given hexagon ABCDEF satisfy ∠APB ≥ 60◦, where P is the intersection of
these diagonals. Then, using the lemma, we obtain

MN =

√
3

2
(AB + DE) ≥ PM + PN ≥ MN,

where M and N are the midpoints of AB and DE, respectively. Thus it follows from the
lemma that the triangles ABP and DEP are equilateral.

Therefore the diagonal CF forms an angle greater than or equal to 60◦ with one of the
diagonals AD and BE. Without loss of generality, we may assume that ∠AQF ≥ 60◦, where
Q is the intersection of AD and CF . Arguing in the same way as above, we infer that the
triangles AQF and CQD are equilateral. This implies that ∠BRC = 60◦, where R is the
intersection of BE and CF . Using the same argument as above for the third time, we obtain
that the triangles BCR and EFR are equilateral. This completes the solution.

Solution 2. Let ABCDEF be the given hexagon and let a =
−→
AB, b =

−−→
BC, . . . , f =

−→
FA.

B

C

D E

F

A
M

N

f

e

d

c

b

a

Let M and N be the midpoints of the sides AB and DE, respectively. We have

−−→
MN =

1

2
a + b + c +

1

2
d and

−−→
MN = −1

2
a− f − e− 1

2
d.

Thus we obtain −−→
MN =

1

2
(b + c− e− f). (1)

From the given property, we have

−−→
MN =

√
3

2

(|a|+ |d|) ≥
√

3

2
|a− d|. (2)

Set x = a− d, y = c− f , z = e− b. From (1) and (2), we obtain

|y − z| ≥
√

3 |x|. (3)

Similarly we see that

|z − x| ≥
√

3 |y|, (4)

|x− y| ≥
√

3 |z|. (5)
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Note that

(3) ⇐⇒ |y|2 − 2y · z + |z|2 ≥ 3|x|2,
(4) ⇐⇒ |z|2 − 2z · x + |x|2 ≥ 3|y|2,
(5) ⇐⇒ |x|2 − 2x · y + |y|2 ≥ 3|z|2.

By adding up the last three inequalities, we obtain

−|x|2 − |y|2 − |z|2 − 2y · z − 2z · x− 2x · y ≥ 0,

or −|x + y + z|2 ≥ 0. Thus x + y + z = 0 and the equalities hold in all inequalities above.
Hence we conclude that

x + y + z = 0,

|y − z| =
√

3 |x|, a ‖ d ‖ x,

|z − x| =
√

3 |y|, c ‖ f ‖ y,

|x− y| =
√

3 |z|, e ‖ b ‖ z.

Suppose that PQR is the triangle such that
−→
PQ = x,

−→
QR = y,

−→
RP = z. We may

assume ∠QPR ≥ 60◦, without loss of generality. Let L be the midpoint of QR, then
PL = |z − x|/2 =

√
3 |y|/2 =

√
3 QR/2. It follows from the lemma in Solution 1 that the

triangle PQR is equilateral. Thus we have ∠ABC = ∠BCD = · · · = ∠FAB = 120◦.

Comment. We have obtained the complete characterisation of the hexagons satisfying the
given property. They are all obtained from an equilateral triangle by cutting its ‘corners’ at
the same height.
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G7. Let ABC be a triangle with semiperimeter s and inradius r. The semicircles with
diameters BC, CA, AB are drawn on the outside of the triangle ABC. The circle tangent
to all three semicircles has radius t. Prove that

s

2
< t ≤ s

2
+

(
1−

√
3

2

)
r.

Solution 1.

A

B C

d′

D

E′

F ′

F
E

f

f ′

e

d

D′

F ′′
E′′

D′′
O

e′

Let O be the centre of the circle and let D, E, F be the midpoints of BC, CA, AB,
respectively. Denote by D′, E ′, F ′ the points at which the circle is tangent to the semicircles.
Let d′, e′, f ′ be the radii of the semicircles. Then all of DD′, EE ′, FF ′ pass through O, and
s = d′ + e′ + f ′.

Put

d =
s

2
− d′ =

−d′ + e′ + f ′

2
, e =

s

2
− e′ =

d′ − e′ + f ′

2
, f =

s

2
− f ′ =

d′ + e′ − f ′

2
.

Note that d + e + f = s/2. Construct smaller semicircles inside the triangle ABC with
radii d, e, f and centres D, E, F . Then the smaller semicircles touch each other, since
d + e = f ′ = DE, e + f = d′ = EF , f + d = e′ = FD. In fact, the points of tangency are
the points where the incircle of the triangle DEF touches its sides.

Suppose that the smaller semicircles cut DD′, EE ′, FF ′ at D′′, E ′′, F ′′, respectively.
Since these semicircles do not overlap, the point O is outside the semicircles. Therefore
D′O > D′D′′, and so t > s/2. Put g = t− s/2.

Clearly, OD′′ = OE ′′ = OF ′′ = g. Therefore the circle with centre O and radius g
touches all of the three mutually tangent semicircles.

Claim. We have
1

d2
+

1

e2
+

1

f 2
+

1

g2
=

1

2

(
1

d
+

1

e
+

1

f
+

1

g

)2

.
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Proof. Consider a triangle PQR and let p = QR, q = RP , r = PQ. Then

cos ∠QPR =
−p2 + q2 + r2

2qr

and

sin ∠QPR =

√
(p + q + r)(−p + q + r)(p− q + r)(p + q − r)

2qr
.

Since

cos ∠EDF = cos(∠ODE + ∠ODF ) = cos ∠ODE cos ∠ODF − sin ∠ODE sin ∠ODF,

we have

d2 + de + df − ef

(d + e)(d + f)
=

(d2 + de + dg − eg)(d2 + df + dg − fg)

(d + g)2(d + e)(d + f)

− 4dg
√

(d + e + g)(d + f + g)ef

(d + g)2(d + e)(d + f)
,

which simplifies to

(d + g)

(
1

d
+

1

e
+

1

f
+

1

g

)
− 2

(
d

g
+ 1 +

g

d

)
= −2

√
(d + e + g)(d + f + g)

ef
.

Squaring and simplifying, we obtain

(
1

d
+

1

e
+

1

f
+

1

g

)2

= 4

(
1

de
+

1

df
+

1

dg
+

1

ef
+

1

eg
+

1

fg

)

= 2

((
1

d
+

1

e
+

1

f
+

1

g

)2

−
(

1

d2
+

1

e2
+

1

f 2
+

1

g2

))
,

from which the conclusion follows.

Solving for the smaller value of g, i.e., the larger value of 1/g, we obtain

1

g
=

1

d
+

1

e
+

1

f
+

√
2

(
1

d
+

1

e
+

1

f

)2

− 2

(
1

d2
+

1

e2
+

1

f 2

)

=
1

d
+

1

e
+

1

f
+ 2

√
d + e + f

def
.

Comparing the formulas area(4DEF ) = area(4ABC)/4 = rs/4 and area(4DEF ) =√
(d + e + f)def , we have

r

2
=

2

s

√
(d + e + f)def =

√
def

d + e + f
.

All we have to prove is that

r

2g
≥ 1

2−√3
= 2 +

√
3.
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Since

r

2g
=

√
def

d + e + f

(
1

d
+

1

e
+

1

f
+ 2

√
d + e + f

def

)
=

x + y + z√
xy + yz + zx

+ 2,

where x = 1/d, y = 1/e, z = 1/f , it suffices to prove that

(x + y + z)2

xy + yz + zx
≥ 3.

This inequality is true because

(x + y + z)2 − 3(xy + yz + zx) =
1

2

(
(x− y)2 + (y − z)2 + (z − x)2

) ≥ 0.

Solution 2. We prove that t > s/2 in the same way as in Solution 1. Put g = t− s/2.

e
f

d

D

ΓdΓe

Γf

FE
(−e, 0) (f, 0)

gr/2
Γr/2

Γg

Now set the coordinate system so that E(−e, 0), F (f, 0), and the y-coordinate of D is
positive. Let Γd, Γe, Γf , Γg be the circles with radii d, e, f , g and centres D, E, F , O,
respectively. Let Γr/2 be the incircle of the triangle DEF . Note that the radius of Γr/2 is
r/2.

Now consider the inversion with respect to the circle with radius 1 and centre (0, 0).
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2β−2α

1/r

Γ′d

Γ′g

Γ′fΓ′e

Γ′r/2

Let Γ′d, Γ′e, Γ′f , Γ′g, Γ′r/2 be the images of Γd, Γe, Γf , Γg, Γr/2, respectively. Set α = 1/4e,

β = 1/4f and R = α + β. The equations of the lines Γ′e, Γ′f and Γ′r/2 are x = −2α, x = 2β

and y = 1/r, respectively. Both of the radii of the circles Γ′d and Γ′g are R, and their centres
are (−α + β, 1/r) and (−α + β, 1/r + 2R), respectively.

Let D be the distance between (0, 0) and the centre of Γ′g. Then we have

2g =
1

D −R
− 1

D + R
=

2R

D2 −R2
,

which shows g = R/(D2 −R2).

What we have to show is g ≤ (
1 −√3/2

)
r, that is

(
4 + 2

√
3
)
g ≤ r. This is verified by

the following computation:

r − (
4 + 2

√
3
)
g = r − (

4 + 2
√

3
) R

D2 −R2
=

r

D2 −R2

(
(D2 −R2)− (

4 + 2
√

3
)1

r
R

)

=
r

D2 −R2

((
1

r
+ 2R

)2

+ (α− β)2 −R2 − (
4 + 2

√
3
)1

r
R

)

=
r

D2 −R2

(
3

(
R− 1√

3 r

)2

+ (α− β)2

)

≥ 0.
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Number Theory

N1. Let m be a fixed integer greater than 1. The sequence x0, x1, x2, . . . is defined as
follows:

xi =

{
2i, if 0 ≤ i ≤ m− 1;∑m

j=1 xi−j, if i ≥ m.

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

Solution. Let ri be the remainder of xi mod m. Then there are at most mm types of m-
consecutive blocks in the sequence (ri). So, by the pigeonhole principle, some type reappears.
Since the definition formula works forward and backward, the sequence (ri) is purely periodic.

Now the definition formula backward xi = xi+m − ∑m−1
j=1 xi+j applied to the block

(r0, . . . , rm−1) produces the m-consecutive block 0, . . . , 0︸ ︷︷ ︸
m−1

, 1. Together with the pure peri-

odicity, we see that max k ≥ m− 1.

On the other hand, if there are m-consecutive zeroes in (ri), then the definition formula
and the pure periodicity force ri = 0 for any i ≥ 0, a contradiction. Thus max k = m− 1.
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N2. Each positive integer a undergoes the following procedure in order to obtain the num-
ber d = d(a):

(i) move the last digit of a to the first position to obtain the number b;

(ii) square b to obtain the number c;

(iii) move the first digit of c to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10.) For example,
for a = 2003, we get b = 3200, c = 10240000, and d = 02400001 = 2400001 = d(2003).

Find all numbers a for which d(a) = a2.

Solution. Let a be a positive integer for which the procedure yields d = d(a) = a2. Further
assume that a has n + 1 digits, n ≥ 0.

Let s be the last digit of a and f the first digit of c. Since (∗ · · · ∗ s)2 = a2 = d = ∗ · · · ∗ f
and (s ∗ · · · ∗)2 = b2 = c = f ∗ · · · ∗, where the stars represent digits that are unimportant at
the moment, f is both the last digit of the square of a number that ends in s and the first
digit of the square of a number that starts in s.

The square a2 = d must have either 2n + 1 or 2n + 2 digits. If s = 0, then n 6= 0, b has n
digits, its square c has at most 2n digits, and so does d, a contradiction. Thus the last digit
of a is not 0.

Consider now, for example, the case s = 4. Then f must be 6, but this is impossible,
since the squares of numbers that start in 4 can only start in 1 or 2, which is easily seen
from

160 · · · 0 = (40 · · · 0)2 ≤ (4 ∗ · · · ∗)2 < (50 · · · 0)2 = 250 · · · 0.
Thus s cannot be 4.

The following table gives all possibilities:

s 1 2 3 4 5 6 7 8 9
f = last digit of (· · · s)2 1 4 9 6 5 6 9 4 1
f = first digit of (s · · · )2 1, 2, 3 4, 5, 6, 7, 8 9, 1 1, 2 2, 3 3, 4 4, 5, 6 6, 7, 8 8, 9

Thus s = 1, s = 2, or s = 3 and in each case f = s2. When s is 1 or 2, the square c = b2 of
the (n + 1)-digit number b which starts in s has 2n + 1 digits. Moreover, when s = 3, the
square c = b2 either has 2n + 1 digits and starts in 9 or has 2n + 2 digits and starts in 1.
However the latter is impossible since f = s2 = 9. Thus c must have 2n + 1 digits.

Let a = 10x + s, where x is an n-digit number (in case x = 0 we set n = 0). Then

b = 10ns + x,

c = 102ns2 + 2 · 10nsx + x2,

d = 10(c− 10m−1f) + f = 102n+1s2 + 20 · 10nsx + 10x2 − 10mf + f,

where m is the number of digits of c. However, we already know that m must be 2n + 1 and
f = s2, so

d = 20 · 10nsx + 10x2 + s2
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and the equality a2 = d yields

x = 2s · 10n − 1

9
,

i.e.,
a = 6 · · · 6︸ ︷︷ ︸

n

3 or a = 4 · · · 4︸ ︷︷ ︸
n

2 or a = 2 · · · 2︸ ︷︷ ︸
n

1,

for n ≥ 0. The first two possibilities must be rejected for n ≥ 1, since a2 = d would have
2n + 2 digits, which means that c would have to have at least 2n + 2 digits, but we already
know that c must have 2n + 1 digits. Thus the only remaining possibilities are

a = 3 or a = 2 or a = 2 · · · 2︸ ︷︷ ︸
n

1,

for n ≥ 0. It is easily seen that they all satisfy the requirements of the problem.
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N3. Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer.

Solution. Let (a, b) be a pair of positive integers satisfying the condition. Because k =
a2/(2ab2− b3 +1) > 0, we have 2ab2− b3 +1 > 0, a > b/2− 1/2b2, and hence a ≥ b/2. Using
this, we infer from k ≥ 1, or a2 ≥ b2(2a− b) + 1, that a2 > b2(2a− b) ≥ 0. Hence

a > b or 2a = b. (∗)

Now consider the two solutions a1, a2 to the equation

a2 − 2kb2a + k(b3 − 1) = 0 (])

for fixed positive integers k and b, and assume that one of them is an integer. Then the
other is also an integer because a1 + a2 = 2kb2. We may assume that a1 ≥ a2, and we have
a1 ≥ kb2 > 0. Furthermore, since a1a2 = k(b3 − 1), we get

0 ≤ a2 =
k(b3 − 1)

a1

≤ k(b3 − 1)

kb2
< b.

Together with (∗), we conclude that a2 = 0 or a2 = b/2 (in the latter case b must be even).

If a2 = 0, then b3 − 1 = 0, and hence a1 = 2k, b = 1.

If a2 = b/2, then k = b2/4 and a1 = b4/2− b/2.

Therefore the only possibilities are

(a, b) = (2l, 1) or (l, 2l) or (8l4 − l, 2l)

for some positive integer l. All of these pairs satisfy the given condition.

Comment 1. An alternative way to see (∗) is as follows: Fix a ≥ 1 and consider the
function fa(b) = 2ab2−b3+1. Then fa is increasing on [0, 4a/3] and decreasing on [4a/3,∞).
We have

fa(a) = a3 + 1 > a2,

fa(2a− 1) = 4a2 − 4a + 2 > a2,

fa(2a + 1) = −4a2 − 4a < 0.

Hence if b ≥ a and a2/fa(b) is a positive integer, then b = 2a.

Indeed, if a ≤ b ≤ 4a/3, then fa(b) ≥ fa(a) > a2, and so a2/fa(b) is not an integer, a
contradiction, and if b > 4a/3, then

(i) if b ≥ 2a + 1, then fa(b) ≤ fa(2a + 1) < 0, a contradiction;

(ii) if b ≤ 2a − 1, then fa(b) ≥ fa(2a − 1) > a2, and so a2/fa(b) is not an integer, a
contradiction.
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Comment 2. There are several alternative solutions to this problem. Here we sketch three
of them.

1. The discriminant D of the equation (]) is the square of some integer d ≥ 0: D =
(2b2k − b)2 + 4k − b2 = d2. If e = 2b2k − b = d, we have 4k = b2 and a = 2b2k − b/2, b/2.
Otherwise, the clear estimation |d2− e2| ≥ 2e− 1 for d 6= e implies |4k− b2| ≥ 4b2k− 2b− 1.
If 4k − b2 > 0, this implies b = 1. The other case yields no solutions.

2. Assume that b 6= 1 and let s = gcd(2a, b3−1), 2a = su, b3−1 = st′, and 2ab2−b3+1 = st.
Then t + t′ = ub2 and gcd(u, t) = 1. Together with st | a2, we have t | s. Let s = rt. Then
the problem reduces to the following lemma:

Lemma. Let b, r, t, t′, u be positive integers satisfying b3 − 1 = rtt′ and t + t′ = ub2.
Then r = 1. Furthermore, either one of t or t′ or u is 1.

The lemma is proved as follows. We have b3 − 1 = rt(ub2 − t) = rt′(ub2 − t′). Since
rt2 ≡ rt′2 ≡ 1 (mod b2), if rt2 6= 1 and rt′2 6= 1, then t, t′ > b/

√
r. It is easy to see that

r
b√
r

(
ub2 − b√

r

)
≥ b3 − 1,

unless r = u = 1.

3. With the same notation as in the previous solution, since rt2 | (b3 − 1)2, it suffices to
prove the following lemma:

Lemma. Let b ≥ 2. If a positive integer x ≡ 1 (mod b2) divides (b3 − 1)2, then x = 1 or
x = (b3 − 1)2 or (b, x) = (4, 49) or (4, 81).

To prove this lemma, let p, q be positive integers with p > q > 0 satisfying (b3 − 1)2 =
(pb2 + 1)(qb2 + 1). Then

b4 = 2b + p + q + pqb2. (1)

A natural observation leads us to multiply (1) by qb2 − 1. We get

(
q(pq − b2) + 1

)
b4 = p− (q + 2b)(qb2 − 1).

Together with the simple estimation

−3 <
p− (q + 2b)(qb2 − 1)

b4
< 1,

the conclusion of the lemma follows.

Comment 3. The problem was originally proposed in the following form:

Let a, b be relatively prime positive integers. Suppose that a2/(2ab2 − b3 + 1)
is a positive integer greater than 1. Prove that b = 1.
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N4. Let b be an integer greater than 5. For each positive integer n, consider the number

xn = 11 · · · 1︸ ︷︷ ︸
n−1

22 · · · 2︸ ︷︷ ︸
n

5,

written in base b.

Prove that the following condition holds if and only if b = 10:

there exists a positive integer M such that for any integer n greater than M , the
number xn is a perfect square.

Solution. For b = 6, 7, 8, 9, the number 5 is congruent to no square numbers modulo b, and

hence xn is not a square. For b = 10, we have xn =
(
(10n + 5)/3

)2
for all n. By algebraic

calculation, it is easy to see that xn = (b2n + bn+1 + 3b− 5)/(b− 1).

Consider now the case b ≥ 11 and put yn = (b − 1)xn. Assume that the condition in
the problem is satisfied. Then it follows that ynyn+1 is a perfect square for n > M . Since
b2n + bn+1 + 3b− 5 < (bn + b/2)2, we infer

ynyn+1 <

(
bn +

b

2

)2(
bn+1 +

b

2

)2

=

(
b2n+1 +

bn+1(b + 1)

2
+

b2

4

)2

. (1)

On the other hand, we can prove by computation that

ynyn+1 >

(
b2n+1 +

bn+1(b + 1)

2
− b3

)2

. (2)

From (1) and (2), we conclude that for all integers n > M , there is an integer an such
that

ynyn+1 =

(
b2n+1 +

bn+1(b + 1)

2
+ an

)2

and − b3 < an <
b2

4
. (3)

It follows that bn | (
a2

n − (3b − 5)2
)
, and thus an = ±(3b − 5) for all sufficiently large n.

Substituting in (3), we obtain an = 3b− 5 and

8(3b− 5)b + b2(b + 1)2 = 4b3 + 4(3b− 5)(b2 + 1). (4)

The left hand side of the equation (4) is divisible by b. The other side is a polynomial in
b with integral coefficients and its constant term is −20. Hence b must divide 20. Since
b ≥ 11, we conclude that b = 20, but then xn ≡ 5 (mod 8) and hence xn is not a square.

Comment. Here is a shorter solution using a limit argument:

Assume that xn is a square for all n > M , where M is a positive integer.

For n > M , take yn =
√

xn ∈ N. Clearly,

lim
n→∞

b2n

b−1

xn

= 1.

Hence

lim
n→∞

bn√
b−1

yn

= 1.
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On the other hand,

(byn + yn+1)(byn − yn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b− 5. (∗)

These equations imply

lim
n→∞

(byn − yn+1) =
b
√

b− 1

2
.

As byn − yn+1 is an integer, there exists N > M such that byn − yn+1 = b
√

b− 1/2 for
any n > N . This means that b− 1 is a perfect square.

If b is odd, then
√

b− 1/2 is an integer and so b divides b
√

b− 1/2. Hence using (∗), we
obtain b | 5. This is a contradiction.

If b is even, then b/2 divides 5. Hence b = 10.

In the case b = 10, we have xn =
(
(10n + 5)/3

)2
for n ≥ 1.
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N5. An integer n is said to be good if |n| is not the square of an integer. Determine all
integers m with the following property:

m can be represented, in infinitely many ways, as a sum of three distinct good
integers whose product is the square of an odd integer.

Solution. Assume that m is expressed as m = u+v +w and uvw is an odd perfect square.
Then u, v, w are odd and because uvw ≡ 1 (mod 4), exactly two or none of them are
congruent to 3 modulo 4. In both cases, we have m = u + v + w ≡ 3 (mod 4).

Conversely, we prove that 4k + 3 has the required property. To prove this, we look for
representations of the form

4k + 3 = xy + yz + zx.

In any such representations, the product of the three summands is a perfect square. Setting
x = 1 + 2l and y = 1− 2l, we have z = 2l2 + 2k + 1 from above. Then

xy = 1− 4l2 = f(l),

yz = −4l3 + 2l2 − (4k + 2)l + 2k + 1 = g(l),

zx = 4l3 + 2l2 + (4k + 2)l + 2k + 1 = h(l).

The numbers f(l), g(l), h(l) are odd for each integer l and their product is a perfect square,
as noted above. They are distinct, except for finitely many l. It remains to note that |g(l)|
and |h(l)| are not perfect squares for infinitely many l (note that |f(l)| is not a perfect square,
unless l = 0).

Choose distinct prime numbers p, q such that p, q > 4k + 3 and pick l such that

1 + 2l ≡ 0 (mod p), 1 + 2l 6≡ 0 (mod p2),

1− 2l ≡ 0 (mod q), 1− 2l 6≡ 0 (mod q2).

We can choose such l by the Chinese remainder theorem. Then 2l2 + 2k + 1 is not divisible
by p, because p > 4k + 3. Hence |h(l)| is not a perfect square. Similarly, |g(l)| is not a
perfect square.
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N6. Let p be a prime number. Prove that there exists a prime number q such that for
every integer n, the number np − p is not divisible by q.

Solution. Since (pp− 1)/(p− 1) = 1 + p + p2 + · · ·+ pp−1 ≡ p + 1 (mod p2), we can get at
least one prime divisor of (pp − 1)/(p − 1) which is not congruent to 1 modulo p2. Denote
such a prime divisor by q. This q is what we wanted. The proof is as follows. Assume that
there exists an integer n such that np ≡ p (mod q). Then we have np2 ≡ pp ≡ 1 (mod q)
by the definition of q. On the other hand, from Fermat’s little theorem, nq−1 ≡ 1 (mod q),
because q is a prime. Since p2 - q− 1, we have (p2, q− 1) | p, which leads to np ≡ 1 (mod q).
Hence we have p ≡ 1 (mod q). However, this implies 1 + p + · · ·+ pp−1 ≡ p (mod q). From
the definition of q, this leads to p ≡ 0 (mod q), a contradiction.

Comment 1. First, students will come up, perhaps, with the idea that q has to be of the
form pk + 1. Then,

∃n np ≡ p (mod q) ⇐⇒ pk ≡ 1 (mod q),

i.e.,
∀n np 6≡ p (mod q) ⇐⇒ pk 6≡ 1 (mod q).

So, we have to find such q. These observations will take you quite naturally to the idea
of taking a prime divisor of pp − 1. Therefore the idea of the solution is not so tricky or
technical.

Comment 2. The prime q satisfies the required condition if and only if q remains a prime
in k = Q( p

√
p). By applying Chebotarev’s density theorem to the Galois closure of k, we

see that the set of such q has the density 1/p. In particular, there are infinitely many q
satisfying the required condition. This gives an alternative solution to the problem.
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N7. The sequence a0, a1, a2, . . . is defined as follows:

a0 = 2, ak+1 = 2a2
k − 1 for k ≥ 0.

Prove that if an odd prime p divides an, then 2n+3 divides p2 − 1.

Solution. By induction, we show that

an =

(
2 +

√
3
)2n

+
(
2−√3

)2n

2
.

Case 1: x2 ≡ 3 (mod p) has an integer solution

Let m be an integer such that m2 ≡ 3 (mod p). Then (2+m)2n
+(2−m)2n ≡ 0 (mod p).

Therefore (2+m)(2−m) ≡ 1 (mod p) shows that (2+m)2n+1 ≡ −1 (mod p) and that 2+m
has the order 2n+2 modulo p. This implies 2n+2 | (p− 1) and so 2n+3 | (p2 − 1).

Case 2: otherwise

Similarly, we see that there exist integers a, b satisfying
(
2 +

√
3
)2n+1

= −1 + pa + pb
√

3.

Furthermore, since
((

1 +
√

3
)
an−1

)2
= (an + 1)(2 +

√
3), there exist integers a′, b′ satisfying((

1 +
√

3
)
an−1

)2n+2

= −1 + pa′ + pb′
√

3.

Let us consider the set S = {i+j
√

3 | 0 ≤ i, j ≤ p−1, (i, j) 6= (0, 0)}. Let I =
{
a+b

√
3

∣∣
a ≡ b ≡ 0 (mod p)

}
. We claim that for each i + j

√
3 ∈ S, there exists an i′ + j′

√
3 ∈ S

satisfying
(
i + j

√
3
)(

i′ + j′
√

3
)− 1 ∈ I. In fact, since i2− 3j2 6≡ 0 (mod p) (otherwise 3 is a

square mod p), we can take an integer k satisfying k(i2 − 3j2)− 1 ∈ I. Then i′ + j′
√

3 with
i′ + j′

√
3 − k

(
i − j

√
3
) ∈ I will do. Now the claim together with the previous observation

implies that the minimal r with
((

1 +
√

3
)
an−1

)r − 1 ∈ I is equal to 2n+3. The claim also

implies that a map f : S −→ S satisfying
(
i + j

√
3
)(

1 +
√

3
)
an−1 − f

(
i + j

√
3
) ∈ I for any

i + j
√

3 ∈ S exists and is bijective. Thus
∏

x∈S x =
∏

x∈S f(x), so

(∏
x∈S

x

)(((
1 +

√
3
)
an−1

)p2−1 − 1
)
∈ I.

Again, by the claim, we have
((

1 +
√

3
)
an−1

)p2−1 − 1 ∈ I. Hence 2n+3 | (p2 − 1).

Comment 1. Not only Case 2 but also Case 1 can be treated by using
(
1 +

√
3
)
an−1. In

fact, we need not divide into cases: in any case, the element
(
1 +

√
3
)
an−1 =

(
1 +

√
3
)
/
√

2
of the multiplicative group F×p2 of the finite field Fp2 having p2 elements has the order 2n+3,

which suffices (in Case 1, the number
(
1 +

√
3
)
an−1 even belongs to the subgroup F×p of F×p2 ,

so 2n+3 | (p− 1)).

Comment 2. The numbers ak are the numerators of the approximation to
√

3 obtained
by using the Newton method with f(x) = x2 − 3, x0 = 2. More precisely,

xk+1 =
xk + 3

xk

2
, xk =

ak

dk

,
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where

dk =

(
2 +

√
3
)2k − (

2−√3
)2k

2
√

3
.

Comment 3. Define fn(x) inductively by

f0(x) = x, fk+1(x) = fk(x)2 − 2 for k ≥ 0.

Then the condition p | an can be read that the mod p reduction of the minimal polynomial
fn of the algebraic integer α = ζ2n+2 + ζ−1

2n+2 over Q has the root 2a0 in Fp, where ζ2n+2 is a
primitive 2n+2-th root of 1. Thus the conclusion (p2 − 1) | 2n+3 of the problem is a part of
the decomposition theorem in the class field theory applied to the abelian extension Q(α),
which asserts that a prime p is completely decomposed in Q(α) (equivalently, fn has a root
mod p) if and only if the class of p in (Z/2n+2Z)× belongs to its subgroup {1,−1}. Thus
the problem illustrates a result in the class field theory.
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N8. Let p be a prime number and let A be a set of positive integers that satisfies the
following conditions:

(i) the set of prime divisors of the elements in A consists of p− 1 elements;

(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A?

Solution. The answer is (p − 1)2. For simplicity, let r = p − 1. Suppose that the prime
numbers p1, . . . , pr are distinct. Define

Bi =
{
pi, p

p+1
i , p2p+1

i , . . . , p
(r−1)p+1
i

}
,

and let B =
⋃r

i=1 Bi. Then B has r2 elements and clearly satisfies (i) and (ii).

Now suppose that |A| ≥ r2 + 1 and that A satisfies (i) and (ii). We will show that a
(nonempty) product of elements in A is a perfect p-th power. This will complete the proof.

Let p1, . . . , pr be distinct prime numbers for which each t ∈ A can be written as t =
pa1

1 · · · par
r . Take t1, . . . , tr2+1 ∈ A, and for each i, let vi = (ai1, ai2, . . . , air) denote the vector

of exponents of prime divisors of ti. We would like to show that a (nonempty) sum of vi is
the zero vector modulo p.

We shall show that the following system of congruence equations has a nonzero solution:

F1 =
r2+1∑
i=1

ai1x
r
i ≡ 0 (mod p),

F2 =
r2+1∑
i=1

ai2x
r
i ≡ 0 (mod p),

...

Fr =
r2+1∑
i=1

airx
r
i ≡ 0 (mod p).

If (x1, . . . , xr2+1) is a nonzero solution to the above system, then, since xr
i ≡ 0 or 1 (mod p),

a sum of vectors vi is the zero vector modulo p.

In order to find a nonzero solution to the above system, it is enough to show that the
following congruence equation has a nonzero solution:

F = F r
1 + F r

2 + · · ·+ F r
r ≡ 0 (mod p). (∗)

In fact, because each F r
i is 0 or 1 modulo p, the nonzero solution to this equation (∗) has to

satisfy F r
i ≡ 0 for 1 ≤ i ≤ r.

We will show that the number of the solutions to the equation (∗) is divisible by p. Then
since (0, 0, . . . , 0) is a trivial solution, there exists a nonzero solution to (∗) and we are done.

We claim that ∑
F r(x1, . . . , xr2+1) ≡ 0 (mod p),
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where the sum is over the set of all vectors (x1, . . . , xr2+1) in the vector space Fr2+1
p over the

finite field Fp. By Fermat’s little theorem, this claim evidently implies that the number of
solutions to the equation (∗) is divisible by p.

We prove the claim. In each monomial in F r, there are at most r2 variables, and there-
fore at least one of the variables is absent. Suppose that the monomial is of the form
bxα1

i1
xα2

i2
· · ·xαk

ik
, where 1 ≤ k ≤ r2. Then

∑
bxα1

i1
xα2

i2
· · ·xαk

ik
, where the sum is over the same

set as above, is equal to pr2+1−k
∑

xi1
,...,xik

bxα1
i1

xα2
i2
· · ·xαk

ik
, which is divisible by p. This proves

the claim.

Comment. In general, if we replace p− 1 in (i) with any positive integer d, the answer is
(p− 1)d. In fact, if k > (p− 1)d, then the constant term of the element (1− g1) · · · (1− gk)
of the group algebra Qp(ζp)

[
(Z/pZ)d

]
can be evaluated p-adically so we see that it is not

equal to 1. Here g1, . . . , gk ∈ (Z/pZ)d, Qp is the p-adic number field, and ζp is a primitive
p-th root of 1. This also gives an alternative solution to the problem.


