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Problems

Algebra

A1. Suppose that a sequence a1, a2, . . . of positive real numbers satisfies

ak`1 ě kak

a2k ` pk ´ 1q

for every positive integer k. Prove that a1 ` a2 ` ¨ ¨ ¨ ` an ě n for every n ě 2.

A2. Determine all functions f : Z Ñ Z with the property that

f
`

x ´ fpyq
˘

“ f
`

fpxq
˘

´ fpyq ´ 1

holds for all x, y P Z.

A3. Let n be a fixed positive integer. Find the maximum possible value of

ÿ

1ďrăsď2n

ps ´ r ´ nqxrxs ,

where ´1 ď xi ď 1 for all i “ 1, 2, . . . , 2n.

A4. Find all functions f : R Ñ R satisfying the equation

f
`

x ` fpx` yq
˘

` fpxyq “ x` fpx ` yq ` yfpxq

for all real numbers x and y.

A5. Let 2Z ` 1 denote the set of odd integers. Find all functions f : Z Ñ 2Z ` 1 satisfying

f
`

x` fpxq ` y
˘

` f
`

x´ fpxq ´ y
˘

“ fpx` yq ` fpx´ yq
for every x, y P Z.

A6. Let n be a fixed integer with n ě 2. We say that two polynomials P and Q with real
coefficients are block-similar if for each i P t1, 2, . . . , nu the sequences

P p2015iq, P p2015i´ 1q, . . . , P p2015i´ 2014q and

Qp2015iq, Qp2015i´ 1q, . . . , Qp2015i´ 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degree n` 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.
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Combinatorics

C1. In Lineland there are n ě 1 towns, arranged along a road running from left to right.
Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer

(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one
off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep

town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets.
Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.

C2. Let V be a finite set of points in the plane. We say that V is balanced if for any two
distinct points A,B P V, there exists a point C P V such that AC “ BC. We say that V is
center-free if for any distinct points A,B,C P V, there does not exist a point P P V such that
PA “ PB “ PC.

(a) Show that for all n ě 3, there exists a balanced set consisting of n points.

(b) For which n ě 3 does there exist a balanced, center-free set consisting of n points?

C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty
subsets A1 and A2 good if the least common multiple of the elements in A1 is equal to the
greatest common divisor of the elements in A2. Determine the minimum value of n such that
there exists a set of n positive integers with exactly 2015 good partitions.

C4. Let n be a positive integer. Two players A and B play a game in which they take turns
choosing positive integers k ď n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

piiq A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piiiq The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both
players use optimal strategies.
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C5. Consider an infinite sequence a1, a2, . . . of positive integers with ai ď 2015 for all i ě 1.
Suppose that for any two distinct indices i and j we have i` ai ‰ j ` aj.

Prove that there exist two positive integers b and N such that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 10072

whenever n ą m ě N .

C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if
it has a unique representation as a sum of an odd number of distinct elements from S. Prove
that there exist infinitely many positive integers that are not clean.

C7. In a company of people some pairs are enemies. A group of people is called unsociable

if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.
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Geometry

G1. Let ABC be an acute triangle with orthocenter H . Let G be the point such that the
quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC
bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C
and J . Prove that IJ “ AH .

G2. Let ABC be a triangle inscribed into a circle Ω with center O. A circle Γ with center A
meets the side BC at points D and E such that D lies between B and E. Moreover, let F and
G be the common points of Γ and Ω. We assume that F lies on the arc AB of Ω not containing
C, and G lies on the arc AC of Ω not containing B. The circumcircles of the triangles BDF
and CEG meet the sides AB and AC again at K and L, respectively. Suppose that the lines
FK and GL are distinct and intersect at X . Prove that the points A, X , and O are collinear.

G3. Let ABC be a triangle with =C “ 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection
point of the lines BD and CH . Let ω be the semicircle with diameter BD that meets the
segment CB at an interior point. A line through P is tangent to ω at Q. Prove that the
lines CQ and AD meet on ω.

G4. Let ABC be an acute triangle, and let M be the midpoint of AC. A circle ω passing
through B and M meets the sides AB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BPTQ is a parallelogram. Suppose that T lies on the
circumcircle of the triangle ABC. Determine all possible values of BT {BM .

G5. Let ABC be a triangle with CA ‰ CB. Let D, F , and G be the midpoints of the
sides AB, AC, and BC, respectively. A circle Γ passing through C and tangent to AB at D
meets the segments AF and BG at H and I, respectively. The points H 1 and I 1 are symmetric
to H and I about F and G, respectively. The line H 1I 1 meets CD and FG at Q and M ,
respectively. The line CM meets Γ again at P . Prove that CQ “ QP .

G6. Let ABC be an acute triangle with AB ą AC, and let Γ be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint of BC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on Γ that satisfy =AQH “ 900 and
=QKH “ 900. Prove that the circumcircles of the triangles KQH and KFM are tangent to
each other.

G7. Let ABCD be a convex quadrilateral, and let P , Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segments PR and QS meet at O. Suppose
that each of the quadrilaterals APOS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, PQ, and RS are either concurrent or parallel to each other.

G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals
having no common points other than the vertices of the polygon. We say that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the first
Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)
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Number Theory

N1. Determine all positive integers M for which the sequence a0, a1, a2, . . ., defined by
a0 “ 2M`1

2
and ak`1 “ aktaku for k “ 0, 1, 2, . . ., contains at least one integer term.

N2. Let a and b be positive integers such that a!b! is a multiple of a! ` b!. Prove that
3a ě 2b` 2.

N3. Let m and n be positive integers such that m ą n. Define xk “ pm` kq{pn` kq for k “
1, 2, . . . , n` 1. Prove that if all the numbers x1, x2, . . . , xn`1 are integers, then x1x2 ¨ ¨ ¨xn`1 ´ 1
is divisible by an odd prime.

N4. Suppose that a0, a1, . . . and b0, b1, . . . are two sequences of positive integers satisfying
a0, b0 ě 2 and

an`1 “ gcdpan, bnq ` 1, bn`1 “ lcmpan, bnq ´ 1

for all n ě 0. Prove that the sequence (an) is eventually periodic; in other words, there exist
integers N ě 0 and t ą 0 such that an`t “ an for all n ě N .

N5. Determine all triples pa, b, cq of positive integers for which ab´ c, bc´ a, and ca´ b are
powers of 2.

Explanation: A power of 2 is an integer of the form 2n, where n denotes some nonnegative

integer.

N6. Let Zą0 denote the set of positive integers. Consider a function f : Zą0 Ñ Zą0. For
any m,n P Zą0 we write fnpmq “ fpfp. . . f

looomooon

n

pmq . . .qq. Suppose that f has the following two

properties:

piq If m,n P Zą0, then
fnpmq ´ m

n
P Zą0;

piiq The set Zą0 z tfpnq |n P Zą0u is finite.

Prove that the sequence fp1q ´ 1, fp2q ´ 2, fp3q ´ 3, . . . is periodic.

N7. Let Zą0 denote the set of positive integers. For any positive integer k, a function
f : Zą0 Ñ Zą0 is called k-good if gcd

`

fpmq ` n, fpnq ` m
˘

ď k for all m ‰ n. Find all k such
that there exists a k-good function.

N8. For every positive integer n with prime factorization n “ śk

i“1 p
αi

i , define

℧pnq “
ÿ

i : pią10100

αi.

That is, ℧pnq is the number of prime factors of n greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

℧
`

fpaq ´ fpbq
˘

ď ℧pa ´ bq for all integers a and b with a ą b.
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Solutions

Algebra

A1. Suppose that a sequence a1, a2, . . . of positive real numbers satisfies

ak`1 ě kak

a2k ` pk ´ 1q (1)

for every positive integer k. Prove that a1 ` a2 ` ¨ ¨ ¨ ` an ě n for every n ě 2.

Solution. From the constraint (1), it can be seen that

k

ak`1

ď a2k ` pk ´ 1q
ak

“ ak ` k ´ 1

ak
,

and so

ak ě k

ak`1

´ k ´ 1

ak
.

Summing up the above inequality for k “ 1, . . . , m, we obtain

a1 ` a2 ` ¨ ¨ ¨ ` am ě
ˆ

1

a2
´ 0

a1

˙

`
ˆ

2

a3
´ 1

a2

˙

` ¨ ¨ ¨ `
ˆ

m

am`1

´ m´ 1

am

˙

“ m

am`1

. (2)

Now we prove the problem statement by induction on n. The case n “ 2 can be done by
applying (1) to k “ 1:

a1 ` a2 ě a1 ` 1

a1
ě 2.

For the induction step, assume that the statement is true for some n ě 2. If an`1 ě 1, then
the induction hypothesis yields

`

a1 ` ¨ ¨ ¨ ` an
˘

` an`1 ě n ` 1. (3)

Otherwise, if an`1 ă 1 then apply (2) as

`

a1 ` ¨ ¨ ¨ ` an
˘

` an`1 ě n

an`1

` an`1 “ n ´ 1

an`1

`
ˆ

1

an`1

` an`1

˙

ą pn´ 1q ` 2.

That completes the solution.

Comment 1. It can be seen easily that having equality in the statement requires a1 “ a2 “ 1 in the
base case n “ 2, and an`1 “ 1 in (3). So the equality a1 ` ¨ ¨ ¨ ` an “ n is possible only in the trivial
case a1 “ ¨ ¨ ¨ “ an “ 1.

Comment 2. After obtaining (2), there are many ways to complete the solution. We outline three
such possibilities.

• With defining sn “ a1 ` ¨ ¨ ¨ ` an, the induction step can be replaced by

sn`1 “ sn ` an`1 ě sn `
n

sn
ě n` 1,

because the function x ÞÑ x`
n

x
increases on rn,8q.
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• By applying the AM–GM inequality to the numbers a1 ` ¨ ¨ ¨ ` ak and kak`1, we can conclude

a1 ` ¨ ¨ ¨ ` ak ` kak`1 ě 2k

and sum it up for k “ 1, . . . , n´ 1.

• We can derive the symmetric estimate

ÿ

1ďiăjďn

aiaj “
n
ÿ

j“2

pa1 ` ¨ ¨ ¨ ` aj´1qaj ě
n
ÿ

j“2

pj ´ 1q “
npn´ 1q

2

and combine it with the AM–QM inequality.
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A2. Determine all functions f : Z Ñ Z with the property that

f
`

x ´ fpyq
˘

“ f
`

fpxq
˘

´ fpyq ´ 1 (1)

holds for all x, y P Z.

Answer. There are two such functions, namely the constant function x ÞÑ ´1 and the successor
function x ÞÑ x` 1.

Solution 1. It is immediately checked that both functions mentioned in the answer are as
desired.

Now let f denote any function satisfying (1) for all x, y P Z. Substituting x “ 0 and
y “ fp0q into (1) we learn that the number z “ ´f

`

fp0q
˘

satisfies fpzq “ ´1. So by plugging
y “ z into (1) we deduce that

fpx` 1q “ f
`

fpxq
˘

(2)

holds for all x P Z. Thereby (1) simplifies to

f
`

x´ fpyq
˘

“ fpx` 1q ´ fpyq ´ 1 . (3)

We now work towards showing that f is linear by contemplating the difference fpx`1q´fpxq
for any x P Z. By applying (3) with y “ x and (2) in this order, we obtain

fpx ` 1q ´ fpxq “ f
`

x ´ fpxq
˘

` 1 “ f
`

fpx´ 1 ´ fpxqq
˘

` 1 .

Since (3) shows f
`

x´ 1 ´ fpxq
˘

“ fpxq ´ fpxq ´ 1 “ ´1, this simplifies to

fpx` 1q “ fpxq ` A ,

where A “ fp´1q ` 1 is some absolute constant.

Now a standard induction in both directions reveals that f is indeed linear and that in fact
we have fpxq “ Ax ` B for all x P Z, where B “ fp0q. Substituting this into (2) we obtain
that

Ax ` pA` Bq “ A2x ` pAB ` Bq

holds for all x P Z; applying this to x “ 0 and x “ 1 we infer A ` B “ AB ` B and A2 “ A.
The second equation leads to A “ 0 or A “ 1. In case A “ 1, the first equation gives B “ 1,
meaning that f has to be the successor function. If A “ 0, then f is constant and (1) shows
that its constant value has to be ´1. Thereby the solution is complete.

Comment. After (2) and (3) have been obtained, there are several other ways to combine them so as
to obtain linearity properties of f . For instance, using (2) thrice in a row and then (3) with x “ fpyq
one may deduce that

fpy ` 2q “ f
`

fpy ` 1q
˘

“ f
`

f
`

fpyq
˘˘

“ f
`

fpyq ` 1
˘

“ fpyq ` fp0q ` 1

holds for all y P Z. It follows that f behaves linearly on the even numbers and on the odd numbers
separately, and moreover that the slopes of these two linear functions coincide. From this point, one
may complete the solution with some straightforward case analysis.

A different approach using the equations (2) and (3) will be presented in Solution 2. To show
that it is also possible to start in a completely different way, we will also present a third solution that
avoids these equations entirely.
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Solution 2. We commence by deriving (2) and (3) as in the first solution. Now provided that f
is injective, (2) tells us that f is the successor function. Thus we may assume from now on that
f is not injective, i.e., that there are two integers a ą b with fpaq “ fpbq. A straightforward
induction using (2) in the induction step reveals that we have fpa ` nq “ fpb ` nq for all
nonnegative integers n. Consequently, the sequence γn “ fpb ` nq is periodic and thus in
particular bounded, which means that the numbers

ϕ “ min
ně0

γn and ψ “ max
ně0

γn

exist.
Let us pick any integer y with fpyq “ ϕ and then an integer x ě a with f

`

x ´ fpyq
˘

“ ϕ.
Due to the definition of ϕ and (3) we have

ϕ ď fpx` 1q “ f
`

x ´ fpyq
˘

` fpyq ` 1 “ 2ϕ ` 1 ,

whence ϕ ě ´1. The same reasoning applied to ψ yields ψ ď ´1. Since ϕ ď ψ holds trivially,
it follows that ϕ “ ψ “ ´1, or in other words that we have fptq “ ´1 for all integers t ě a.

Finally, if any integer y is given, we may find an integer x which is so large that x` 1 ě a

and x ´ fpyq ě a hold. Due to (3) and the result from the previous paragraph we get

fpyq “ fpx` 1q ´ f
`

x ´ fpyq
˘

´ 1 “ p´1q ´ p´1q ´ 1 “ ´1 .

Thereby the problem is solved.

Solution 3. Set d “ fp0q. By plugging x “ fpyq into (1) we obtain

f 3pyq “ fpyq ` d` 1 (4)

for all y P Z, where the left-hand side abbreviates f
`

fpfpyqq
˘

. When we replace x in (1) by
fpxq we obtain f

`

fpxq ´ fpyq
˘

“ f 3pxq ´ fpyq ´ 1 and as a consequence of (4) this simplifies to

f
`

fpxq ´ fpyq
˘

“ fpxq ´ fpyq ` d . (5)

Now we consider the set
E “ tfpxq ´ d | x P Zu .

Given two integers a and b from E, we may pick some integers x and y with fpxq “ a ` d

and fpyq “ b ` d; now (5) tells us that fpa ´ bq “ pa ´ bq ` d, which means that a ´ b itself
exemplifies a´ b P E. Thus,

E is closed under taking differences. (6)

Also, the definitions of d and E yield 0 P E. If E “ t0u, then f is a constant function
and (1) implies that the only value attained by f is indeed ´1.

So let us henceforth suppose that E contains some number besides zero. It is known that in
this case (6) entails E to be the set of all integer multiples of some positive integer k. Indeed,
this holds for

k “ min
 

|x|
ˇ

ˇ x P E and x ‰ 0
(

,

as one may verify by an argument based on division with remainder.
Thus we have

tfpxq | x P Zu “ tk ¨ t ` d | t P Zu . (7)

Due to (5) and (7) we get
fpk ¨ tq “ k ¨ t ` d
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for all t P Z, whence in particular fpkq “ k ` d. So by comparing the results of substituting
y “ 0 and y “ k into (1) we learn that

fpz ` kq “ fpzq ` k (8)

holds for all integers z. In plain English, this means that on any residue class modulo k the
function f is linear with slope 1.

Now by (7) the set of all values attained by f is such a residue class. Hence, there exists an
absolute constant c such that f

`

fpxq
˘

“ fpxq ` c holds for all x P Z. Thereby (1) simplifies to

f
`

x ´ fpyq
˘

“ fpxq ´ fpyq ` c´ 1 . (9)

On the other hand, considering (1) modulo k we obtain d ” ´1 pmod kq because of (7). So
by (7) again, f attains the value ´1.

Thus we may apply (9) to some integer y with fpyq “ ´1, which gives fpx` 1q “ fpxq ` c.
So f is a linear function with slope c. Hence, (8) leads to c “ 1, wherefore there is an absolute
constant d1 with fpxq “ x`d1 for all x P Z. Using this for x “ 0 we obtain d1 “ d and finally (4)
discloses d “ 1, meaning that f is indeed the successor function.
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A3. Let n be a fixed positive integer. Find the maximum possible value of
ÿ

1ďrăsď2n

ps ´ r ´ nqxrxs ,

where ´1 ď xi ď 1 for all i “ 1, 2, . . . , 2n.

Answer. npn´ 1q.
Solution 1. Let Z be the expression to be maximized. Since this expression is linear in every
variable xi and ´1 ď xi ď 1, the maximum of Z will be achieved when xi “ ´1 or 1. Therefore,
it suffices to consider only the case when xi P t´1, 1u for all i “ 1, 2, . . . , 2n.

For i “ 1, 2, . . . , 2n, we introduce auxiliary variables

yi “
i
ÿ

r“1

xr ´
2n
ÿ

r“i`1

xr .

Taking squares of both sides, we have

y2i “
2n
ÿ

r“1

x2r `
ÿ

răsďi

2xrxs `
ÿ

iărăs

2xrxs ´
ÿ

rďiăs

2xrxs

“ 2n `
ÿ

răsďi

2xrxs `
ÿ

iărăs

2xrxs ´
ÿ

rďiăs

2xrxs , (1)

where the last equality follows from the fact that xr P t´1, 1u. Notice that for every r ă s, the
coefficient of xrxs in (1) is 2 for each i “ 1, . . . , r´1, s, . . . , 2n, and this coefficient is ´2 for each
i “ r, . . . , s´ 1. This implies that the coefficient of xrxs in

ř2n

i“1 y
2
i is 2p2n´ s` rq ´ 2ps´ rq “

4pn ´ s ` rq. Therefore, summing (1) for i “ 1, 2, . . . , 2n yields

2n
ÿ

i“1

y2i “ 4n2 `
ÿ

1ďrăsď2n

4pn´ s ` rqxrxs “ 4n2 ´ 4Z. (2)

Hence, it suffices to find the minimum of the left-hand side.

Since xr P t´1, 1u, we see that yi is an even integer. In addition, yi ´ yi´1 “ 2xi “ ˘2,
and so yi´1 and yi are consecutive even integers for every i “ 2, 3, . . . , 2n. It follows that
y2i´1 ` y2i ě 4, which implies

2n
ÿ

i“1

y2i “
n
ÿ

j“1

`

y22j´1 ` y22j
˘

ě 4n. (3)

Combining (2) and (3), we get

4n ď
2n
ÿ

i“1

y2i “ 4n2 ´ 4Z. (4)

Hence, Z ď npn´ 1q.
If we set xi “ 1 for odd indices i and xi “ ´1 for even indices i, then we obtain equality

in (3) (and thus in (4)). Therefore, the maximum possible value of Z is npn ´ 1q, as desired.
Comment 1. Z “ npn ´ 1q can be achieved by several other examples. In particular, xi needs not
be ˘1. For instance, setting xi “ p´1qi for all 2 ď i ď 2n, we find that the coefficient of x1 in Z is 0.
Therefore, x1 can be chosen arbitrarily in the interval r´1, 1s.

Nevertheless, if xi P t´1, 1u for all i “ 1, 2, . . . , 2n, then the equality Z “ npn ´ 1q holds only
when py1, y2, . . . , y2nq “ p0,˘2, 0,˘2, . . . , 0,˘2q or p˘2, 0,˘2, 0, . . . ,˘2, 0q. In each case, we can
reconstruct xi accordingly. The sum

ř2n
i“1 xi in the optimal cases needs not be 0, but it must equal 0

or ˘2.
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Comment 2. Several variations in setting up the auxiliary variables are possible. For instance, one
may let x2n`i “ ´xi and y

1
i “ xi ` xi`1 ` ¨ ¨ ¨ ` xi`n´1 for any 1 ď i ď 2n. Similarly to Solution 1,

we obtain Y :“ y12
1 ` y12

2 ` ¨ ¨ ¨ ` y12
2n “ 2n2 ´ 2Z. Then, it suffices to show that Y ě 2n. If n is odd,

then each y1
i is odd, and so y12

i ě 1. If n is even, then each y1
i is even. We can check that at least one

of y1
i, y

1
i`1, y

1
n`i, and y

1
n`i`1 is nonzero, so that y12

i ` y12
i`1 ` y12

n`i ` y12
n`i`1 ě 4; summing these up for

i “ 1, 3, . . . , n´ 1 yields Y ě 2n.

Solution 2. We present a different method of obtaining the bound Z ď npn ´ 1q. As in
the previous solution, we reduce the problem to the case xi P t´1, 1u. For brevity, we use the
notation r2ns “ t1, 2, . . . , 2nu.

Consider any x1, x2, . . . , x2n P t´1, 1u. Let

A “ ti P r2ns : xi “ 1u and B “ ti P r2ns : xi “ ´1u .

For any subsets X and Y of r2ns we define

epX, Y q “
ÿ

răs, rPX, sPY

ps ´ r ´ nq .

One may observe that

epA,Aq`epA,Bq`epB,Aq`epB,Bq “ epr2ns, r2nsq “
ÿ

1ďrăsď2n

ps´r´nq “ ´pn´ 1qnp2n´ 1q
3

.

Therefore, we have

Z “ epA,Aq ´ epA,Bq ´ epB,Aq ` epB,Bq “ 2
`

epA,Aq ` epB,Bq
˘

` pn ´ 1qnp2n´ 1q
3

. (5)

Thus, we need to maximize epA,Aq ` epB,Bq, where A and B form a partition of r2ns.
Due to the symmetry, we may assume that |A| “ n ´ p and |B| “ n ` p, where 0 ď p ď n.

From now on, we fix the value of p and find an upper bound for Z in terms of n and p.

Let a1 ă a2 ă ¨ ¨ ¨ ă an´p and b1 ă b2 ă ¨ ¨ ¨ ă bn`p list all elements of A and B, respectively.
Then

epA,Aq “
ÿ

1ďiăjďn´p

paj ´ ai ´ nq “
n´p
ÿ

i“1

p2i ´ 1 ´ n ` pqai ´
ˆ

n´ p

2

˙

¨ n (6)

and similarly

epB,Bq “
n`p
ÿ

i“1

p2i ´ 1 ´ n ´ pqbi ´
ˆ

n` p

2

˙

¨ n . (7)

Thus, now it suffices to maximize the value of

M “
n´p
ÿ

i“1

p2i´ 1 ´ n` pqai `
n`p
ÿ

i“1

p2i´ 1 ´ n´ pqbi . (8)

In order to get an upper bound, we will apply the rearrangement inequality to the se-
quence a1, a2, . . . , an´p, b1, b2, . . . , bn`p (which is a permutation of 1, 2, . . . , 2n), together with
the sequence of coefficients of these numbers in (8). The coefficients of ai form the sequence

n´ p ´ 1, n´ p ´ 3, . . . , 1 ´ n` p ,

and those of bi form the sequence

n` p ´ 1, n` p ´ 3, . . . , 1 ´ n´ p .
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Altogether, these coefficients are, in descending order:

‚ n ` p ` 1 ´ 2i, for i “ 1, 2, . . . , p;

‚ n ´ p ` 1 ´ 2i, counted twice, for i “ 1, 2, . . . , n´ p; and

‚ ´pn` p ` 1 ´ 2iq, for i “ p, p´ 1, . . . , 1.

Thus, the rearrangement inequality yields

M ď
p
ÿ

i“1

pn ` p ` 1 ´ 2iqp2n` 1 ´ iq

`
n´p
ÿ

i“1

pn´ p ` 1 ´ 2iq
`

p2n` 2 ´ p ´ 2iq ` p2n` 1 ´ p ´ 2iq
˘

´
p
ÿ

i“1

pn` p ` 1 ´ 2iqi . (9)

Finally, combining the information from (5), (6), (7), and (9), we obtain

Z ď pn´ 1qnp2n´ 1q
3

´ 2n

ˆˆ

n´ p

2

˙

`
ˆ

n` p

2

˙˙

` 2
p
ÿ

i“1

pn ` p ` 1 ´ 2iqp2n` 1 ´ 2iq ` 2
n´p
ÿ

i“1

pn ´ p ` 1 ´ 2iqp4n´ 2p` 3 ´ 4iq ,

which can be simplified to

Z ď npn ´ 1q ´ 2

3
ppp ´ 1qpp ` 1q .

Since p is a nonnegative integer, this yields Z ď npn ´ 1q.
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A4. Find all functions f : R Ñ R satisfying the equation

f
`

x ` fpx` yq
˘

` fpxyq “ x` fpx ` yq ` yfpxq (1)

for all real numbers x and y.

Answer. There are two such functions, namely the identity function and x ÞÑ 2 ´ x.

Solution. Clearly, each of the functions x ÞÑ x and x ÞÑ 2 ´ x satisfies (1). It suffices now to
show that they are the only solutions to the problem.

Suppose that f is any function satisfying (1). Then setting y “ 1 in (1), we obtain

f
`

x ` fpx` 1q
˘

“ x ` fpx` 1q; (2)

in other words, x` fpx` 1q is a fixed point of f for every x P R.

We distinguish two cases regarding the value of fp0q.
Case 1. fp0q ‰ 0.

By letting x “ 0 in (1), we have

f
`

fpyq
˘

` fp0q “ fpyq ` yfp0q.
So, if y0 is a fixed point of f , then substituting y “ y0 in the above equation we get y0 “ 1.
Thus, it follows from (2) that x`fpx`1q “ 1 for all x P R. That is, fpxq “ 2´x for all x P R.

Case 2. fp0q “ 0.

By letting y “ 0 and replacing x by x` 1 in (1), we obtain

f
`

x ` fpx` 1q ` 1
˘

“ x ` fpx` 1q ` 1. (3)

From (1), the substitution x “ 1 yields

f
`

1 ` fpy ` 1q
˘

` fpyq “ 1 ` fpy ` 1q ` yfp1q. (4)

By plugging x “ ´1 into (2), we see that fp´1q “ ´1. We then plug y “ ´1 into (4) and
deduce that fp1q “ 1. Hence, (4) reduces to

f
`

1 ` fpy ` 1q
˘

` fpyq “ 1 ` fpy ` 1q ` y. (5)

Accordingly, if both y0 and y0 ` 1 are fixed points of f , then so is y0 ` 2. Thus, it follows
from (2) and (3) that x ` fpx` 1q ` 2 is a fixed point of f for every x P R; i.e.,

f
`

x ` fpx` 1q ` 2
˘

“ x ` fpx` 1q ` 2.

Replacing x by x ´ 2 simplifies the above equation to

f
`

x ` fpx´ 1q
˘

“ x ` fpx´ 1q.
On the other hand, we set y “ ´1 in (1) and get

f
`

x ` fpx´ 1q
˘

“ x ` fpx´ 1q ´ fpxq ´ fp´xq.
Therefore, fp´xq “ ´fpxq for all x P R.

Finally, we substitute px, yq by p´1,´yq in (1) and use the fact that fp´1q “ ´1 to get

f
`

´1 ` fp´y ´ 1q
˘

` fpyq “ ´1 ` fp´y ´ 1q ` y.

Since f is an odd function, the above equation becomes

´f
`

1 ` fpy ` 1q
˘

` fpyq “ ´1 ´ fpy ` 1q ` y.

By adding this equation to (5), we conclude that fpyq “ y for all y P R.
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A5. Let 2Z ` 1 denote the set of odd integers. Find all functions f : Z Ñ 2Z ` 1 satisfying

f
`

x` fpxq ` y
˘

` f
`

x´ fpxq ´ y
˘

“ fpx` yq ` fpx´ yq (1)

for every x, y P Z.

Answer. Fix an odd positive integer d, an integer k, and odd integers ℓ0, ℓ1, . . . , ℓd´1. Then
the function defined as

fpmd ` iq “ 2kmd ` ℓid pm P Z, i “ 0, 1, . . . , d ´ 1q

satisfies the problem requirements, and these are all such functions.

Solution. Throughout the solution, all functions are assumed to map integers to integers.

For any function g and any nonzero integer t, define

∆tgpxq “ gpx` tq ´ gpxq.

For any nonzero integers a and b, notice that ∆a∆bg “ ∆b∆ag. Moreover, if ∆ag “ 0 and
∆bg “ 0, then ∆a`bg “ 0 and ∆atg “ 0 for all nonzero integers t. We say that g is t-quasi-
periodic if ∆tg is a constant function (in other words, if ∆1∆tg “ 0, or ∆1g is t-periodic). In
this case, we call t a quasi-period of g. We say that g is quasi-periodic if it is t-quasi-periodic
for some nonzero integer t.

Notice that a quasi-period of g is a period of ∆1g. So if g is quasi-periodic, then its minimal
positive quasi-period t divides all its quasi-periods.

We now assume that f satisfies (1). First, by setting a “ x` y, the problem condition can
be rewritten as

∆fpxqfpaq “ ∆fpxqf
`

2x ´ a´ fpxq
˘

for all x, a P Z. (2)

Let b be an arbitrary integer and let k be an arbitrary positive integer. Applying (2) when
a is substituted by b, b` fpxq, . . . , b` pk ´ 1qfpxq and summing up all these equations, we get

∆kfpxqfpbq “ ∆kfpxqf
`

2x´ b´ kfpxq
˘

.

Notice that a similar argument works when k is negative, so that

∆Mfpbq “ ∆Mfp2x´ b ´ Mq for any nonzero integer M such that fpxq | M . (3)

We now prove two lemmas.

Lemma 1. For any distinct integers x and y, the function ∆lcmpfpxq,fpyqqf is 2py ´ xq-periodic.
Proof. Denote L “ lcm

`

fpxq, fpyq
˘

. Applying (3) twice, we obtain

∆Lfpbq “ ∆Lfp2x´ b´ Lq “ ∆Lf
`

2y ´ pb` 2py ´ xqq ´ L
˘

“ ∆Lf
`

b ` 2py ´ xq
˘

.

Thus, the function ∆Lf is 2py ´ xq-periodic, as required. l

Lemma 2. Let g be a function. If t and s are nonzero integers such that ∆tsg “ 0 and
∆t∆tg “ 0, then ∆tg “ 0.

Proof. Assume, without loss of generality, that s is positive. Let a be an arbitrary integer.
Since ∆t∆tg “ 0, we have

∆tgpaq “ ∆tgpa` tq “ ¨ ¨ ¨ “ ∆tg
`

a` ps ´ 1qt
˘

.

The sum of these s equal numbers is ∆tsgpaq “ 0, so each of them is zero, as required. l
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We now return to the solution.

Step 1. We prove that f is quasi-periodic.

Let Q “ lcm
`

fp0q, fp1q
˘

. Applying Lemma 1, we get that the function g “ ∆Qf is
2-periodic. In other words, the values of g are constant on even numbers and on odd numbers
separately. Moreover, setting M “ Q and x “ b “ 0 in (3), we get gp0q “ gp´Qq. Since 0 and
´Q have different parities, the value of g at even numbers is the same as that at odd numbers.
Thus, g is constant, which means that Q is a quasi-period of f .

Step 2. Denote the minimal positive quasi-period of f by T . We prove that T | fpxq for all

integers x.

Since an odd number Q is a quasi-period of f , the number T is also odd. Now suppose, to
the contrary, that there exist an odd prime p, a positive integer α, and an integer u such that
pα | T but pα ∤ fpuq. Setting x “ u and y “ 0 in (1), we have 2fpuq “ f

`

u`fpuq
˘

`f
`

u´fpuq
˘

,
so pα does not divide the value of f at one of the points u`fpuq or u´fpuq. Denote this point
by v.

Let L “ lcm
`

fpuq, fpvq
˘

. Since |u ´ v| “ fpuq, from Lemma 1 we get ∆2fpuq∆Lf “ 0.
Hence the function ∆Lf is 2fpuq-periodic as well as T -periodic, so it is gcd

`

T, 2fpuq
˘

-periodic,
or ∆gcdpT,2fpuqq∆Lf “ 0. Similarly, observe that the function ∆gcdpT,2fpuqqf is L-periodic as
well as T -periodic, so we may conclude that ∆gcdpT,Lq∆gcdpT,2fpuqqf “ 0. Since pα ∤ L, both
gcd

`

T, 2fpuq
˘

and gcdpT, Lq divide T {p. We thus obtain ∆T {p∆T {pf “ 0, which yields

∆T {p∆T {p∆1f “ 0.

Since ∆T∆1f “ 0, we can apply Lemma 2 to the function ∆1f , obtaining ∆T {p∆1f “ 0.
However, this means that f is pT {pq-quasi-periodic, contradicting the minimality of T . Our
claim is proved.

Step 3. We describe all functions f .

Let d be the greatest common divisor of all values of f . Then d is odd. By Step 2, d is a
quasi-period of f , so that ∆df is constant. Since the value of ∆df is even and divisible by d,
we may denote this constant by 2dk, where k is an integer. Next, for all i “ 0, 1, . . . , d ´ 1,
define ℓi “ fpiq{d; notice that ℓi is odd. Then

fpmd` iq “ ∆mdfpiq ` fpiq “ 2kmd ` ℓid for all m P Z and i “ 0, 1, . . . , d´ 1.

This shows that all functions satisfying (1) are listed in the answer.
It remains to check that all such functions indeed satisfy (1). This is equivalent to check-

ing (2), which is true because for every integer x, the value of fpxq is divisible by d, so that
∆fpxqf is constant.

Comment. After obtaining Lemmas 1 and 2, it is possible to complete the steps in a different order.
Here we sketch an alternative approach.

For any function g and any nonzero integer t, we say that g is t-pseudo-periodic if ∆t∆tg “ 0. In
this case, we call t a pseudo-period of g, and we say that g is pseudo-periodic.

Let us first prove a basic property: if a function g is pseudo-periodic, then its minimal positive
pseudo-period divides all its pseudo-periods. To establish this, it suffices to show that if t and s

are pseudo-periods of g with t ‰ s, then so is t ´ s. Indeed, suppose that ∆t∆tg “ ∆s∆sg “ 0.
Then ∆t∆t∆sg “ ∆ts∆sg “ 0, so that ∆t∆sg “ 0 by Lemma 2. Taking differences, we obtain
∆t∆t´sg “ ∆s∆t´sg “ 0, and thus ∆t´s∆t´sg “ 0.

Now let f satisfy the problem condition. We will show that f is pseudo-periodic. When this is
done, we will let T 1 be the minimal pseudo-period of f , and show that T 1 divides 2fpxq for every
integer x, using arguments similar to Step 2 of the solution. Then we will come back to Step 1 by
showing that T 1 is also a quasi-period of f .
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First, Lemma 1 yields that ∆2py´xq∆lcmpfpxq,fpyqqf “ 0 for every distinct integers x and y. Hence
f is pseudo-periodic with pseudo-period Lx,y “ lcm

`

2py ´ xq, fpxq, fpyq
˘

.
We now show that T 1 | 2fpxq for every integer x. Suppose, to the contrary, that there exists an

integer u, a prime p, and a positive integer α such that pα | T 1 and pα ∤ 2fpuq. Choose v as in Step 2 and
employ Lemma 1 to obtain ∆2fpuq∆lcmpfpuq,fpvqqf “ 0. However, this implies that ∆T 1{p∆T 1{pf “ 0, a
contradiction with the minimality of T 1.

We now claim that ∆T 1∆2f “ 0. Indeed, Lemma 1 implies that there exists an integer s such that
∆s∆2f “ 0. Hence ∆T 1s∆2f “ ∆T 1∆T 1∆2f “ 0, which allows us to conclude that ∆T 1∆2f “ 0 by
Lemma 2. (The last two paragraphs are similar to Step 2 of the solution.)

Now, it is not difficult to finish the solution, though more work is needed to eliminate the factors
of 2 from the subscripts of ∆T 1∆2f “ 0. Once this is done, we will obtain an odd quasi-period of f
that divides fpxq for all integers x. Then we can complete the solution as in Step 3.
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A6. Let n be a fixed integer with n ě 2. We say that two polynomials P and Q with real
coefficients are block-similar if for each i P t1, 2, . . . , nu the sequences

P p2015iq, P p2015i´ 1q, . . . , P p2015i´ 2014q and

Qp2015iq, Qp2015i´ 1q, . . . , Qp2015i´ 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degree n` 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.

Solution 1. For convenience, we set k “ 2015 “ 2ℓ ` 1.

Part (a). Consider the following polynomials of degree n` 1:

P pxq “
n
ź

i“0

px ´ ikq and Qpxq “
n
ź

i“0

px´ ik ´ 1q.

Since Qpxq “ P px ´ 1q and P p0q “ P pkq “ P p2kq “ ¨ ¨ ¨ “ P pnkq, these polynomials are
block-similar (and distinct).

Part (b). For every polynomial F pxq and every nonnegative integer m, define ΣF pmq “
řm

i“1 F piq; in particular, ΣF p0q “ 0. It is well-known that for every nonnegative integer d the
sum

řm
i“1 i

d is a polynomial in m of degree d ` 1. Thus ΣF may also be regarded as a real
polynomial of degree degF ` 1 (with the exception that if F “ 0, then ΣF “ 0 as well). This
allows us to consider the values of ΣF at all real points (where the initial definition does not
apply).

Assume for the sake of contradiction that there exist two distinct block-similar polynomials
P pxq and Qpxq of degree n. Then both polynomials ΣP´Qpxq and ΣP 2´Q2pxq have roots at the
points 0, k, 2k, . . . , nk. This motivates the following lemma, where we use the special polynomial

T pxq “
n
ź

i“0

px´ ikq.

Lemma. Assume that F pxq is a nonzero polynomial such that 0, k, 2k, . . . , nk are among the
roots of the polynomial ΣF pxq. Then degF ě n, and there exists a polynomial Gpxq such that
degG “ degF ´ n and F pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q.
Proof. If deg F ă n, then ΣF pxq has at least n ` 1 roots, while its degree is less than n ` 1.
Therefore, ΣF pxq “ 0 and hence F pxq “ 0, which is impossible. Thus degF ě n.

The lemma condition yields that ΣF pxq “ T pxqGpxq for some polynomial Gpxq such that
degG “ deg ΣF ´ pn ` 1q “ degF ´ n.

Now, let us define F1pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q. Then for every positive integer n
we have

ΣF1
pnq “

n
ÿ

i“1

`

T pxqGpxq ´ T px´ 1qGpx´ 1q
˘

“ T pnqGpnq ´ T p0qGp0q “ T pnqGpnq “ ΣF pnq,

so the polynomial ΣF´F1
pxq “ ΣF pxq ´ ΣF1

pxq has infinitely many roots. This means that this
polynomial is zero, which in turn yields F pxq “ F1pxq, as required. l
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First, we apply the lemma to the nonzero polynomial R1pxq “ P pxq´Qpxq. Since the degree
of R1pxq is at most n, we conclude that it is exactly n. Moreover, R1pxq “ α ¨

`

T pxq ´T px´1q
˘

for some nonzero constant α.

Our next aim is to prove that the polynomial Spxq “ P pxq `Qpxq is constant. Assume the
contrary. Then, notice that the polynomial R2pxq “ P pxq2´Qpxq2 “ R1pxqSpxq is also nonzero
and satisfies the lemma condition. Since n ă degR1 ` deg S “ degR2 ď 2n, the lemma yields

R2pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q

with some polynomial Gpxq with 0 ă degG ď n.
Since the polynomial R1pxq “ α

`

T pxq ´ T px´ 1q
˘

divides the polynomial

R2pxq “ T pxq
`

Gpxq ´ Gpx´ 1q
˘

` Gpx´ 1q
`

T pxq ´ T px´ 1q
˘

,

we get R1pxq | T pxq
`

Gpxq ´ Gpx ´ 1q
˘

. On the other hand,

gcd
`

T pxq, R1pxq
˘

“ gcd
`

T pxq, T pxq ´ T px ´ 1q
˘

“ gcd
`

T pxq, T px´ 1q
˘

“ 1,

since both T pxq and T px´1q are the products of linear polynomials, and their roots are distinct.
Thus R1pxq | Gpxq ´Gpx´ 1q. However, this is impossible since Gpxq ´ Gpx´ 1q is a nonzero
polynomial of degree less than n “ degR1.

Thus, our assumption is wrong, and Spxq is a constant polynomial, say Spxq “ β. Notice
that the polynomials

`

2P pxq ´ β
˘

{α and
`

2Qpxq ´ βq{α are also block-similar and distinct.
So we may replace the initial polynomials by these ones, thus obtaining two block-similar
polynomials P pxq and Qpxq with P pxq “ ´Qpxq “ T pxq ´ T px ´ 1q. It remains to show that
this is impossible.

For every i “ 1, 2 . . . , n, the values T pik ´ k ` 1q and T pik ´ 1q have the same sign. This
means that the values P pik ´ k ` 1q “ T pik ´ k ` 1q and P pikq “ ´T pik ´ 1q have opposite
signs, so P pxq has a root in each of the n segments rik ´ k ` 1, iks. Since degP “ n, it must
have exactly one root in each of them.

Thus, the sequence P p1q, P p2q, . . . , P pkq should change sign exactly once. On the other
hand, since P pxq and ´P pxq are block-similar, this sequence must have as many positive terms
as negative ones. Since k “ 2ℓ ` 1 is odd, this shows that the middle term of the sequence
above must be zero, so P pℓ ` 1q “ 0, or T pℓ ` 1q “ T pℓq. However, this is not true since

|T pℓ ` 1q| “ |ℓ ` 1| ¨ |ℓ| ¨
n
ź

i“2

|ℓ ` 1 ´ ik| ă |ℓ| ¨ |ℓ ` 1| ¨
n
ź

i“2

|ℓ ´ ik| “ |T pℓq| ,

where the strict inequality holds because n ě 2. We come to the final contradiction.

Comment 1. In the solution above, we used the fact that k ą 1 is odd. One can modify the
arguments of the last part in order to work for every (not necessarily odd) sufficiently large value of k;
namely, when k is even, one may show that the sequence P p1q, P p2q, . . . , P pkq has different numbers
of positive and negative terms.

On the other hand, the problem statement with k replaced by 2 is false, since the polynomials
P pxq “ T pxq ´T px´1q and Qpxq “ T px´1q ´T pxq are block-similar in this case, due to the fact that
P p2i ´ 1q “ ´P p2iq “ Qp2iq “ ´Qp2i ´ 1q “ T p2i ´ 1q for all i “ 1, 2, . . . , n. Thus, every complete
solution should use the relation k ą 2.

One may easily see that the condition n ě 2 is also substantial, since the polynomials x and
k ` 1 ´ x become block-similar if we set n “ 1.

It is easily seen from the solution that the result still holds if we assume that the polynomials have
degree at most n.
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Solution 2. We provide an alternative argument for part pbq.
Assume again that there exist two distinct block-similar polynomials P pxq and Qpxq of

degree n. Let Rpxq “ P pxq ´ Qpxq and Spxq “ P pxq ` Qpxq. For brevity, we also denote the
segment

“

pi ´ 1qk ` 1, ik
‰

by Ii, and the set
 

pi´ 1qk ` 1, pi´ 1qk ` 2, . . . , ik
(

of all integer
points in Ii by Zi.

Step 1. We prove that Rpxq has exactly one root in each segment Ii, i “ 1, 2, . . . , n, and all

these roots are simple.

Indeed, take any i P t1, 2, . . . , nu and choose some points p´, p` P Zi so that

P pp´q “ min
xPZi

P pxq and P pp`q “ max
xPZi

P pxq.

Since the sequences of values of P and Q in Zi are permutations of each other, we have
Rpp´q “ P pp´q ´Qpp´q ď 0 and Rpp`q “ P pp`q ´Qpp`q ě 0. Since Rpxq is continuous, there
exists at least one root of Rpxq between p´ and p` — thus in Ii.

So, Rpxq has at least one root in each of the n disjoint segments Ii with i “ 1, 2, . . . , n.
Since Rpxq is nonzero and its degree does not exceed n, it should have exactly one root in each
of these segments, and all these roots are simple, as required.

Step 2. We prove that Spxq is constant.

We start with the following claim.

Claim. For every i “ 1, 2, . . . , n, the sequence of values S
`

pi´ 1qk ` 1
˘

, S
`

pi´ 1qk ` 2
˘

, . . . ,
Spikq cannot be strictly increasing.

Proof. Fix any i P t1, 2, . . . , nu. Due to the symmetry, we may assume that P
`

ikq ď Qpikq.
Choose now p´ and p` as in Step 1. If we had P pp`q “ P pp´q, then P would be constant
on Zi, so all the elements of Zi would be the roots of Rpxq, which is not the case. In particular,
we have p` ‰ p´. If p´ ą p`, then Spp´q “ P pp´q ` Qpp´q ď Qpp`q ` P pp`q “ Spp`q, so our
claim holds.

We now show that the remaining case p´ ă p` is impossible. Assume first that P pp`q ą
Qpp`q. Then, like in Step 1, we have Rpp´q ď 0, Rpp`q ą 0, and Rpikq ď 0, so Rpxq has a root
in each of the intervals rp´, p`q and pp`, iks. This contradicts the result of Step 1.

We are left only with the case p´ ă p` and P pp`q “ Qpp`q (thus p` is the unique root of
Rpxq in Ii). If p` “ ik, then the values of Rpxq on Zi z tiku are all of the same sign, which
is absurd since their sum is zero. Finally, if p´ ă p` ă ik, then Rpp´q and Rpikq are both
negative. This means that Rpxq should have an even number of roots in rp´, iks, counted with
multiplicity. This also contradicts the result of Step 1. l

In a similar way, one may prove that for every i “ 1, 2, . . . , n, the sequence S
`

pi ´ 1qk ` 1
˘

,
S
`

pi´ 1qk ` 2
˘

, . . . , Spikq cannot be strictly decreasing. This means that the polynomial
∆Spxq “ Spxq ´ Spx ´ 1q attains at least one nonnegative value, as well as at least one non-
positive value, on the set Zi (and even on Zi z

 

pi´ 1qk ` 1
(

); so ∆S has a root in Ii.
Thus ∆S has at least n roots; however, its degree is less than n, so ∆S should be identically

zero. This shows that Spxq is a constant, say Spxq ” β.

Step 3. Notice that the polynomials P pxq ´ β{2 and Qpxq ´ β{2 are also block-similar and
distinct. So we may replace the initial polynomials by these ones, thus reaching P pxq “ ´Qpxq.

Then Rpxq “ 2P pxq, so P pxq has exactly one root in each of the segments Ii, i “ 1, 2, . . . , n.
On the other hand, P pxq and ´P pxq should attain the same number of positive values on Zi.
Since k is odd, this means that Zi contains exactly one root of P pxq; moreover, this root should
be at the center of Zi, because P pxq has the same number of positive and negative values on Zi.

Thus we have found all n roots of P pxq, so

P pxq “ c

n
ź

i“1

px´ ik ` ℓq for some c P R z t0u,
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where ℓ “ pk ´ 1q{2. It remains to notice that for every t P Z1 z t1u we have

|P ptq| “ |c| ¨ |t ´ ℓ ´ 1| ¨
n
ź

i“2

|t´ ik ` ℓ| ă |c| ¨ ℓ ¨
n
ź

i“2

|1 ´ ik ` ℓ| “ |P p1q|,

so P p1q ‰ ´P ptq for all t P Z1. This shows that P pxq is not block-similar to ´P pxq. The final
contradiction.

Comment 2. One may merge Steps 1 and 2 in the following manner. As above, we set Rpxq “
P pxq ´Qpxq and Spxq “ P pxq `Qpxq.

We aim to prove that the polynomial Spxq “ 2P pxq ´Rpxq “ 2Qpxq `Rpxq is constant. Since the
degrees of Rpxq and Spxq do not exceed n, it suffices to show that the total number of roots of Rpxq
and ∆Spxq “ Spxq ´ Spx´ 1q is at least 2n. For this purpose, we prove the following claim.

Claim. For every i “ 1, 2, . . . , n, either each of R and ∆S has a root in Ii, or R has at least two roots
in Ii.

Proof. Fix any i P t1, 2, . . . , nu. Let r P Zi be a point such that |Rprq| “ maxxPZi
|Rpxq|; we may

assume that Rprq ą 0. Next, let p´, q` P Ii be some points such that P pp´q “ minxPZi
P pxq and

Qpq`q “ maxxPZi
Qpxq. Notice that P pp´q ď Qprq ă P prq and Qpq`q ě P prq ą Qprq, so r is different

from p´ and q`.

Without loss of generality, we may assume that p´ ă r. Then we have Rpp´q “ P pp´q ´Qpp´q ď
0 ă Rprq, so Rpxq has a root in rp´, rq. If q` ą r, then, similarly, Rpq`q ď 0 ă Rprq, and Rpxq also
has a root in pr, q`s; so Rpxq has two roots in Ii, as required.

In the remaining case we have q` ă r; it suffices now to show that in this case ∆S has a root in Ii.
Since P pp´q ď Qprq and |Rpp´q| ď Rprq, we have Spp´q “ 2P pp´q ´ Rpp´q ď 2Qprq ` Rprq “ Sprq.
Similarly, we get Spq`q “ 2Qpq`q `Rpq`q ě 2P prq ´Rprq “ Sprq. Therefore, the sequence of values
of S on Zi is neither strictly increasing nor strictly decreasing, which shows that ∆S has a root
in Ii. l

Comment 3. After finding the relation P pxq ´ Qpxq “ α
`

T pxq ´ T px ´ 1q
˘

from Solution 1, one
may also follow the approach presented in Solution 2. Knowledge of the difference of polynomials
may simplify some steps; e.g., it is clear now that P pxq ´ Qpxq has exactly one root in each of the
segments Ii.
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Combinatorics

C1. In Lineland there are n ě 1 towns, arranged along a road running from left to right.
Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer

(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one
off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep

town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets.
Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.

Solution 1. Let T1, T2, . . . , Tn be the towns enumerated from left to right. Observe first that,
if town Ti can sweep away town Tj , then Ti also can sweep away every town located between Ti
and Tj .

We prove the problem statement by strong induction on n. The base case n “ 1 is trivial.

For the induction step, we first observe that the left bulldozer in T1 and the right bulldozer
in Tn are completely useless, so we may forget them forever. Among the other 2n´2 bulldozers,
we choose the largest one. Without loss of generality, it is the right bulldozer of some town Tk
with k ă n.

Surely, with this large bulldozer Tk can sweep away all the towns to the right of it. Moreover,
none of these towns can sweep Tk away; so they also cannot sweep away any town to the left
of Tk. Thus, if we remove the towns Tk`1, Tk`2, . . . , Tn, none of the remaining towns would
change its status of being (un)sweepable away by the others.

Applying the induction hypothesis to the remaining towns, we find a unique town among
T1, T2, . . . , Tk which cannot be swept away. By the above reasons, it is also the unique such
town in the initial situation. Thus the induction step is established.

Solution 2. We start with the same enumeration and the same observation as in Solution 1.
We also denote by ℓi and ri the sizes of the left and the right bulldozers belonging to Ti,
respectively. One may easily see that no two towns Ti and Tj with i ă j can sweep each other
away, for this would yield ri ą ℓj ą ri.

Clearly, there is no town which can sweep Tn away from the right. Then we may choose the
leftmost town Tk which cannot be swept away from the right. One can observe now that no
town Ti with i ą k may sweep away some town Tj with j ă k, for otherwise Ti would be able
to sweep Tk away as well.

Now we prove two claims, showing together that Tk is the unique town which cannot be
swept away, and thus establishing the problem statement.

Claim 1. Tk also cannot be swept away from the left.

Proof. Let Tm be some town to the left of Tk. By the choice of Tk, town Tm can be swept
away from the right by some town Tp with p ą m. As we have already observed, p cannot be
greater than k. On the other hand, Tm cannot sweep Tp away, so a fortiori it cannot sweep Tk
away. l

Claim 2. Any town Tm with m ‰ k can be swept away by some other town.
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Proof. If m ă k, then Tm can be swept away from the right due to the choice of Tk. In the
remaining case we have m ą k.

Let Tp be a town among Tk, Tk`1, . . . , Tm´1 having the largest right bulldozer. We claim
that Tp can sweep Tm away. If this is not the case, then rp ă ℓq for some q with p ă q ď m. But
this means that ℓq is greater than all the numbers ri with k ď i ď m ´ 1, so Tq can sweep Tk
away. This contradicts the choice of Tk. l

Comment 1. One may employ the same ideas within the inductive approach. Here we sketch such
a solution.

Assume that the problem statement holds for the collection of towns T1, T2, . . . , Tn´1, so that there
is a unique town Ti among them which cannot be swept away by any other of them. Thus we need
to prove that in the full collection T1, T2, . . . , Tn, exactly one of the towns Ti and Tn cannot be swept
away.

If Tn cannot sweep Ti away, then it remains to prove that Tn can be swept away by some other
town. This can be established as in the second paragraph of the proof of Claim 2.

If Tn can sweep Ti away, then it remains to show that Tn cannot be swept away by any other town.
Since Tn can sweep Ti away, it also can sweep all the towns Ti, Ti`1, . . . , Tn´1 away, so Tn cannot be
swept away by any of those. On the other hand, none of the remaining towns T1, T2, . . . , Ti´1 can
sweep Ti away, so that they cannot sweep Tn away as well.

Comment 2. Here we sketch yet another inductive approach. Assume that n ą 1. Firstly, we find a
town which can be swept away by each of its neighbors (each town has two neighbors, except for the
bordering ones each of which has one); we call such town a loser. Such a town exists, because there
are n´ 1 pairs of neighboring towns, and in each of them there is only one which can sweep the other
away; so there exists a town which is a winner in none of these pairs.

Notice that a loser can be swept away, but it cannot sweep any other town away (due to its
neighbors’ protection). Now we remove a loser, and suggest its left bulldozer to its right neighbor (if
it exists), and its right bulldozer to a left one (if it exists). Surely, a town accepts a suggestion if a
suggested bulldozer is larger than the town’s one of the same orientation.

Notice that suggested bulldozers are useless in attack (by the definition of a loser), but may serve
for defensive purposes. Moreover, each suggested bulldozer’s protection works for the same pairs of
remaining towns as before the removal.

By the induction hypothesis, the new configuration contains exactly one town which cannot be
swept away. The arguments above show that the initial one also satisfies this property.

Solution 3. We separately prove that piq there exists a town which cannot be swept away,
and that piiq there is at most one such town. We also make use of the two observations from
the previous solutions.

To prove piq, assume contrariwise that every town can be swept away. Let t1 be the leftmost
town; next, for every k “ 1, 2, . . . we inductively choose tk`1 to be some town which can sweep
tk away. Now we claim that for every k “ 1, 2, . . . , the town tk`1 is to the right of tk; this leads
to the contradiction, since the number of towns is finite.

Induction on k. The base case k “ 1 is clear due to the choice of t1. Assume now that for
all j with 1 ď j ă k, the town tj`1 is to the right of tj . Suppose that tk`1 is situated to the left
of tk; then it lies between tj and tj`1 (possibly coinciding with tj) for some j ă k. Therefore,
tk`1 can be swept away by tj`1, which shows that it cannot sweep tj`1 away — so tk`1 also
cannot sweep tk away. This contradiction proves the induction step.

To prove piiq, we also argue indirectly and choose two towns A and B neither of which can
be swept away, with A being to the left of B. Consider the largest bulldozer b between them
(taking into consideration the right bulldozer of A and the left bulldozer of B). Without loss
of generality, b is a left bulldozer; then it is situated in some town to the right of A, and this
town may sweep A away since nothing prevents it from doing that. A contradiction.
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Comment 3. The Problem Selection Committee decided to reformulate this problem. The original
formulation was as follows.

Let n be a positive integer. There are n cards in a deck, enumerated from bottom to top with
numbers 1, 2, . . . , n. For each i “ 1, 2, . . . , n, an even number ai is printed on the lower side and an
odd number bi is printed on the upper side of the ith card. We say that the ith card opens the jth card,
if i ă j and bi ă ak for every k “ i ` 1, i ` 2, . . . , j. Similarly, we say that the ith card closes the
jth card, if i ą j and ai ă bk for every k “ i´ 1, i´ 2, . . . , j. Prove that the deck contains exactly one
card which is neither opened nor closed by any other card.
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C2. Let V be a finite set of points in the plane. We say that V is balanced if for any two
distinct points A,B P V, there exists a point C P V such that AC “ BC. We say that V is
center-free if for any distinct points A,B,C P V, there does not exist a point P P V such that
PA “ PB “ PC.

(a) Show that for all n ě 3, there exists a balanced set consisting of n points.

(b) For which n ě 3 does there exist a balanced, center-free set consisting of n points?

Answer for part (b). All odd integers n ě 3.

Solution.

Part (a). Assume that n is odd. Consider a regular n-gon. Label the vertices of the n-gon
as A1, A2, . . . , An in counter-clockwise order, and set V “ tA1, . . . , Anu. We check that V is
balanced. For any two distinct vertices Ai and Aj , let k P t1, 2, . . . , nu be the solution of
2k ” i ` j pmod nq. Then, since k ´ i ” j ´ k pmod nq, we have AiAk “ AjAk, as required.

Now assume that n is even. Consider a regular p3n ´ 6q-gon, and let O be its circum-
center. Again, label its vertices as A1, . . . , A3n´6 in counter-clockwise order, and choose V “
tO,A1, A2, . . . , An´1u. We check that V is balanced. For any two distinct vertices Ai and Aj, we
always have OAi “ OAj. We now consider the vertices O and Ai. First note that the triangle
OAiAn{2´1`i is equilateral for all i ď n

2
. Hence, if i ď n

2
, then we have OAn{2´1`i “ AiAn{2´1`i;

otherwise, if i ą n
2
, then we have OAi´n{2`1 “ AiAi´n{2`1. This completes the proof.

An example of such a construction when n “ 10 is shown in Figure 1.

O

A1

A2

A3

A4 A5
A6

A7

A8

A9

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

A1

B1

A2

B2A3

B3

C

D

E

Figure 1 Figure 2

Comment (a). There are many ways to construct an example by placing equilateral triangles in a
circle. Here we present one general method.

Let O be the center of a circle and let A1, B1, . . . , Ak, Bk be distinct points on the circle such
that the triangle OAiBi is equilateral for each i. Then V “ tO,A1, B1, . . . , Ak, Bku is balanced. To
construct a set of even cardinality, put extra points C,D,E on the circle such that triangles OCD
and ODE are equilateral (see Figure 2). Then V “ tO,A1, B1, . . . , Ak, Bk, C,D,Eu is balanced.

Part (b). We now show that there exists a balanced, center-free set containing n points for
all odd n ě 3, and that one does not exist for any even n ě 3.

If n is odd, then let V be the set of vertices of a regular n-gon. We have shown in part (a)
that V is balanced. We claim that V is also center-free. Indeed, if P is a point such that
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PA “ PB “ PC for some three distinct vertices A,B and C, then P is the circumcenter of
the n-gon, which is not contained in V.

Now suppose that V is a balanced, center-free set of even cardinality n. We will derive a
contradiction. For a pair of distinct points A,B P V, we say that a point C P V is associated
with the pair tA,Bu if AC “ BC. Since there are npn´1q

2
pairs of points, there exists a point

P P V which is associated with at least
P

npn´1q
2

L

n
T

“ n
2
pairs. Note that none of these n

2
pairs

can contain P , so that the union of these n
2
pairs consists of at most n ´ 1 points. Hence

there exist two such pairs that share a point. Let these two pairs be tA,Bu and tA,Cu. Then
PA “ PB “ PC, which is a contradiction.

Comment (b). We can rephrase the argument in graph theoretic terms as follows. Let V be a
balanced, center-free set consisting of n points. For any pair of distinct vertices A,B P V and for
any C P V such that AC “ BC, draw directed edges A Ñ C and B Ñ C. Then all pairs of vertices
generate altogether at least npn´1q directed edges; since the set is center-free, these edges are distinct.
So we must obtain a graph in which any two vertices are connected in both directions. Now, each
vertex has exactly n´ 1 incoming edges, which means that n´ 1 is even. Hence n is odd.
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C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty
subsets A1 and A2 good if the least common multiple of the elements in A1 is equal to the
greatest common divisor of the elements in A2. Determine the minimum value of n such that
there exists a set of n positive integers with exactly 2015 good partitions.

Answer. 3024.

Solution. Let A “ ta1, a2, . . . , anu, where a1 ă a2 ă ¨ ¨ ¨ ă an. For a finite nonempty set B
of positive integers, denote by lcmB and gcdB the least common multiple and the greatest
common divisor of the elements in B, respectively.

Consider any good partition pA1, A2q of A. By definition, lcmA1 “ d “ gcdA2 for some
positive integer d. For any ai P A1 and aj P A2, we have ai ď d ď aj. Therefore, we have
A1 “ ta1, a2, . . . , aku and A2 “ tak`1, ak`2, . . . , anu for some k with 1 ď k ă n. Hence, each
good partition is determined by an element ak, where 1 ď k ă n. We call such ak partitioning.

It is convenient now to define ℓk “ lcmpa1, a2, . . . , akq and gk “ gcdpak`1, ak`2, . . . , anq for
1 ď k ď n´ 1. So ak is partitioning exactly when ℓk “ gk.

We proceed by proving some properties of partitioning elements, using the following claim.

Claim. If ak´1 and ak are partitioning where 2 ď k ď n ´ 1, then gk´1 “ gk “ ak.

Proof. Assume that ak´1 and ak are partitioning. Since ℓk´1 “ gk´1, we have ℓk´1 | ak.
Therefore, gk “ ℓk “ lcmpℓk´1, akq “ ak, and gk´1 “ gcdpak, gkq “ ak, as desired. l

Property 1. For every k “ 2, 3, . . . , n´ 2, at least one of ak´1, ak, and ak`1 is not partitioning.

Proof. Suppose, to the contrary, that all three numbers ak´1, ak, and ak`1 are partitioning. The
claim yields that ak`1 “ gk “ ak, a contradiction. l

Property 2. The elements a1 and a2 cannot be simultaneously partitioning. Also, an´2 and
an´1 cannot be simultaneously partitioning

Proof. Assume that a1 and a2 are partitioning. By the claim, it follows that a2 “ g1 “ ℓ1 “
lcmpa1q “ a1, a contradiction.

Similarly, assume that an´2 and an´1 are partitioning. The claim yields that an´1 “ gn´1 “
gcdpanq “ an, a contradiction. l

Now let A be an n-element set with exactly 2015 good partitions. Clearly, we have
n ě 5. Using Property 2, we find that there is at most one partitioning element in each
of ta1, a2u and tan´2, an´1u. By Property 1, there are at least

X

n´5
3

\

non-partitioning elements

in ta3, a4, . . . , an´3u. Therefore, there are at most pn ´ 1q ´ 2 ´
X

n´5
3

\

“
P

2pn´2q
3

T

partitioning

elements in A. Thus,
P

2pn´2q
3

T

ě 2015, which implies that n ě 3024.
Finally, we show that there exists a set of 3024 positive integers with exactly 2015 parti-

tioning elements. Indeed, in the set A “ t2 ¨ 6i, 3 ¨ 6i, 6i`1 | 0 ď i ď 1007u, each element of the
form 3 ¨ 6i or 6i, except 61008, is partitioning.

Therefore, the minimum possible value of n is 3024.

Comment. Here we will work out the general case when 2015 is replaced by an arbitrary positive
integer m. Note that the bound

P2pn´2q
3

T

ě m obtained in the solution is, in fact, true for any positive

integers m and n. Using this bound, one can find that n ě
P 3m

2

T

` 1.

To show that the bound is sharp, one constructs a set of
P

3m
2

T

` 1 elements with exactly m good
partitions. Indeed, the minimum is attained on the set t6i, 2 ¨ 6i, 3 ¨ 6i | 0 ď i ď t´ 1u Y t6tu for every
even m “ 2t, and t2 ¨ 6i, 3 ¨ 6i, 6i`1 | 0 ď i ď t´ 1u for every odd m “ 2t ´ 1.
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C4. Let n be a positive integer. Two players A and B play a game in which they take turns
choosing positive integers k ď n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

piiq A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piiiq The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both
players use optimal strategies.

Answer. The game ends in a draw when n “ 1, 2, 4, 6; otherwise B wins.

Solution. For brevity, we denote by rns the set t1, 2, . . . , nu.
Firstly, we show that B wins whenever n ‰ 1, 2, 4, 6. For this purpose, we provide a strategy

which guarantees that B can always make a move after A’s move, and also guarantees that the
game does not end in a draw.

We begin with an important observation.

Lemma. Suppose that B’s first pick is n and that A has made the kthmove where k ě 2. Then
B can also make the kthmove.

Proof. Let S be the set of the first k numbers chosen by A. Since S does not contain consecutive
integers, we see that the set rns z S consists of k “contiguous components” if 1 P S, and k ` 1
components otherwise. Since B has chosen only k´1 numbers, there is at least one component
of rns z S consisting of numbers not yet picked by B. Hence, B can choose a number from this
component. l

We will now describe a winning strategy for B, when n ‰ 1, 2, 4, 6. By symmetry, we may
assume that A’s first choice is a number not exceeding n`1

2
. So B can pick the number n in

B’s first turn. We now consider two cases.

Case 1. n is odd and n ě 3. The only way the game ends in a draw is that A eventually picks
all the odd numbers from the set rns. However, B has already chosen n, so this cannot happen.
Thus B can continue to apply the lemma until A cannot make a move.

Case 2. n is even and n ě 8. Since B has picked n, the game is a draw only if A can
eventually choose all the odd numbers from the set rn´ 1s. So B picks a number from the set
t1, 3, 5, . . . , n´ 3u not already chosen by A, on B’s second move. This is possible since the set
consists of n´2

2
ě 3 numbers and A has chosen only 2 numbers. Hereafter B can apply the

lemma until A cannot make a move.

Hence, in both cases A loses.

We are left with the cases n “ 1, 2, 4, 6. The game is trivially a draw when n “ 1, 2. When
n “ 4, A has to first pick 1 to avoid losing. Similarly, B has to choose 4 as well. It then follows
that the game ends in a draw.

When n “ 6, B gets at least a draw by the lemma or by using a mirror strategy. On the
other hand, A may also get at least a draw in the following way. In the first turn, A chooses 1.
After B’s response by a number b, A finds a neighbor c of b which differs from 1 and 2, and
reserves c for A’s third move. Now, clearly A can make the second move by choosing a number
different from 1, 2, c´ 1, c, c` 1. Therefore A will not lose.
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Comment 1. We present some explicit winning strategies for B.

We start with the case n is odd and n ě 3. B starts by picking n in the first turn. On the kthmove
for k ě 2, B chooses the number exactly 1 less than A’s kth pick. The only special case is when A’s
kth choice is 1. In this situation, A’s first pick was a number a ą 1 and B can respond by choosing
a ´ 1 on the kthmove instead.

We now give an alternative winning strategy in the case n is even and n ě 8. We first present a
winning strategy for the case when A’s first pick is 1. We consider two cases depending on A’s second
move.

Case 1. A’s second pick is 3. Then B chooses n´3 on the second move. On the kthmove, B chooses
the number exactly 1 less than A’s kth pick except that B chooses 2 if A’s kth pick is n´ 2 or n´ 1.

Case 2. A’s second pick is a ą 3. Then B chooses a ´ 2 on the second move. Afterwards on the
kthmove, B picks the number exactly 1 less than A’s kth pick.

One may easily see that this strategy guarantees B’s victory, when A’s first pick is 1.

The following claim shows how to extend the strategy to the general case.

Claim. Assume that B has an explicit strategy leading to a victory after A picks 1 on the first move.
Then B also has an explicit strategy leading to a victory after any first moves of A.

Proof. Let S be an optimal strategy of B after A picks 1 on the first move. Assume that A picks some
number a ą 1 on this move; we show how B can make use of S in order to win in this case.

In parallel to the real play, B starts an imaginary play. The positions in these plays differ by
flipping the segment r1, as; so, if a player chooses some number x in the real play, then the same player
chooses a number x or a ` 1 ´ x in the imaginary play, depending on whether x ą a or x ď a. Thus
A’s first pick in the imaginary play is 1.

Clearly, a number is chosen in the real play exactly if the corresponding number is chosen in the
imaginary one. Next, if an unchosen number is neighboring to one chosen by A in the imaginary play,
then the corresponding number also has this property in the real play, so A also cannot choose it.
One can easily see that a similar statement with real and imaginary plays interchanged holds for B
instead of A.

Thus, when A makes some move in the real play, B may imagine the corresponding legal move in
the imaginary one. Then B chooses the response according to S in the imaginary game and makes
the corresponding legal move in the real one. Acting so, B wins the imaginary game, thus B will also
win the real one. l

Hence, B has a winning strategy for all even n greater or equal to 8.

Notice that the claim can also be used to simplify the argument when n is odd.

Comment 2. One may also employ symmetry when n is odd. In particular, B could use a mirror
strategy. However, additional ideas are required to modify the strategy after A picks n`1

2
.
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C5. Consider an infinite sequence a1, a2, . . . of positive integers with ai ď 2015 for all i ě 1.
Suppose that for any two distinct indices i and j we have i` ai ‰ j ` aj.

Prove that there exist two positive integers b and N such that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 10072

whenever n ą m ě N .

Solution 1. We visualize the set of positive integers as a sequence of points. For each n we
draw an arrow emerging from n that points to n` an; so the length of this arrow is an. Due to
the condition that m`am ‰ n`an for m ‰ n, each positive integer receives at most one arrow.
There are some positive integers, such as 1, that receive no arrows; these will be referred to as
starting points in the sequel. When one starts at any of the starting points and keeps following
the arrows, one is led to an infinite path, called its ray, that visits a strictly increasing sequence
of positive integers. Since the length of any arrow is at most 2015, such a ray, say with starting
point s, meets every interval of the form rn, n` 2014s with n ě s at least once.

Suppose for the sake of contradiction that there would be at least 2016 starting points.
Then we could take an integer n that is larger than the first 2016 starting points. But now the
interval rn, n` 2014s must be met by at least 2016 rays in distinct points, which is absurd. We
have thereby shown that the number b of starting points satisfies 1 ď b ď 2015. Let N denote
any integer that is larger than all starting points. We contend that b and N are as required.

To see this, let any two integers m and n with n ą m ě N be given. The sum
řn

i“m`1 ai
gives the total length of the arrows emerging from m` 1, . . . , n. Taken together, these arrows
form b subpaths of our rays, some of which may be empty. Now on each ray we look at
the first number that is larger than m; let x1, . . . , xb denote these numbers, and let y1, . . . , yb
enumerate in corresponding order the numbers defined similarly with respect to n. Then the
list of differences y1 ´ x1, . . . , yb ´ xb consists of the lengths of these paths and possibly some
zeros corresponding to empty paths. Consequently, we obtain

n
ÿ

i“m`1

ai “
b
ÿ

j“1

pyj ´ xjq ,

whence
n
ÿ

i“m`1

pai ´ bq “
b
ÿ

j“1

pyj ´ nq ´
b
ÿ

j“1

pxj ´ mq .

Now each of the b rays meets the interval rm ` 1, m ` 2015s at some point and thus x1 ´
m, . . . , xb ´m are b distinct members of the set t1, 2, . . . , 2015u. Moreover, since m` 1 is not a
starting point, it must belong to some ray; so 1 has to appear among these numbers, wherefore

1 `
b´1
ÿ

j“1

pj ` 1q ď
b
ÿ

j“1

pxj ´ mq ď 1 `
b´1
ÿ

j“1

p2016 ´ b ` jq .

The same argument applied to n and y1, . . . , yb yields

1 `
b´1
ÿ

j“1

pj ` 1q ď
b
ÿ

j“1

pyj ´ nq ď 1 `
b´1
ÿ

j“1

p2016 ´ b` jq .
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So altogether we get

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď
b´1
ÿ

j“1

`

p2016 ´ b ` jq ´ pj ` 1q
˘

“ pb´ 1qp2015 ´ bq

ď
ˆpb ´ 1q ` p2015 ´ bq

2

˙2

“ 10072 ,

as desired.

Solution 2. Set sn “ n` an for all positive integers n. By our assumptions, we have

n ` 1 ď sn ď n` 2015

for all n P Zą0. The members of the sequence s1, s2, . . . are distinct. We shall investigate the
set

M “ Zą0 z ts1, s2, . . .u .

Claim. At most 2015 numbers belong to M .

Proof. Otherwise let m1 ă m2 ă ¨ ¨ ¨ ă m2016 be any 2016 distinct elements from M . For
n “ m2016 we have

ts1, . . . , snu Y tm1, . . . , m2016u Ď t1, 2, . . . , n` 2015u ,

where on the left-hand side we have a disjoint union containing altogether n ` 2016 elements.
But the set on the right-hand side has only n ` 2015 elements. This contradiction proves our
claim. l

Now we work towards proving that the positive integers b “ |M | and N “ maxpMq are as
required. Recall that we have just shown b ď 2015.

Let us consider any integer r ě N . As in the proof of the above claim, we see that

Br “ M Y ts1, . . . , sru (1)

is a subset of r1, r`2015sXZ with precisely b`r elements. Due to the definitions ofM and N ,
we also know r1, r ` 1s X Z Ď Br. It follows that there is a set Cr Ď t1, 2, . . . , 2014u with
|Cr| “ b´ 1 and

Br “
`

r1, r ` 1s X Z
˘

Y
 

r ` 1 ` x
ˇ

ˇ x P Cr

(

. (2)

For any finite set of integers J we denote the sum of its elements by
ř

J . Now the equations (1)
and (2) give rise to two ways of computing

ř

Br and the comparison of both methods leads to

ÿ

M `
r
ÿ

i“1

si “
r
ÿ

i“1

i ` bpr ` 1q `
ÿ

Cr ,

or in other words to
ÿ

M `
r
ÿ

i“1

pai ´ bq “ b `
ÿ

Cr . (3)

After this preparation, we consider any two integers m and n with n ą m ě N . Plugging
r “ n and r “ m into (3) and subtracting the estimates that result, we deduce

n
ÿ

i“m`1

pai ´ bq “
ÿ

Cn ´
ÿ

Cm .
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Since Cn and Cm are subsets of t1, 2, . . . , 2014u with |Cn| “ |Cm| “ b ´ 1, it is clear that the
absolute value of the right-hand side of the above inequality attains its largest possible value if
either Cm “ t1, 2, . . . , b ´ 1u and Cn “ t2016 ´ b, . . . , 2014u, or the other way around. In these
two cases we have

ˇ

ˇ

ˇ

ÿ

Cn ´
ÿ

Cm

ˇ

ˇ

ˇ
“ pb ´ 1qp2015 ´ bq ,

so in the general case we find

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď pb´ 1qp2015 ´ bq ď
ˆpb´ 1q ` p2015 ´ bq

2

˙2

“ 10072 ,

as desired.

Comment. The sets Cn may be visualized by means of the following process: Start with an empty
blackboard. For n ě 1, the following happens during the nth step. The number an gets written on
the blackboard, then all numbers currently on the blackboard are decreased by 1, and finally all zeros
that have arisen get swept away.

It is not hard to see that the numbers present on the blackboard after n steps are distinct and
form the set Cn. Moreover, it is possible to complete a solution based on this idea.
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C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if
it has a unique representation as a sum of an odd number of distinct elements from S. Prove
that there exist infinitely many positive integers that are not clean.

Solution 1. Define an odd (respectively, even) representation of n to be a representation of n
as a sum of an odd (respectively, even) number of distinct elements of S. Let Zą0 denote the
set of all positive integers.

Suppose, to the contrary, that there exist only finitely many positive integers that are not
clean. Therefore, there exists a positive integer N such that every integer n ą N has exactly
one odd representation.

Clearly, S is infinite. We now claim the following properties of odd and even representations.

Property 1. Any positive integer n has at most one odd and at most one even representation.

Proof.We first show that every integer n has at most one even representation. Since S is infinite,
there exists x P S such that x ą maxtn,Nu. Then, the number n`x must be clean, and x does
not appear in any even representation of n. If n has more than one even representation, then
we obtain two distinct odd representations of n ` x by adding x to the even representations
of n, which is impossible. Therefore, n can have at most one even representation.

Similarly, there exist two distinct elements y, z P S such that y, z ą maxtn,Nu. If n has
more than one odd representation, then we obtain two distinct odd representations of n` y` z

by adding y and z to the odd representations of n. This is again a contradiction. l

Property 2. Fix s P S. Suppose that a number n ą N has no even representation. Then
n ` 2as has an even representation containing s for all integers a ě 1.

Proof. It is sufficient to prove the following statement: If n has no even representation without s,
then n`2s has an even representation containing s (and hence no even representation without s
by Property 1).

Notice that the odd representation of n` s does not contain s; otherwise, we have an even
representation of n without s. Then, adding s to this odd representation of n` s, we get that
n ` 2s has an even representation containing s, as desired. l

Property 3. Every sufficiently large integer has an even representation.

Proof. Fix any s P S, and let r be an arbitrary element in t1, 2, . . . , 2su. Then, Property 2
implies that the set Zr “ tr ` 2as : a ě 0u contains at most one number exceeding N with
no even representation. Therefore, Zr contains finitely many positive integers with no even
representation, and so does Zą0 “ Ť2s

r“1 Zr. l

In view of Properties 1 and 3, we may assume that N is chosen such that every n ą N has
exactly one odd and exactly one even representation. In particular, each element s ą N of S
has an even representation.

Property 4. For any s, t P S with N ă s ă t, the even representation of t contains s.

Proof. Suppose the contrary. Then, s` t has at least two odd representations: one obtained by
adding s to the even representation of t and one obtained by adding t to the even representation
of s. Since the latter does not contain s, these two odd representations of s ` t are distinct, a
contradiction. l

Let s1 ă s2 ă ¨ ¨ ¨ be all the elements of S, and set σn “ řn

i“1 si for each nonnegative
integer n. Fix an integer k such that sk ą N . Then, Property 4 implies that for every i ą k

the even representation of si contains all the numbers sk, sk`1, . . . , si´1. Therefore,

si “ sk ` sk`1 ` ¨ ¨ ¨ ` si´1 ` Ri “ σi´1 ´ σk´1 ` Ri, (1)

where Ri is a sum of some of s1, . . . , sk´1. In particular, 0 ď Ri ď s1 ` ¨ ¨ ¨ ` sk´1 “ σk´1.
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Let j0 be an integer satisfying j0 ą k and σj0 ą 2σk´1. Then (1) shows that, for every j ą j0,

sj`1 ě σj ´ σk´1 ą σj{2. (2)

Next, let p ą j0 be an index such that Rp “ miniąj0 Ri. Then,

sp`1 “ sk ` sk`1 ` ¨ ¨ ¨ ` sp ` Rp`1 “ psp ´ Rpq ` sp ` Rp`1 ě 2sp.

Therefore, there is no element of S larger than sp but smaller than 2sp. It follows that the
even representation τ of 2sp does not contain any element larger than sp. On the other hand,
inequality (2) yields 2sp ą s1 ` ¨ ¨ ¨ ` sp´1, so τ must contain a term larger than sp´1. Thus,
it must contain sp. After removing sp from τ , we have that sp has an odd representation not
containing sp, which contradicts Property 1 since sp itself also forms an odd representation
of sp.

Solution 2. We will also use Property 1 from Solution 1.
We first define some terminology and notations used in this solution. Let Zě0 denote the set

of all nonnegative integers. All sums mentioned are regarded as sums of distinct elements of S.
Moreover, a sum is called even or odd depending on the parity of the number of terms in it. All
closed or open intervals refer to sets of all integers inside them, e.g., ra, bs “ tx P Z : a ď x ď bu.

Again, let s1 ă s2 ă ¨ ¨ ¨ be all elements of S, and denote σn “ řn

i“1 si for each positive
integer n. Let On (respectively, En) be the set of numbers representable as an odd (respectively,
even) sum of elements of ts1, . . . , snu. Set E “ Ť8

n“1En and O “ Ť8
n“1On. We assume that

0 P En since 0 is representable as a sum of 0 terms.

We now proceed to our proof. Assume, to the contrary, that there exist only finitely
many positive integers that are not clean and denote the number of non-clean positive integers
by m´ 1. Clearly, S is infinite. By Property 1 from Solution 1, every positive integer n has at
most one odd and at most one even representation.

Step 1. We estimate sn`1 and σn`1.

Upper bounds: Property 1 yields |On| “ |En| “ 2n´1, so
ˇ

ˇr1, 2n´1 ` ms z On

ˇ

ˇ ě m. Hence,
there exists a clean integer xn P r1, 2n´1 ` ms z On. The definition of On then yields that the
odd representation of xn contains a term larger than sn. Therefore, sn`1 ď xn ď 2n´1 ` m for
every positive integer n. Moreover, since s1 is the smallest clean number, we get σ1 “ s1 ď m.
Then,

σn`1 “
n`1
ÿ

i“2

si ` s1 ď
n`1
ÿ

i“2

p2i´2 ` mq ` m “ 2n ´ 1 ` pn` 1qm

for every positive integer n. Notice that this estimate also holds for n “ 0.

Lower bounds: Since On`1 Ď r1, σn`1s, we have σn`1 ě |On`1| “ 2n for all positive integers n.
Then,

sn`1 “ σn`1 ´ σn ě 2n ´ p2n´1 ´ 1 ` nmq “ 2n´1 ` 1 ´ nm

for every positive integer n.

Combining the above inequalities, we have

2n´1 ` 1 ´ nm ď sn`1 ď 2n´1 ` m and 2n ď σn`1 ď 2n ´ 1 ` pn` 1qm, (3)

for every positive integer n.

Step 2. We prove Property 3 from Solution 1.

For every integer x and set of integers Y , define x ˘ Y “ tx ˘ y : y P Y u.
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In view of Property 1, we get

En`1 “ En \ psn`1 ` Onq and On`1 “ On \ psn`1 ` Enq,

where \ denotes the disjoint union operator. Notice also that sn`2 ě 2n ` 1 ´ pn ` 1qm ą
2n´1 ´ 1 ` nm ě σn for every sufficiently large n. We now claim the following.

Claim 1. pσn ´ sn`1, sn`2 ´ sn`1q Ď En for every sufficiently large n.

Proof. For sufficiently large n, all elements of pσn, sn`2q are clean. Clearly, the elements
of pσn, sn`2q can be in neither On nor O z On`1. So, pσn, sn`2q Ď On`1 z On “ sn`1 ` En,
which yields the claim. l

Now, Claim 1 together with inequalities (3) implies that, for all sufficiently large n,

E Ě En Ě pσn ´ sn`1, sn`2 ´ sn`1q Ě
`

2nm, 2n´1 ´ pn` 2qm
˘

.

This easily yields that Zě0 z E is also finite. Since Zě0 z O is also finite, by Property 1, there
exists a positive integer N such that every integer n ą N has exactly one even and one odd
representation.

Step 3. We investigate the structures of En and On.

Suppose that z P E2n. Since z can be represented as an even sum using ts1, s2, . . . , s2nu, so
can its complement σ2n ´ z. Thus, we get E2n “ σ2n ´ E2n. Similarly, we have

E2n “ σ2n´E2n, O2n “ σ2n´O2n, E2n`1 “ σ2n`1 ´O2n`1, O2n`1 “ σ2n`1´E2n`1. (4)

Claim 2. For every sufficiently large n, we have

r0, σns Ě On Ě pN, σn ´ Nq and r0, σns Ě En Ě pN, σn ´ Nq.

Proof. Clearly On, En Ď r0, σns for every positive integer n. We now prove On, En Ě pN, σn´Nq.
Taking n sufficiently large, we may assume that sn`1 ě 2n´1`1´nm ą 1

2
p2n´1´1`nmq ě σn{2.

Therefore, the odd representation of every element of pN, σn{2s cannot contain a term larger
than sn. Thus, pN, σn{2s Ď On. Similarly, since sn`1 ` s1 ą σn{2, we also have pN, σn{2s Ď En.
Equations (4) then yield that, for sufficiently large n, the interval pN, σn ´ Nq is a subset of
both On and En, as desired. l

Step 4. We obtain a final contradiction.

Notice that 0 P Zě0 z O and 1 P Zě0 z E. Therefore, the sets Zě0 z O and Zě0 z E are
nonempty. Denote o “ maxpZě0 zOq and e “ maxpZě0 z Eq. Observe also that e, o ď N .

Taking k sufficiently large, we may assume that σ2k ą 2N and that Claim 2 holds for
all n ě 2k. Due to (4) and Claim 2, we have that σ2k ´e is the minimal number greater than N
which is not in E2k, i.e., σ2k ´ e “ s2k`1 ` s1. Similarly,

σ2k ´ o “ s2k`1, σ2k`1 ´ e “ s2k`2, and σ2k`1 ´ o “ s2k`2 ` s1.

Therefore, we have

s1 “ ps2k`1 ` s1q ´ s2k`1 “ pσ2k ´ eq ´ pσ2k ´ oq “ o ´ e

“ pσ2k`1 ´ eq ´ pσ2k`1 ´ oq “ s2k`2 ´ ps2k`2 ` s1q “ ´s1,

which is impossible since s1 ą 0.
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C7. In a company of people some pairs are enemies. A group of people is called unsociable

if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.

Solution 1. Let G “ pV,Eq be a graph where V is the set of people in the company and E
is the set of the enemy pairs — the edges of the graph. In this language, partitioning into 11
disjoint enemy-free subsets means properly coloring the vertices of this graph with 11 colors.

We will prove the following more general statement.

Claim. Let G be a graph with chromatic number k ě 3. Then G contains at least 2k´1 ´ k

unsociable groups.

Recall that the chromatic number of G is the least k such that a proper coloring

V “ V1 \ ¨ ¨ ¨ \ Vk (1)

exists. In view of 211 ´ 12 ą 2015, the claim implies the problem statement.

Let G be a graph with chromatic number k. We say that a proper coloring (1) of G is
leximinimal, if the k-tuple p|V1|, |V2|, . . . , |Vk|q is lexicographically minimal; in other words, the
following conditions are satisfied: the number n1 “ |V1| is minimal; the number n2 “ |V2| is
minimal, subject to the previously chosen value of n1; . . . ; the number nk´1 “ |Vk´1| is minimal,
subject to the previously chosen values of n1, . . . , nk´2.

The following lemma is the core of the proof.

Lemma 1. Suppose that G “ pV,Eq is a graph with odd chromatic number k ě 3, and let (1)
be one of its leximinimal colorings. Then G contains an odd cycle which visits all color classes
V1, V2, . . . , Vk.

Proof of Lemma 1. Let us call a cycle colorful if it visits all color classes.

Due to the definition of the chromatic number, V1 is nonempty. Choose an arbitrary vertex
v P V1. We construct a colorful odd cycle that has only one vertex in V1, and this vertex is v.

We draw a subgraph of G as follows. Place v in the center, and arrange the sets V2, V3, . . . , Vk
in counterclockwise circular order around it. For convenience, let Vk`1 “ V2. We will draw
arrows to add direction to some edges of G, and mark the vertices these arrows point to. First
we draw arrows from v to all its neighbors in V2, and mark all those neighbors. If some vertex
u P Vi with i P t2, 3, . . . , ku is already marked, we draw arrows from u to all its neighbors
in Vi`1 which are not marked yet, and we mark all of them. We proceed doing this as long as
it is possible. The process of marking is exemplified in Figure 1.

Notice that by the rules of our process, in the final state, marked vertices in Vi cannot have
unmarked neighbors in Vi`1. Moreover, v is connected to all marked vertices by directed paths.

Now move each marked vertex to the next color class in circular order (see an example in
Figure 3). In view of the arguments above, the obtained coloring V1 \W2 \ ¨ ¨ ¨ \Wk is proper.
Notice that v has a neighbor w P W2, because otherwise

`

V1 z tvu
˘

\
`

W2 Y tvu
˘

\ W3 \ ¨ ¨ ¨ \ Wk

would be a proper coloring lexicographically smaller than (1). If w was unmarked, i.e., w was
an element of V2, then it would be marked at the beginning of the process and thus moved
to V3, which did not happen. Therefore, w is marked and w P Vk.
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−→

Figure 1 Figure 2

Since w is marked, there exists a directed path from v to w. This path moves through the
sets V2, . . . , Vk in circular order, so the number of edges in it is divisible by k´1 and thus even.
Closing this path by the edge w Ñ v, we get a colorful odd cycle, as required. l

Proof of the claim. Let us choose a leximinimal coloring (1) ofG. For every set C Ď t1, 2, . . . , ku
such that |C| is odd and greater than 1, we will provide an odd cycle visiting exactly those
color classes whose indices are listed in the set C. This property ensures that we have different
cycles for different choices of C, and it proves the claim because there are 2k´1 ´ k choices for
the set C.

Let VC “ Ť

cPC Vc, and let GC be the induced subgraph of G on the vertex set VC . We
also have the induced coloring of VC with |C| colors; this coloring is of course proper. Notice
further that the induced coloring is leximinimal: if we had a lexicographically smaller coloring
pWcqcPC of GC , then these classes, together the original color classes Vi for i R C, would provide
a proper coloring which is lexicographically smaller than (1). Hence Lemma 1, applied to the
subgraph GC and its leximinimal coloring pVcqcPC , provides an odd cycle that visits exactly
those color classes that are listed in the set C. l

Solution 2. We provide a different proof of the claim from the previous solution.
We say that a graph is critical if deleting any vertex from the graph decreases the graph’s

chromatic number. Obviously every graph contains a critical induced subgraph with the same
chromatic number.

Lemma 2. Suppose that G “ pV,Eq is a critical graph with chromatic number k ě 3. Then
every vertex v of G is contained in at least 2k´2 ´ 1 unsociable groups.

Proof. For every set X Ď V , denote by npXq the number of neighbors of v in the set X .
Since G is critical, there exists a proper coloring of G z tvu with k´ 1 colors, so there exists

a proper coloring V “ V1 \ V2 \ ¨ ¨ ¨ \ Vk of G such that V1 “ tvu. Among such colorings,
take one for which the sequence

`

npV2q, npV3q, . . . , npVkq
˘

is lexicographically minimal. Clearly,
npViq ą 0 for every i “ 2, 3, . . . , k; otherwise V2 \ . . . \ Vi´1 \ pVi Y V1q \ Vi`1 \ . . . Vk would
be a proper coloring of G with k ´ 1 colors.

We claim that for every C Ď t2, 3, . . . , ku with |C| ě 2 being even, G contains an unsociable
group so that the set of its members’ colors is precisely C Y t1u. Since the number of such
sets C is 2k´2 ´ 1, this proves the lemma. Denote the elements of C by c1, . . . , c2ℓ in increasing
order. For brevity, let Ui “ Vci. Denote by Ni the set of neighbors of v in Ui.
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We show that for every i “ 1, . . . , 2ℓ ´ 1 and x P Ni, the subgraph induced by Ui Y Ui`1

contains a path that connects x with another point in Ni`1. For the sake of contradiction,
suppose that no such path exists. Let S be the set of vertices that lie in the connected component
of x in the subgraph induced by Ui YUi`1, and let P “ Ui XS, and Q “ Ui`1 XS (see Figure 3).
Since x is separated from Ni`1, the sets Q and Ni`1 are disjoint. So, if we re-color G by
replacing Ui and Ui`1 by pUi Y Qq z P and pUi`1 Y P q z Q, respectively, we obtain a proper
coloring such that npUiq “ npVciq is decreased and only npUi`1q “ npVci`1

q is increased. That
contradicts the lexicographical minimality of

`

npV2q, npV3q, . . . , npVkq
˘

.

Ui Ui+1

Ni+1x
Ni

v

QP

S

Figure 3

Next, we build a path through U1, U2, . . . , U2ℓ as follows. Let the starting point of the path
be an arbitrary vertex v1 in the set N1. For i ď 2ℓ´ 1, if the vertex vi P Ni is already defined,
connect vi to some vertex in Ni`1 in the subgraph induced by Ui YUi`1, and add these edges to
the path. Denote the new endpoint of the path by vi`1; by the construction we have vi`1 P Ni`1

again, so the process can be continued. At the end we have a path that starts at v1 P N1 and
ends at some v2ℓ P N2ℓ. Moreover, all edges in this path connect vertices in neighboring classes:
if a vertex of the path lies in Ui, then the next vertex lies in Ui`1 or Ui´1. Notice that the path
is not necessary simple, so take a minimal subpath of it. The minimal subpath is simple and
connects the same endpoints v1 and v2ℓ. The property that every edge steps to a neighboring
color class (i.e., from Ui to Ui`1 or Ui´1) is preserved. So the resulting path also visits all of
U1, . . . , U2ℓ, and its length must be odd. Closing the path with the edges vv1 and v2ℓv we obtain
the desired odd cycle (see Figure 4). l

N2ℓN1 N2 N3

v1 v2
v3 v2ℓ

v2ℓ−1

N2ℓ−1

v

U2ℓU2ℓ−1U3U2U1

. . .

Figure 4

Now we prove the claim by induction on k ě 3. The base case k “ 3 holds by applying
Lemma 2 to a critical subgraph. For the induction step, let G0 be a critical k-chromatic sub-
graph of G, and let v be an arbitrary vertex of G0. By Lemma 2, G0 has at least 2k´2 ´ 1
unsociable groups containing v. On the other hand, the graph G0 z tvu has chromatic num-
ber k ´ 1, so it contains at least 2k´2 ´ pk ´ 1q unsociable groups by the induction hypothesis.
Altogether, this gives 2k´2 ´1`2k´2 ´ pk´1q “ 2k´1 ´k distinct unsociable groups in G0 (and
thus in G).
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Comment 1. The claim we proved is sharp. The complete graph with k vertices has chromatic
number k and contains exactly 2k´1 ´ k unsociable groups.

Comment 2. The proof of Lemma 2 works for odd values of |C| ě 3 as well. Hence, the second
solution shows the analogous statement that the number of even sized unsociable groups is at least
2k ´ 1 ´

`

k
2

˘

.
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Geometry

G1. Let ABC be an acute triangle with orthocenter H . Let G be the point such that the
quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC
bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C
and J . Prove that IJ “ AH .

Solution 1. Since HG ‖ AB and BG ‖ AH , we have BG K BC and CH K GH . There-
fore, the quadrilateral BGCH is cyclic. Since H is the orthocenter of the triangle ABC, we
have =HAC “ 900´=ACB “ =CBH . Using that BGCH and CGJI are cyclic quadrilaterals,
we get

=CJI “ =CGH “ =CBH “ =HAC.

Let M be the intersection of AC and GH , and let D ‰ A be the point on the line AC such
that AH “ HD. Then =MJI “ =HAC “ =MDH .

Since =MJI “ =MDH , =IMJ “ =HMD, and IM “ MH , the triangles IMJ and
HMD are congruent, and thus IJ “ HD “ AH .

A B

C

H

G
MI

J

D

Comment. Instead of introducing the point D, one can complete the solution by using the law of
sines in the triangles IJM and AMH, yielding

IJ

IM
“

sin=IMJ

sin=MJI
“

sin=AMH

sin=HAM
“

AH

MH
“
AH

IM
.

Solution 2. Obtain =CGH “ =HAC as in the previous solution. In the parallelogram
ABGH we have =BAH “ =HGB. It follows that

=HMC “ =BAC “ =BAH ` =HAC “ =HGB ` =CGH “ =CGB.

So the right triangles CMH and CGB are similar. Also, in the circumcircle of triangle GCI
we have similar triangles MIJ and MCG. Therefore,

IJ

CG
“ MI

MC
“ MH

MC
“ GB

GC
“ AH

CG
.

Hence IJ “ AH .
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G2. Let ABC be a triangle inscribed into a circle Ω with center O. A circle Γ with center A
meets the side BC at points D and E such that D lies between B and E. Moreover, let F and
G be the common points of Γ and Ω. We assume that F lies on the arc AB of Ω not containing
C, and G lies on the arc AC of Ω not containing B. The circumcircles of the triangles BDF
and CEG meet the sides AB and AC again at K and L, respectively. Suppose that the lines
FK and GL are distinct and intersect at X . Prove that the points A, X , and O are collinear.

Solution 1. It suffices to prove that the lines FK and GL are symmetric about AO. Now
the segments AF and AG, being chords of Ω with the same length, are clearly symmetric with
respect to AO. Hence it is enough to show

=KFA “ =AGL . (1)

Let us denote the circumcircles of BDF and CEG by ωB and ωC, respectively. To prove (1),
we start from

=KFA “ =DFG ` =GFA´ =DFK .

In view of the circles ωB, Γ, and Ω, this may be rewritten as

=KFA “ =CEG ` =GBA ´ =DBK “ =CEG ´ =CBG .

Due to the circles ωC and Ω, we obtain =KFA “ =CLG ´ =CAG “ =AGL. Thereby the
problem is solved.
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Figure 1

Solution 2. Again, we denote the circumcircle of BDKF by ωB. In addition, we set α “
=BAC, ϕ “ =ABF , and ψ “ =EDA “ =AED (see Figure 2). Notice that AF “ AG entails
ϕ “ =GCA, so all three of α, ϕ, and ψ respect the “symmetry” between B and C of our
configuration. Again, we reduce our task to proving (1).

This time, we start from

2=KFA “ 2p=DFA´ =DFKq .

Since the triangle AFD is isosceles, we have

=DFA “ =ADF “ =EDF ´ ψ “ =BFD ` =EBF ´ ψ .
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Moreover, because of the circle ωB we have =DFK “ =CBA. Altogether, this yields

2=KFA “ =DFA`
`

=BFD ` =EBF ´ ψ
˘

´ 2=CBA ,

which simplifies to
2=KFA “ =BFA ` ϕ ´ ψ ´ =CBA .

Now the quadrilateral AFBC is cyclic, so this entails 2=KFA “ α ` ϕ ´ ψ.

Due to the “symmetry” between B and C alluded to above, this argument also shows that
2=AGL “ α ` ϕ ´ ψ. This concludes the proof of (1).

ψ
ϕ

ψ
ϕ

A

B C
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Comment 1. As the first solution shows, the assumption that A be the center of Γ may be weakened
to the following one: The center of Γ lies on the line OA. The second solution may be modified to
yield the same result.

Comment 2. It might be interesting to remark that =GDK “ 900. To prove this, let G1 denote
the point on Γ diametrically opposite to G. Because of =KDF “ =KBF “ =AGF “ =G1DF , the
points D, K, and G1 are collinear, which leads to the desired result. Notice that due to symmetry we
also have =LEF “ 900.

Moreover, a standard argument shows that the triangles AGL and BGE are similar. By symmetry
again, also the triangles AFK and CDF are similar.

There are several ways to derive a solution from these facts. For instance, one may argue that

=KFA “ =BFA´ =BFK “ =BFA´ =EDG1 “ p1800 ´ =AGBq ´ p1800 ´ =G1GEq

“ =AGE ´ =AGB “ =BGE “ =AGL .

Comment 3. The original proposal did not contain the point X in the assumption and asked instead
to prove that the lines FK, GL, and AO are concurrent. This differs from the version given above only
insofar as it also requires to show that these lines cannot be parallel. The Problem Selection Committee
removed this part from the problem intending to make it thus more suitable for the Olympiad.

For the sake of completeness, we would still like to sketch one possibility for proving FK ∦ AO here.
As the points K and O lie in the angular region =FAG, it suffices to check =KFA` =FAO ă 1800.
Multiplying by 2 and making use of the formulae from the second solution, we see that this is equivalent
to pα ` ϕ ´ ψq ` p1800 ´ 2ϕq ă 3600, which in turn is an easy consequence of α ă 1800.
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G3. Let ABC be a triangle with =C “ 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection
point of the lines BD and CH . Let ω be the semicircle with diameter BD that meets the
segment CB at an interior point. A line through P is tangent to ω at Q. Prove that the
lines CQ and AD meet on ω.

Solution 1. Let K be the projection of D onto AB; then AH “ HK (see Figure 1). Since
PH ‖ DK, we have

PD

PB
“ HK

HB
“ AH

HB
. (1)

Let L be the projection of Q onto DB. Since PQ is tangent to ω and =DQB “ =BLQ “
900, we have =PQD “ =QBP “ =DQL. Therefore, QD and QB are respectively the internal
and the external bisectors of =PQL. By the angle bisector theorem, we obtain

PD

DL
“ PQ

QL
“ PB

BL
. (2)

The relations (1) and (2) yield
AH

HB
“ PD

PB
“ DL

LB
. So, the spiral similarity τ centered at B

and sending A to D maps H to L. Moreover, τ sends the semicircle with diameter AB passing
through C to ω. Due to CH K AB and QL K DB, it follows that τpCq “ Q.

Hence, the triangles ABD and CBQ are similar, so =ADB “ =CQB. This means that the
lines AD and CQ meet at some point T , and this point satisfies =BDT “ =BQT . Therefore,
T lies on ω, as needed.

A B

C

D

H K

P

Q
T

L

ω

A B

C

D

H K

P

Q′

T

Γ

ω

Figure 1 Figure 2

Comment 1. Since =BAD “ =BCQ, the point T lies also on the circumcircle of the triangle ABC.

Solution 2. Let Γ be the circumcircle of ABC, and let AD meet ω at T . Then =ATB “
=ACB “ 900, so T lies on Γ as well. As in the previous solution, let K be the projection of D
onto AB; then AH “ HK (see Figure 2).

Our goal now is to prove that the points C, Q, and T are collinear. Let CT meet ω again
at Q1. Then, it suffices to show that PQ1 is tangent to ω, or that =PQ1D “ =Q1BD.

Since the quadrilateral BDQ1T is cyclic and the triangles AHC andKHC are congruent, we
have =Q1BD “ =Q1TD “ =CTA “ =CBA “ =ACH “ =HCK. Hence, the right triangles

CHK and BQ1D are similar. This implies that
HK

CK
“ Q1D

BD
, and thus HK ¨BD “ CK ¨Q1D.

Notice that PH ‖ DK; therefore, we have
PD

BD
“ HK

BK
, and so PD ¨ BK “ HK ¨ BD.

Consequently, PD ¨ BK “ HK ¨BD “ CK ¨Q1D, which yields
PD

Q1D
“ CK

BK
.

Since =CKA “ =KAC “ =BDQ1, the triangles CKB and PDQ1 are similar, so =PQ1D “
=CBA “ =Q1BD, as required.
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Comment 2. There exist several other ways to prove that PQ1 is tangent to ω. For instance, one

may compute
PD

PB
and

PQ1

PB
in terms of AH and HB to verify that PQ12 “ PD ¨PB, concluding that

PQ1 is tangent to ω.

Another possible approach is the following. As in Solution 2, we introduce the points T and Q1

and mention that the triangles ABC and DBQ1 are similar (see Figure 3).
Let M be the midpoint of AD, and let L be the projection of Q1 onto AB. Construct E on the

line AB so that EP is parallel to AD. Projecting from P , we get pA,B;H,Eq “ pA,D;M,8q “ ´1.

Since
EA

AB
“
PD

DB
, the point P is the image of E under the similarity transform mapping ABC

to DBQ1. Therefore, we have pD,B;L,P q “ pA,B;H,Eq “ ´1, which means that Q1D and Q1B are
respectively the internal and the external bisectors of =PQ1L. This implies that PQ1 is tangent to ω,
as required.

M

A B

C

D

E H K

P

Q′

T

L

ω

Figure 3

Solution 3. Introduce the points T and Q1 as in the previous solution. Note that T lies on
the circumcircle of ABC. Here we present yet another proof that PQ1 is tangent to ω.

Let Ω be the circle completing the semicircle ω. Construct a point F symmetric to C with
respect to AB. Let S ‰ T be the second intersection point of FT and Ω (see Figure 4).

A B

C

D

H K

P

Q′

T

F

S

Ω

Figure 4

Since AC “ AF , we have =DKC “ =HCK “ =CBA “ =CTA “ =DTS “ 1800 ´
=SKD. Thus, the points C,K, and S are collinear. Notice also that =Q1KD “ =Q1TD “
=HCK “ =KFH “ 1800 ´ =DKF . This implies that the points F,K, and Q1 are collinear.

Applying Pascal’s theorem to the degenerate hexagon KQ1Q1TSS, we get that the tan-
gents to Ω passing through Q1 and S intersect on CF . The relation =Q1TD “ =DTS yields
that Q1 and S are symmetric with respect to BD. Therefore, the two tangents also intersect
on BD. Thus, the two tangents pass through P . Hence, PQ1 is tangent to ω, as needed.
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G4. Let ABC be an acute triangle, and let M be the midpoint of AC. A circle ω passing
through B and M meets the sides AB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BPTQ is a parallelogram. Suppose that T lies on the
circumcircle of the triangle ABC. Determine all possible values of BT {BM .

Answer.
?
2.

Solution 1. Let S be the center of the parallelogram BPTQ, and let B1 ‰ B be the point on
the ray BM such that BM “ MB1 (see Figure 1). It follows that ABCB1 is a parallelogram.
Then, =ABB1 “ =PQM and =BB1A “ =B1BC “ =MPQ, and so the triangles ABB1 and
MQP are similar. It follows that AM and MS are corresponding medians in these triangles.
Hence,

=SMP “ =B1AM “ =BCA “ =BTA. (1)

Since =ACT “ =PBT and =TAC “ =TBC “ =BTP , the triangles TCA and PBT are
similar. Again, as TM and PS are corresponding medians in these triangles, we have

=MTA “ =TPS “ =BQP “ =BMP. (2)

Now we deal separately with two cases.

Case 1. S does not lie on BM . Since the configuration is symmetric between A and C, we
may assume that S and A lie on the same side with respect to the line BM .

Applying (1) and (2), we get

=BMS “ =BMP ´ =SMP “ =MTA ´ =BTA “ =MTB,

and so the triangles BSM and BMT are similar. We now have BM2 “ BS ¨BT “ BT 2{2, so
BT “

?
2BM .

Case 2. S lies on BM . It follows from (2) that =BCA “ =MTA “ =BQP “ =BMP

(see Figure 2). Thus, PQ ‖ AC and PM ‖ AT . Hence, BS{BM “ BP {BA “ BM{BT , so
BT 2 “ 2BM2 and BT “

?
2BM .
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Comment 1. Here is another way to show that the triangles BSM and BMT are similar. Denote
by Ω the circumcircle of the triangle ABC. Let R be the second point of intersection of ω and Ω, and
let τ be the spiral similarity centered at R mapping ω to Ω. Then, one may show that τ maps each
point X on ω to a point Y on Ω such that B, X, and Y are collinear (see Figure 3). If we let K and L
be the second points of intersection of BM with Ω and of BT with ω, respectively, then it follows that
the triangle MKT is the image of SML under τ . We now obtain =BSM “ =TMB, which implies
the desired result.
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Solution 2. Again, we denote by Ω the circumcircle of the triangle ABC.
Choose the pointsX and Y on the rays BA and BC respectively, so that =MXB “ =MBC

and =BYM “ =ABM (see Figure 4). Then the triangles BMX and YMB are similar. Since
=XPM “ =BQM , the points P and Q correspond to each other in these triangles. So, ifÝÝÑ
BP “ µ ¨ ÝÝÑ

BX , then
ÝÝÑ
BQ “ p1 ´ µq ¨ ÝÝÑ

BY . Thus

ÝÝÑ
BT “ ÝÝÑ

BP ` ÝÝÑ
BQ “ ÝÝÑ

BY ` µ ¨ pÝÝÑ
BX ´ ÝÝÑ

BY q “ ÝÝÑ
BY ` µ ¨ ÝÝÑ

Y X,

which means that T lies on the line XY .
Let B1 ‰ B be the point on the ray BM such that BM “ MB1. Then =MB1A “

=MBC “ =MXB and =CB1M “ =ABM “ =BYM . This means that the triangles BMX ,
BAB1, YMB, and B1CB are all similar; hence BA ¨ BX “ BM ¨ BB1 “ BC ¨ BY . Thus
there exists an inversion centered at B which swaps A with X , M with B1, and C with Y .
This inversion then swaps Ω with the line XY , and hence it preserves T . Therefore, we have
BT 2 “ BM ¨BB1 “ 2BM2, and BT “

?
2BM .

Solution 3. We begin with the following lemma.

Lemma. Let ABCT be a cyclic quadrilateral. Let P and Q be points on the sides BA and BC
respectively, such that BPTQ is a parallelogram. Then BP ¨BA` BQ ¨BC “ BT 2.

Proof. Let the circumcircle of the triangle QTC meet the line BT again at J (see Figure 5).
The power of B with respect to this circle yields

BQ ¨BC “ BJ ¨BT. (3)
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We also have =TJQ “ 1800 ´ =QCT “ =TAB and =QTJ “ =ABT , and so the triangles
TJQ and BAT are similar. We now have TJ{TQ “ BA{BT . Therefore,

TJ ¨BT “ TQ ¨BA “ BP ¨ BA. (4)

Combining (3) and (4) now yields the desired result. l

Let X and Y be the midpoints of BA and BC respectively (see Figure 6). Applying the
lemma to the cyclic quadrilaterals PBQM and ABCT , we obtain

BX ¨BP ` BY ¨ BQ “ BM2

and
BP ¨BA` BQ ¨BC “ BT 2.

Since BA “ 2BX and BC “ 2BY , we have BT 2 “ 2BM2, and so BT “
?
2BM .
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Comment 2. Here we give another proof of the lemma using Ptolemy’s theorem. We readily have

TC ¨BA` TA ¨BC “ AC ¨BT.

The lemma now follows from
BP

TC
“
BQ

TA
“
BT

AC
“

sin=BCT

sin=ABC
.
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G5. Let ABC be a triangle with CA ‰ CB. Let D, F , and G be the midpoints of the
sides AB, AC, and BC, respectively. A circle Γ passing through C and tangent to AB at D
meets the segments AF and BG at H and I, respectively. The points H 1 and I 1 are symmetric
to H and I about F and G, respectively. The line H 1I 1 meets CD and FG at Q and M ,
respectively. The line CM meets Γ again at P . Prove that CQ “ QP .

Solution 1. We may assume that CA ą CB. Observe that H 1 and I 1 lie inside the segments
CF and CG, respectively. Therefore, M lies outside △ABC (see Figure 1).

Due to the powers of points A and B with respect to the circle Γ, we have

CH 1 ¨ CA “ AH ¨AC “ AD2 “ BD2 “ BI ¨BC “ CI 1 ¨ CB.

Therefore, CH 1¨CF “ CI 1¨CG. Hence, the quadrilateralH 1I 1GF is cyclic, and so =I 1H 1C “
=CGF .

Let DF and DG meet Γ again at R and S, respectively. We claim that the points R and S
lie on the line H 1I 1.

Observe that FH 1¨FA “ FH ¨FC “ FR¨FD. Thus, the quadrilateral ADH 1R is cyclic, and
hence =RH 1F “ =FDA “ =CGF “ =I 1H 1C. Therefore, the pointsR,H 1, and I 1 are collinear.
Similarly, the points S,H 1, and I 1 are also collinear, and so all the points R,H 1, Q, I 1, S, andM
are all collinear.
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Then, =RSD “ =RDA “ =DFG. Hence, the quadrilateral RSGF is cyclic (see Figure 2).
Therefore, MH 1 ¨MI 1 “ MF ¨MG “ MR ¨MS “ MP ¨MC. Thus, the quadrilateral CPI 1H 1

is also cyclic. Let ω be its circumcircle.
Notice that =H 1CQ “ =SDC “ =SRC and =QCI 1 “ =CDR “ =CSR. Hence,

△CH 1Q „ △RCQ and △CI 1Q „ △SCQ, and therefore QH 1 ¨QR “ QC2 “ QI 1 ¨QS.
We apply the inversion with center Q and radius QC. Observe that the points R,C, and S

are mapped to H 1, C, and I 1, respectively. Therefore, the circumcircle Γ of △RCS is mapped
to the circumcircle ω of △H 1CI 1. Since P and C belong to both circles and the point C is
preserved by the inversion, we have that P is also mapped to itself. We then get QP 2 “ QC2.
Hence, QP “ QC.

Comment 1. The problem statement still holds when Γ intersects the sides CA and CB outside
segments AF and BG, respectively.
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Solution 2. Let X “ HI X AB, and let the tangent to Γ at C meet AB at Y . Let XC
meet Γ again at X 1 (see Figure 3). Projecting from C, X , and C again, we have pX,A;D,Bq “
pX 1, H ;D, Iq “ pC, I;D,Hq “ pY,B;D,Aq. Since A and B are symmetric about D, it follows
that X and Y are also symmetric about D.

Now, Menelaus’ theorem applied to △ABC with the line HIX yields

1 “ CH

HA
¨ BI
IC

¨ AX
XB

“ AH 1

H 1C
¨ CI

1

I 1B
¨ BY
Y A

.

By the converse of Menelaus’ theorem applied to △ABC with points H 1, I 1, Y , we get that
the points H 1, I 1, Y are collinear.

A B

C

D
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Let T be the midpoint of CD, and let O be the center of Γ. Let CM meet TY at N . To
avoid confusion, we clean some superfluous details out of the picture (see Figure 4).

Let V “ MT X CY . Since MT ‖ Y D and DT “ TC, we get CV “ V Y . Then Ceva’s
theorem applied to △CTY with the point M yields

1 “ TQ

QC
¨ CV
V Y

¨ Y N
NT

“ TQ

QC
¨ Y N
NT

.

Therefore, TQ

QC
“ TN

NY
. So, NQ ‖ CY , and thus NQ K OC.

Note that the points O,N, T , and Y are collinear. Therefore, CQ K ON . So, Q is the
orthocenter of △OCN , and hence OQ K CP . Thus, Q lies on the perpendicular bisector
of CP , and therefore CQ “ QP , as required.

C

D
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Figure 4
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Comment 2. The second part of Solution 2 provides a proof of the following more general statement,
which does not involve a specific choice of Q on CD.

Let Y C and Y D be two tangents to a circle Γ with center O (see Figure 4). Let ℓ be the midline
of △Y CD parallel to Y D. Let Q and M be two points on CD and ℓ, respectively, such that the
line QM passes through Y . Then OQ K CM .



54 IMO 2015 Thailand

G6. Let ABC be an acute triangle with AB ą AC, and let Γ be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint of BC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on Γ that satisfy =AQH “ 900 and
=QKH “ 900. Prove that the circumcircles of the triangles KQH and KFM are tangent to
each other.

Solution 1. Let A1 be the point diametrically opposite to A on Γ. Since =AQA1 “ 900 and
=AQH “ 900, the points Q, H , and A1 are collinear. Similarly, if Q1 denotes the point on Γ
diametrically opposite to Q, then K, H , and Q1 are collinear. Let the line AHF intersect Γ
again at E; it is known that M is the midpoint of the segment HA1 and that F is the midpoint
of HE. Let J be the midpoint of HQ1.

Consider any point T such that TK is tangent to the circle KQH at K with Q and T

lying on different sides of KH (see Figure 1). Then =HKT “ =HQK and we are to prove
that =MKT “ =CFK. Thus it remains to show that =HQK “ =CFK ` =HKM . Due
to =HQK “ 900 ´ =Q1HA1 and =CFK “ 900 ´ =KFA, this means the same as =Q1HA1 “
=KFA´ =HKM . Now, since the triangles KHE and AHQ1 are similar with F and J being
the midpoints of corresponding sides, we have =KFA “ =HJA, and analogously one may
obtain =HKM “ =JQH . Thereby our task is reduced to verifying

=Q1HA1 “ =HJA ´ =JQH .

K

Γ

A

T

C

EA′

Q′

B

H

J

M F

Q

A′

J

Q

Q′

Γ

O

A

H

Figure 1 Figure 2

To avoid confusion, let us draw a new picture at this moment (see Figure 2). Owing to
=Q1HA1 “ =JQH ` =HJQ and =HJA “ =QJA ` =HJQ, we just have to show that
2=JQH “ =QJA. To this end, it suffices to remark that AQA1Q1 is a rectangle and that J ,
being defined to be the midpoint of HQ1, has to lie on the mid parallel of QA1 and Q1A.

Solution 2. We define the points A1 and E and prove that the ray MH passes through Q

in the same way as in the first solution. Notice that the points A1 and E can play analogous
roles to the points Q and K, respectively: point A1 is the second intersection of the line MH

with Γ, and E is the point on Γ with the property =HEA1 “ 900 (see Figure 3).
In the circles KQH and EA1H , the line segments HQ and HA1 are diameters, respectively;

so, these circles have a common tangent t at H , perpendicular to MH . Let R be the radical
center of the circles ABC, KQH and EA1H . Their pairwise radical axes are the lines QK,
A1E and the line t; they all pass through R. Let S be the midpoint of HR; by =QKH “
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=HEA1 “ 900, the quadrilateral HERK is cyclic and its circumcenter is S; hence we have
SK “ SE “ SH . The line BC, being the perpendicular bisector of HE, passes through S.

The circle HMF also is tangent to t at H ; from the power of S with respect to the circle
HMF we have

SM ¨ SF “ SH2 “ SK2.

So, the power of S with respect to the circles KQH and KFM is SK2. Therefore, the line
segment SK is tangent to both circles at K.
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G7. Let ABCD be a convex quadrilateral, and let P , Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segments PR and QS meet at O. Suppose
that each of the quadrilaterals APOS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, PQ, and RS are either concurrent or parallel to each other.

Solution 1. Denote by γA, γB, γC , and γD the incircles of the quadrilaterals APOS, BQOP ,
CROQ, and DSOR, respectively.

We start with proving that the quadrilateral ABCD also has an incircle which will be
referred to as Ω. Denote the points of tangency as in Figure 1. It is well-known thatQQ1 “ OO1

(if BC ‖ PR, this is obvious; otherwise, one may regard the two circles involved as the incircle
and an excircle of the triangle formed by the lines OQ, PR, and BC). Similarly, OO1 “ PP1.
Hence we have QQ1 “ PP1. The other equalities of segment lengths marked in Figure 1 can
be proved analogously. These equalities, together with AP1 “ AS1 and similar ones, yield
AB ` CD “ AD ` BC, as required.

A

B

C

D

P

Q

R

S

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

P1

O1

Q1

S1

γA

γB

γC

γD

Figure 1

Next, let us draw the lines parallel to QS through P and R, and also draw the lines parallel
to PR through Q and S. These lines form a parallelogram; denote its vertices by A1, B1, C 1,
and D1 as shown in Figure 2.

Since the quadrilateral APOS has an incircle, we have AP ´AS “ OP ´OS “ A1S´A1P .
It is well-known that in this case there also exists a circle ωA tangent to the four rays AP ,
AS, A1P , and A1S. It is worth mentioning here that in case when, say, the lines AB and A1B1

coincide, the circle ωA is just tangent to AB at P . We introduce the circles ωB, ωC, and ωD in
a similar manner.

Assume that the radii of the circles ωA and ωC are different. Let X be the center of the
homothety having a positive scale factor and mapping ωA to ωC .

Now, Monge’s theorem applied to the circles ωA, Ω, and ωC shows that the points A, C,
and X are collinear. Applying the same theorem to the circles ωA, ωB, and ωC , we see that
the points P , Q, and X are also collinear. Similarly, the points R, S, and X are collinear, as
required.

If the radii of ωA and ωC are equal but these circles do not coincide, then the degenerate
version of the same theorem yields that the three lines AC, PQ, and RS are parallel to the
line of centers of ωA and ωC .

Finally, we need to say a few words about the case when ωA and ωC coincide (and thus they
also coincide with Ω, ωB, and ωD). It may be regarded as the limit case in the following manner.
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Let us fix the positions of A, P , O, and S (thus we also fix the circles ωA, γA, γB, and γD). Now
we vary the circle γC inscribed into =QOR; for each of its positions, one may reconstruct the
lines BC and CD as the external common tangents to γB, γC and γC, γD different from PR

and QS, respectively. After such variation, the circle Ω changes, so the result obtained above
may be applied.

Solution 2. Applying Menelaus’ theorem to △ABC with the line PQ and to △ACD with
the line RS, we see that the line AC meets PQ and RS at the same point (possibly at infinity)
if and only if

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ 1. (1)

So, it suffices to prove (1).

We start with the following result.

Lemma 1. Let EFGH be a circumscribed quadrilateral, and let M be its incenter. Then

EF ¨ FG
GH ¨HE “ FM2

HM2
.

Proof. Notice that =EMH ` =GMF “ =FME ` =HMG “ 1800, =FGM “ =MGH , and
=HEM “ =MEF (see Figure 3). By the law of sines, we get

EF

FM
¨ FG
FM

“ sin=FME ¨ sin=GMF

sin=MEF ¨ sin=FGM
“ sin=HMG ¨ sin=EMH

sin=MGH ¨ sin=HEM
“ GH

HM
¨ HE
HM

. l
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We denote by I, J , K, and L the incenters of the quadrilaterals APOS, BQOP , CROQ,
and DSOR, respectively. Applying Lemma 1 to these four quadrilaterals we get

AP ¨ PO
OS ¨ SA ¨ BQ ¨QO

OP ¨ PB ¨ CR ¨ RO
OQ ¨QC ¨ DS ¨ SO

OR ¨RD “ PI2

SI2
¨ QJ

2

PJ2
¨ RK

2

QK2
¨ SL

2

RL2
,

which reduces to

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ PI2

PJ2
¨ QJ

2

QK2
¨ RK

2

RL2
¨ SL

2

SI2
. (2)

Next, we have =IPJ “ =JOI “ 900, and the line OP separates I and J (see Figure 4).
This means that the quadrilateral IPJO is cyclic. Similarly, we get that the quadrilateral
JQKO is cyclic with =JQK “ 900. Thus, =QKJ “ =QOJ “ =JOP “ =JIP . Hence,

the right triangles IPJ and KQJ are similar. Therefore,
PI

PJ
“ QK

QJ
. Likewise, we obtain

RK

RL
“ SI

SL
. These two equations together with (2) yield (1).

Comment. Instead of using the sine law, one may prove Lemma 1 by the following approach.

F
G

H

E

M

N

Figure 5
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Let N be the point such that △NHG „ △MEF and such that N and M lie on different sides
of the line GH, as shown in Figure 5. Then =GNH ` =HMG “ =FME ` =HMG “ 1800. So,
the quadrilateral GNHM is cyclic. Thus, =MNH “ =MGH “ =FGM and =HMN “ =HGN “

=EFM “ =MFG. Hence, △HMN „ △MFG. Therefore,
HM

HG
“

HM

HN
¨
HN

HG
“

MF

MG
¨
EM

EF
.

Similarly, we obtain
HM

HE
“
MF

ME
¨
GM

GF
. By multiplying these two equations, we complete the proof.

Solution 3. We present another approach for showing (1) from Solution 2.

Lemma 2. Let EFGH and E 1F 1G1H 1 be circumscribed quadrilaterals such that =E ` =E 1 “
=F ` =F 1 “ =G ` =G1 “ =H ` =H 1 “ 1800. Then

EF ¨GH
FG ¨HE “ E 1F 1 ¨G1H 1

F 1G1 ¨H 1E 1
.

Proof. Let M and M 1 be the incenters of EFGH and E 1F 1G1H 1, respectively. We use the
notation rXY Zs for the area of a triangle XY Z.

Taking into account the relation =FME ` =F 1M 1E 1 “ 1800 together with the analogous
ones, we get

EF ¨GH
FG ¨HE “ rMEF s ¨ rMGHs

rMFGs ¨ rMHEs “ ME ¨ MF ¨ sin=FME ¨MG ¨MH ¨ sin=HMG

MF ¨MG ¨ sin=GMF ¨MH ¨ ME ¨ sin=EMH

“ M 1E 1 ¨M 1F 1 ¨ sin=F 1M 1E 1 ¨M 1G1 ¨M 1H 1 ¨ sin=H 1M 1G1

M 1F 1 ¨M 1G1 ¨ sin=G1M 1F 1 ¨M 1H 1 ¨ M 1E 1 ¨ sin=E 1M 1H 1
“ E 1F 1 ¨G1H 1

F 1G1 ¨H 1E 1
. l
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Denote by h the homothety centered at O that maps the incircle of CROQ to the incircle
of APOS. Let Q1 “ hpQq, C 1 “ hpCq, R1 “ hpRq, O1 “ O, S 1 “ S, A1 “ A, and P 1 “ P .
Furthermore, define B1 “ A1P 1 X C 1Q1 and D1 “ A1S 1 X C 1R1 as shown in Figure 6. Then

AP ¨OS
PO ¨ SA “ A1P 1 ¨O1S 1

P 1O1 ¨ S 1A1

holds trivially. We also have
CR ¨OQ
RO ¨QC “ C 1R1 ¨O1Q1

R1O1 ¨ Q1C 1
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by the similarity of the quadrilaterals CROQ and C 1R1O1Q1.

Next, consider the circumscribed quadrilaterals BQOP and B1Q1O1P 1 whose incenters lie
on different sides of the quadrilaterals’ shared side line OP “ O1P 1. Observe that BQ ‖ B1Q1

and that B1 and Q1 lie on the lines BP and QO, respectively. It is now easy to see that the
two quadrilaterals satisfy the hypotheses of Lemma 2. Thus, we deduce

BQ ¨ OP
QO ¨ PB “ B1Q1 ¨O1P 1

Q1O1 ¨ P 1B1
.

Similarly, we get
DS ¨OR
SO ¨ RD “ D1S 1 ¨O1R1

S 1O1 ¨R1D1
.

Multiplying these four equations, we obtain

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ A1P 1

P 1B1
¨ B

1Q1

Q1C 1
¨ C

1R1

R1D1
¨ D

1S 1

S 1A1
. (3)

Finally, we apply Brianchon’s theorem to the circumscribed hexagon A1P 1R1C 1Q1S 1 and
deduce that the lines A1C 1, P 1Q1, and R1S 1 are either concurrent or parallel to each other. So,
by Menelaus’ theorem, we obtain

A1P 1

P 1B1
¨ B

1Q1

Q1C 1
¨ C

1R1

R1D1
¨ D

1S 1

S 1A1
“ 1.

This equation together with (3) yield (1).
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G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals
having no common points other than the vertices of the polygon. We say that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the first
Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)

Solution 1. We denote by rSs the area of a polygon S.

Recall that each triangulation of a convex n-gon has exactly n ´ 2 triangles. This means
that all triangles in any two Thaiangulations of a convex polygon Π have the same area.

Let T be a triangulation of a convex polygon Π. If four vertices A, B, C, and D of Π
form a parallelogram, and T contains two triangles whose union is this parallelogram, then we
say that T contains parallelogram ABCD. Notice here that if two Thaiangulations T1 and T2

of Π differ by two triangles, then the union of these triangles is a quadrilateral each of whose
diagonals bisects its area, i.e., a parallelogram.

We start with proving two properties of triangulations.

Lemma 1. A triangulation of a convex polygon Π cannot contain two parallelograms.

Proof. Arguing indirectly, assume that P1 and P2 are two parallelograms contained in some
triangulation T . If they have a common triangle in T , then we may assume that P1 consists of
triangles ABC and ADC of T , while P2 consists of triangles ADC and CDE (see Figure 1).
But then BC ‖ AD ‖ CE, so the three vertices B, C, and E of Π are collinear, which is absurd.

Assume now that P1 and P2 contain no common triangle. Let P1 “ ABCD. The sides AB,
BC, CD, and DA partition Π into several parts, and P2 is contained in one of them; we may
assume that this part is cut off from P1 by AD. Then one may label the vertices of P2 by X ,
Y , Z, and T so that the polygon ABCDXY ZT is convex (see Figure 2; it may happen that
D “ X and/or T “ A, but still this polygon has at least six vertices). But the sum of the
external angles of this polygon at B, C, Y , and Z is already 3600, which is impossible. A final
contradiction. l
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Figure 1 Figure 2 Figure 3

Lemma 2. Every triangle in a Thaiangulation T of Π contains a side of Π.

Proof. Let ABC be a triangle in T . Apply an affine transform such that ABC maps to an
equilateral triangle; let A1B1C 1 be the image of this triangle, and Π1 be the image of Π. Clearly,
T maps into a Thaiangulation T 1 of Π1.

Assume that none of the sides of △A1B1C 1 is a side of Π1. Then T 1 contains some other
triangles with these sides, say, A1B1Z, C 1A1Y , and B1C 1X ; notice that A1ZB1XC 1Y is a convex
hexagon (see Figure 3). The sum of its external angles at X , Y , and Z is less than 3600. So one
of these angles (say, at Z) is less than 1200, hence =A1ZB1 ą 600. Then Z lies on a circular arc
subtended by A1B1 and having angular measure less than 2400; consequently, the altitude ZH
of △A1B1Z is less than

?
3A1B1{2. Thus rA1B1Zs ă rA1B1C 1s, and T 1 is not a Thaiangulation.

A contradiction. l
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Now we pass to the solution. We say that a triangle in a triangulation of Π is an ear if it
contains two sides of Π. Note that each triangulation of a polygon contains some ear.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides
such that some two Thaiangulations T1 and T2 of Π violate the problem statement (thus Π has
at least five sides). Consider now any ear ABC in T1, with AC being a diagonal of Π. If T2

also contains △ABC, then one may cut △ABC off from Π, getting a polygon with a smaller
number of sides which also violates the problem statement. This is impossible; thus T2 does
not contain △ABC.

Next, T1 contains also another triangle with side AC, say △ACD. By Lemma 2, this
triangle contains a side of Π, so D is adjacent to either A or C on the boundary of Π. We may
assume that D is adjacent to C.

Assume that T2 does not contain the triangle BCD. Then it contains two different trian-
gles BCX and CDY (possibly, with X “ Y ); since these triangles have no common interior
points, the polygon ABCDYX is convex (see Figure 4). But, since rABCs “ rBCXs “
rACDs “ rCDY s, we get AX ‖ BC and AY ‖ CD which is impossible. Thus T2 con-
tains △BCD.

Therefore, rABDs “ rABCs ` rACDs ´ rBCDs “ rABCs, and ABCD is a parallelogram
contained in T1. Let T 1 be the Thaiangulation of Π obtained from T1 by replacing the diago-
nal AC with BD; then T 1 is distinct from T2 (otherwise T1 and T2 would differ by two triangles).
Moreover, T 1 shares a common ear BCD with T2. As above, cutting this ear away we obtain
that T2 and T 1 differ by two triangles forming a parallelogram different from ABCD. Thus T 1

contains two parallelograms, which contradicts Lemma 1.
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Figure 4 Figure 5

Comment 1. Lemma 2 is equivalent to the well-known Erdős–Debrunner inequality stating that
for any triangle PQR and any points A, B, C lying on the sides QR, RP , and PQ, respectively, we
have

rABCs ě min
 

rABRs, rBCP s, rCAQs
(

. (1)

To derive this inequality from Lemma 2, one may assume that (1) does not hold, and choose
some points X, Y , and Z inside the triangles BCP , CAQ, and ABR, respectively, so that rABCs “
rABZs “ rBCXs “ rCAY s. Then a convex hexagon AZBXCY has a Thaiangulation contain-
ing △ABC, which contradicts Lemma 2.

Conversely, assume that a Thaiangulation T of Π contains a triangle ABC none of whose sides
is a side of Π, and let ABZ, AY C, and XBC be other triangles in T containing the corresponding
sides. Then AZBXCY is a convex hexagon.

Consider the lines through A, B, and C parallel to Y Z, ZX, and XY , respectively. They form a
triangle X 1Y 1Z 1 similar to △XY Z (see Figure 5). By (1) we have

rABCs ě min
 

rABZ 1s, rBCX 1s, rCAY 1s
(

ą min
 

rABZs, rBCXs, rCAY s
(

,

so T is not a Thaiangulation.
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Solution 2. We will make use of the preliminary observations from Solution 1, together with
Lemma 1.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides
such that some two Thaiangulations T1 and T2 of Π violate the statement (thus Π has at least
five sides). Assume that T1 and T2 share a diagonal d splitting Π into two smaller polygons Π1

and Π2. Since the problem statement holds for any of them, the induced Thaiangulations of
each of Πi differ by two triangles forming a parallelogram (the Thaiangulations induced on Πi

by T1 and T2 may not coincide, otherwise T1 and T2 would differ by at most two triangles). But
both these parallelograms are contained in T1; this contradicts Lemma 1. Therefore, T1 and T2

share no diagonal. Hence they also share no triangle.
We consider two cases.

Case 1. Assume that some vertex B of Π is an endpoint of some diagonal in T1, as well as an
endpoint of some diagonal in T2.

Let A and C be the vertices of Π adjacent to B. Then T1 contains some triangles ABX
and BCY , while T2 contains some triangles ABX 1 and BCY 1. Here, some of the points X ,
X 1, Y , and Y 1 may coincide; however, in view of our assumption together with the fact that T1

and T2 share no triangle, all four triangles ABX , BCY , ABX 1, and BCY 1 are distinct.
Since rABXs “ rBCY s “ rABX 1s “ rBCY 1s, we have XX 1 ‖ AB and Y Y 1 ‖ BC. Now,

if X “ Y , then X 1 and Y 1 lie on different lines passing through X and are distinct from that
point, so that X 1 ‰ Y 1. In this case, we may switch the two Thaiangulations. So, hereafter we
assume that X ‰ Y .

In the convex pentagon ABCYX we have either =BAX ` =AXY ą 1800 or =XY C `
=Y CB ą 1800 (or both); due to the symmetry, we may assume that the first inequality holds.
Let r be the ray emerging from X and co-directed with

ÝÝÑ
AB; our inequality shows that r points

to the interior of the pentagon (and thus to the interior of Π). Therefore, the ray opposite to r
points outside Π, so X 1 lies on r; moreover, X 1 lies on the “arc” CY of Π not containing X .
So the segments XX 1 and Y B intersect (see Figure 6).

Let O be the intersection point of the rays r and BC. Since the triangles ABX 1 and BCY 1

have no common interior points, Y 1 must lie on the “arc” CX 1 which is situated inside the
triangle XBO. Therefore, the line Y Y 1 meets two sides of △XBO, none of which may be XB
(otherwise the diagonals XB and Y Y 1 would share a common point). Thus Y Y 1 intersects BO,
which contradicts Y Y 1 ‖ BC.
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Case 2. In the remaining case, each vertex of Π is an endpoint of a diagonal in at most one
of T1 and T2. On the other hand, a triangulation cannot contain two consecutive vertices with
no diagonals from each. Therefore, the vertices of Π alternatingly emerge diagonals in T1 and
in T2. In particular, Π has an even number of sides.
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Next, we may choose five consecutive vertices A, B, C, D, and E of Π in such a way that

=ABC ` =BCD ą 1800 and =BCD ` =CDE ą 1800. (2)

In order to do this, it suffices to choose three consecutive vertices B, C, and D of Π such that
the sum of their external angles is at most 1800. This is possible, since Π has at least six sides.

A

B

C

D

E

X Y

Z

Figure 7

We may assume that T1 has no diagonals from B and D (and thus contains the trian-
gles ABC and CDE), while T2 has no diagonals from A, C, and E (and thus contains the
triangle BCD). Now, since rABCs “ rBCDs “ rCDEs, we have AD ‖ BC and BE ‖ CD
(see Figure 7). By (2) this yields that AD ą BC and BE ą CD. Let X “ AC X BD and
Y “ CE X BD; then the inequalities above imply that AX ą CX and EY ą CY .

Finally, T2 must also contain some triangle BDZ with Z ‰ C; then the ray CZ lies in
the angle ACE. Since rBCDs “ rBDZs, the diagonal BD bisects CZ. Together with the
inequalities above, this yields that Z lies inside the triangle ACE (but Z is distinct from A

and E), which is impossible. The final contradiction.

Comment 2. Case 2 may also be accomplished with the use of Lemma 2. Indeed, since each
triangulation of an n-gon contains n ´ 2 triangles neither of which may contain three sides of Π,
Lemma 2 yields that each Thaiangulation contains exactly two ears. But each vertex of Π is a vertex
of an ear either in T1 or in T2, so Π cannot have more than four vertices.
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Number Theory

N1. Determine all positive integers M for which the sequence a0, a1, a2, . . ., defined by
a0 “ 2M`1

2
and ak`1 “ aktaku for k “ 0, 1, 2, . . ., contains at least one integer term.

Answer. All integers M ě 2.

Solution 1. Define bk “ 2ak for all k ě 0. Then

bk`1 “ 2ak`1 “ 2aktaku “ bk

Z

bk

2

^

.

Since b0 is an integer, it follows that bk is an integer for all k ě 0.
Suppose that the sequence a0, a1, a2, . . . does not contain any integer term. Then bk must

be an odd integer for all k ě 0, so that

bk`1 “ bk

Z

bk

2

^

“ bkpbk ´ 1q
2

. (1)

Hence

bk`1 ´ 3 “ bkpbk ´ 1q
2

´ 3 “ pbk ´ 3qpbk ` 2q
2

(2)

for all k ě 0.
Suppose that b0 ´ 3 ą 0. Then equation (2) yields bk ´ 3 ą 0 for all k ě 0. For each k ě 0,

define ck to be the highest power of 2 that divides bk ´ 3. Since bk ´ 3 is even for all k ě 0, the
number ck is positive for every k ě 0.

Note that bk `2 is an odd integer. Therefore, from equation (2), we have that ck`1 “ ck ´1.
Thus, the sequence c0, c1, c2, . . . of positive integers is strictly decreasing, a contradiction. So,
b0 ´ 3 ď 0, which implies M “ 1.

ForM “ 1, we can check that the sequence is constant with ak “ 3
2
for all k ě 0. Therefore,

the answer is M ě 2.

Solution 2. We provide an alternative way to show M “ 1 once equation (1) has been
reached. We claim that bk ” 3 pmod 2mq for all k ě 0 and m ě 1. If this is true, then we
would have bk “ 3 for all k ě 0 and hence M “ 1.

To establish our claim, we proceed by induction on m. The base case bk ” 3 pmod 2q is
true for all k ě 0 since bk is odd. Now suppose that bk ” 3 pmod 2mq for all k ě 0. Hence
bk “ 2mdk ` 3 for some integer dk. We have

3 ” bk`1 ” p2mdk ` 3qp2m´1dk ` 1q ” 3 ¨ 2m´1dk ` 3 pmod 2mq,

so that dk must be even. This implies that bk ” 3 pmod 2m`1q, as required.

Comment. The reason the number 3 which appears in both solutions is important, is that it is a
nontrivial fixed point of the recurrence relation for bk.
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N2. Let a and b be positive integers such that a!b! is a multiple of a! ` b!. Prove that
3a ě 2b` 2.

Solution 1. If a ą b, we immediately get 3a ě 2b ` 2. In the case a “ b, the required
inequality is equivalent to a ě 2, which can be checked easily since pa, bq “ p1, 1q does not
satisfy a! ` b! | a!b!. We now assume a ă b and denote c “ b ´ a. The required inequality
becomes a ě 2c` 2.

Suppose, to the contrary, that a ď 2c` 1. Define M “ b!
a!

“ pa` 1qpa` 2q ¨ ¨ ¨ pa` cq. Since
a!`b! | a!b! implies 1`M | a!M , we obtain 1`M | a!. Note that we must have c ă a; otherwise
1 `M ą a!, which is impossible. We observe that c! | M since M is a product of c consecutive
integers. Thus gcdp1 ` M, c!q “ 1, which implies

1 ` M

ˇ

ˇ

ˇ

ˇ

a!

c!
“ pc` 1qpc` 2q ¨ ¨ ¨ a. (1)

If a ď 2c, then a!
c!
is a product of a´ c ď c integers not exceeding a whereas M is a product of

c integers exceeding a. Therefore, 1 ` M ą a!
c!
, which is a contradiction.

It remains to exclude the case a “ 2c` 1. Since a` 1 “ 2pc` 1q, we have c` 1 | M . Hence,
we can deduce from (1) that 1 ` M | pc ` 2qpc ` 3q ¨ ¨ ¨a. Now pc ` 2qpc ` 3q ¨ ¨ ¨ a is a product
of a ´ c´ 1 “ c integers not exceeding a; thus it is smaller than 1 ` M . Again, we arrive at a
contradiction.

Comment 1. One may derive a weaker version of (1) and finish the problem as follows. After
assuming a ď 2c ` 1, we have

X

a
2

\

ď c, so
X

a
2

\

! | M . Therefore,

1 `M

ˇ

ˇ

ˇ

ˇ

´Ya

2

]

` 1
¯´Ya

2

]

` 2
¯

¨ ¨ ¨ a.

Observe that
`X

a
2

\

` 1
˘ `X

a
2

\

` 2
˘

¨ ¨ ¨ a is a product of
P

a
2

T

integers not exceeding a. This leads to a
contradiction when a is even since

P

a
2

T

“ a
2

ď c and M is a product of c integers exceeding a.
When a is odd, we can further deduce that 1 `M |

`

a`3
2

˘ `

a`5
2

˘

¨ ¨ ¨ a since
X

a
2

\

` 1 “ a`1
2

ˇ

ˇ a` 1.
Now

`

a`3
2

˘ `

a`5
2

˘

¨ ¨ ¨ a is a product of a´1
2

ď c numbers not exceeding a, and we get a contradiction.

Solution 2. As in Solution 1, we may assume that a ă b and let c “ b ´ a. Suppose, to the
contrary, that a ď 2c` 1. From a! ` b! | a!b!, we have

N “ 1 ` pa` 1qpa` 2q ¨ ¨ ¨ pa` cq
ˇ

ˇ pa` cq!,

which implies that all prime factors of N are at most a ` c.
Let p be a prime factor of N . If p ď c or p ě a ` 1, then p divides one of a ` 1, . . . , a ` c

which is impossible. Hence a ě p ě c ` 1. Furthermore, we must have 2p ą a ` c; otherwise,
a ` 1 ď 2c ` 2 ď 2p ď a ` c so p | N ´ 1, again impossible. Thus, we have p P

`

a`c
2
, a
‰

, and
p2 ∤ pa` cq! since 2p ą a` c. Therefore, p2 ∤ N as well.

If a ď c ` 2, then the interval
`

a`c
2
, a
‰

contains at most one integer and hence at most one
prime number, which has to be a. Since p2 ∤ N , we must have N “ p “ a or N “ 1, which is
absurd since N ą a ě 1. Thus, we have a ě c ` 3, and so a`c`1

2
ě c ` 2. It follows that p lies

in the interval rc` 2, as.
Thus, every prime appearing in the prime factorization of N lies in the interval rc`2, as, and

its exponent is exactly 1. So we must have N | pc`2qpc`3q ¨ ¨ ¨a. However, pc`2qpc`3q ¨ ¨ ¨a is
a product of a´c´1 ď c numbers not exceeding a, so it is less than N . This is a contradiction.

Comment 2. The original problem statement also asks to determine when the equality 3a “ 2b` 2
holds. It can be checked that the answer is pa, bq “ p2, 2q, p4, 5q.
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N3. Let m and n be positive integers such that m ą n. Define xk “ pm` kq{pn` kq for k “
1, 2, . . . , n` 1. Prove that if all the numbers x1, x2, . . . , xn`1 are integers, then x1x2 ¨ ¨ ¨xn`1 ´ 1
is divisible by an odd prime.

Solution. Assume that x1, x2, . . . , xn`1 are integers. Define the integers

ak “ xk ´ 1 “ m ` k

n` k
´ 1 “ m´ n

n` k
ą 0

for k “ 1, 2, . . . , n` 1.
Let P “ x1x2 ¨ ¨ ¨xn`1 ´ 1. We need to prove that P is divisible by an odd prime, or in

other words, that P is not a power of 2. To this end, we investigate the powers of 2 dividing
the numbers ak.

Let 2d be the largest power of 2 dividing m ´ n, and let 2c be the largest power of 2 not
exceeding 2n` 1. Then 2n` 1 ď 2c`1 ´ 1, and so n` 1 ď 2c. We conclude that 2c is one of the
numbers n` 1, n` 2, . . . , 2n` 1, and that it is the only multiple of 2c appearing among these
numbers. Let ℓ be such that n ` ℓ “ 2c. Since m´n

n`ℓ
is an integer, we have d ě c. Therefore,

2d´c`1 ∤ aℓ “ m´n
n`ℓ

, while 2d´c`1 | ak for all k P t1, . . . , n` 1u z tℓu.
Computing modulo 2d´c`1, we get

P “ pa1 ` 1qpa2 ` 1q ¨ ¨ ¨ pan`1 ` 1q ´ 1 ” paℓ ` 1q ¨ 1n ´ 1 ” aℓ ı 0 pmod 2d´c`1q.

Therefore, 2d´c`1 ∤ P .
On the other hand, for any k P t1, . . . , n`1u z tℓu, we have 2d´c`1 | ak. So P ě ak ě 2d´c`1,

and it follows that P is not a power of 2.

Comment. Instead of attempting to show that P is not a power of 2, one may try to find an odd
factor of P (greater than 1) as follows:

From ak “ m´n
n`k

P Zą0, we get that m ´ n is divisible by n ` 1, n ` 2, . . . , 2n ` 1, and thus
it is also divisible by their least common multiple L. So m ´ n “ qL for some positive integer q;
hence xk “ q ¨ L

n`k
` 1.

Then, since n ` 1 ď 2c “ n ` ℓ ď 2n ` 1 ď 2c`1 ´ 1, we have 2c | L, but 2c`1 ∤ L. So L
n`ℓ

is odd,

while L
n`k

is even for k ‰ ℓ. Computing modulo 2q yields

x1x2 ¨ ¨ ¨ xn`1 ´ 1 ” pq ` 1q ¨ 1n ´ 1 ” q pmod 2qq.

Thus, x1x2 ¨ ¨ ¨ xn`1 ´ 1 “ 2qr ` q “ qp2r ` 1q for some integer r.
Since x1x2 ¨ ¨ ¨ xn`1 ´ 1 ě x1x2 ´ 1 ě pq ` 1q2 ´ 1 ą q, we have r ě 1. This implies that

x1x2 ¨ ¨ ¨ xn`1 ´ 1 is divisible by an odd prime.
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N4. Suppose that a0, a1, . . . and b0, b1, . . . are two sequences of positive integers satisfying
a0, b0 ě 2 and

an`1 “ gcdpan, bnq ` 1, bn`1 “ lcmpan, bnq ´ 1

for all n ě 0. Prove that the sequence (an) is eventually periodic; in other words, there exist
integers N ě 0 and t ą 0 such that an`t “ an for all n ě N .

Solution 1. Let sn “ an ` bn. Notice that if an | bn, then an`1 “ an ` 1, bn`1 “ bn ´ 1 and
sn`1 “ sn. So, an increases by 1 and sn does not change until the first index is reached with
an ∤ sn. Define

Wn “
 

m P Zą0 : m ě an and m ∤ sn
(

and wn “ minWn.

Claim 1. The sequence pwnq is non-increasing.

Proof. If an | bn then an`1 “ an ` 1. Due to an | sn, we have an R Wn. Moreover sn`1 “ sn;
therefore, Wn`1 “ Wn and wn`1 “ wn.

Otherwise, if an ∤ bn, then an ∤ sn, so an P Wn and thus wn “ an. We show that an P Wn`1;
this implies wn`1 ď an “ wn. By the definition of Wn`1, we need that an ě an`1 and an ∤ sn`1.
The first relation holds because of gcdpan, bnq ă an. For the second relation, observe that in
sn`1 “ gcdpan, bnq ` lcmpan, bnq, the second term is divisible by an, but the first term is not.
So an ∤ sn`1; that completes the proof of the claim. l

Let w “ min
n
wn and let N be an index with w “ wN . Due to Claim 1, we have wn “ w for

all n ě N .

Let gn “ gcdpw, snq. As we have seen, starting from an arbitrary index n ě N , the sequence
an, an`1, . . . increases by 1 until it reaches w, which is the first value not dividing sn; then it
drops to gcdpw, snq ` 1 “ gn ` 1.

Claim 2. The sequence pgnq is constant for n ě N .

Proof. If an | bn, then sn`1 “ sn and hence gn`1 “ gn. Otherwise we have an “ w,

gcdpan, bnq “ gcdpan, snq “ gcdpw, snq “ gn,

sn`1 “ gcdpan, bnq ` lcmpan, bnq “ gn ` anbn

gn
“ gn ` wpsn ´ wq

gn
, (1)

and gn`1 “ gcdpw, sn`1q “ gcd

ˆ

w, gn ` sn ´ w

gn
w

˙

“ gcdpw, gnq “ gn. l

Let g “ gN . We have proved that the sequence panq eventually repeats the following cycle:

g ` 1 ÞÑ g ` 2 ÞÑ . . . ÞÑ w ÞÑ g ` 1.

Solution 2. By Claim 1 in the first solution, we have an ď wn ď w0, so the sequence panq is
bounded, and hence it has only finitely many values.

Let M “ lcmpa1, a2, . . .q, and consider the sequence bn modulo M . Let rn be the remainder
of bn, divided byM . For every index n, since an | M | bn´rn, we have gcdpan, bnq “ gcdpan, rnq,
and therefore

an`1 “ gcdpan, rnq ` 1.

Moreover,

rn`1 ” bn`1 “ lcmpan, bnq ´ 1 “ an

gcdpan, bnqbn ´ 1

“ an

gcdpan, rnqbn ´ 1 ” an

gcdpan, rnqrn ´ 1 pmod Mq.
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Hence, the pair pan, rnq uniquely determines the pair pan`1, rn`1q. Since there are finitely many
possible pairs, the sequence of pairs pan, rnq is eventually periodic; in particular, the sequence
panq is eventually periodic.

Comment. We show that there are only four possibilities for g and w (as defined in Solution 1),
namely

pw, gq P
 

p2, 1q, p3, 1q, p4, 2q, p5, 1q
(

. (2)

This means that the sequence panq eventually repeats one of the following cycles:

p2q, p2, 3q, p3, 4q, or p2, 3, 4, 5q. (3)

Using the notation of Solution 1, for n ě N the sequence panq has a cycle pg ` 1, g ` 2, . . . , wq
such that g “ gcdpw, snq. By the observations in the proof of Claim 2, the numbers g`1, . . . , w´1 all
divide sn; so the number L “ lcmpg ` 1, g ` 2, . . . , w ´ 1q also divides sn. Moreover, g also divides w.

Now choose any n ě N such that an “ w. By (1), we have

sn`1 “ g `
wpsn ´ wq

g
“ sn ¨

w

g
´
w2 ´ g2

g
.

Since L divides both sn and sn`1, it also divides the number T “ w2´g2

g
.

Suppose first that w ě 6, which yields g ` 1 ď w
2

` 1 ď w ´ 2. Then pw ´ 2qpw ´ 1q | L | T , so we
have either w2 ´ g2 ě 2pw ´ 1qpw ´ 2q, or g “ 1 and w2 ´ g2 “ pw ´ 1qpw ´ 2q. In the former case we
get pw ´ 1qpw ´ 5q ` pg2 ´ 1q ď 0 which is false by our assumption. The latter equation rewrites as
3w “ 3, so w “ 1, which is also impossible.

Now we are left with the cases when w ď 5 and g | w. The case pw, gq “ p4, 1q violates the

condition L | w2´g2

g
; all other such pairs are listed in (2).

In the table below, for each pair pw, gq, we provide possible sequences panq and pbnq. That shows
that the cycles shown in (3) are indeed possible.

w “ 2 g “ 1 an “ 2 bn “ 2 ¨ 2n ` 1
w “ 3 g “ 1 pa2k, a2k`1q “ p2, 3q pb2k, b2k`1q “ p6 ¨ 3k ` 2, 6 ¨ 3k ` 1q
w “ 4 g “ 2 pa2k, a2k`1q “ p3, 4q pb2k, b2k`1q “ p12 ¨ 2k ` 3, 12 ¨ 2k ` 2q
w “ 5 g “ 1 pa4k, . . . , a4k`3q “ p2, 3, 4, 5q pb4k, . . . , b4k`3q “ p6 ¨ 5k ` 4, . . . , 6 ¨ 5k ` 1q
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N5. Determine all triples pa, b, cq of positive integers for which ab´ c, bc´ a, and ca´ b are
powers of 2.

Explanation: A power of 2 is an integer of the form 2n, where n denotes some nonnegative

integer.

Answer. There are sixteen such triples, namely p2, 2, 2q, the three permutations of p2, 2, 3q,
and the six permutations of each of p2, 6, 11q and p3, 5, 7q.
Solution 1. It can easily be verified that these sixteen triples are as required. Now let pa, b, cq
be any triple with the desired property. If we would have a “ 1, then both b´ c and c´ b were
powers of 2, which is impossible since their sum is zero; because of symmetry, this argument
shows a, b, c ě 2.

Case 1. Among a, b, and c there are at least two equal numbers.

Without loss of generality we may suppose that a “ b. Then a2 ´ c and apc ´ 1q are powers
of 2. The latter tells us that actually a and c ´ 1 are powers of 2. So there are nonnegative
integers α and γ with a “ 2α and c “ 2γ ` 1. Since a2 ´ c “ 22α ´ 2γ ´ 1 is a power of 2 and
thus incongruent to ´1 modulo 4, we must have γ ď 1. Moreover, each of the terms 22α ´ 2
and 22α ´ 3 can only be a power of 2 if α “ 1. It follows that the triple pa, b, cq is either p2, 2, 2q
or p2, 2, 3q.

Case 2. The numbers a, b, and c are distinct.

Due to symmetry we may suppose that

2 ď a ă b ă c . (1)

We are to prove that the triple pa, b, cq is either p2, 6, 11q or p3, 5, 7q. By our hypothesis, there
exist three nonnegative integers α, β, and γ such that

bc ´ a “ 2α , (2)

ac ´ b “ 2β , (3)

and ab ´ c “ 2γ . (4)

Evidently we have
α ą β ą γ . (5)

Depending on how large a is, we divide the argument into two further cases.

Case 2.1. a “ 2.

We first prove that γ “ 0. Assume for the sake of contradiction that γ ą 0. Then c is even
by (4) and, similarly, b is even by (5) and (3). So the left-hand side of (2) is congruent to 2
modulo 4, which is only possible if bc “ 4. As this contradicts (1), we have thereby shown that
γ “ 0, i.e., that c “ 2b´ 1.

Now (3) yields 3b ´ 2 “ 2β. Due to b ą 2 this is only possible if β ě 4. If β “ 4, then we
get b “ 6 and c “ 2 ¨ 6 ´ 1 “ 11, which is a solution. It remains to deal with the case β ě 5.
Now (2) implies

9 ¨ 2α “ 9bp2b ´ 1q ´ 18 “ p3b´ 2qp6b` 1q ´ 16 “ 2βp2β`1 ` 5q ´ 16 ,

and by β ě 5 the right-hand side is not divisible by 32. Thus α ď 4 and we get a contradiction
to (5).
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Case 2.2. a ě 3.

Pick an integer ϑ P t´1,`1u such that c´ ϑ is not divisible by 4. Now

2α ` ϑ ¨ 2β “ pbc ´ aϑ2q ` ϑpca ´ bq “ pb ` aϑqpc´ ϑq

is divisible by 2β and, consequently, b`aϑ is divisible by 2β´1. On the other hand, 2β “ ac´b ą
pa´ 1qc ě 2c implies in view of (1) that a and b are smaller than 2β´1. All this is only possible
if ϑ “ 1 and a` b “ 2β´1. Now (3) yields

ac´ b “ 2pa` bq , (6)

whence 4b ą a ` 3b “ apc´ 1q ě ab, which in turn yields a “ 3.
So (6) simplifies to c “ b ` 2 and (2) tells us that bpb ` 2q ´ 3 “ pb ´ 1qpb ` 3q is a power

of 2. Consequently, the factors b´1 and b`3 are powers of 2 themselves. Since their difference
is 4, this is only possible if b “ 5 and thus c “ 7. Thereby the solution is complete.

Solution 2. As in the beginning of the first solution, we observe that a, b, c ě 2. Depending
on the parities of a, b, and c we distinguish three cases.

Case 1. The numbers a, b, and c are even.

Let 2A, 2B, and 2C be the largest powers of 2 dividing a, b, and c respectively. We may assume
without loss of generality that 1 ď A ď B ď C. Now 2B is the highest power of 2 dividing
ac ´ b, whence ac´ b “ 2B ď b. Similarly, we deduce bc ´ a “ 2A ď a. Adding both estimates
we get pa ` bqc ď 2pa ` bq, whence c ď 2. So c “ 2 and thus A “ B “ C “ 1; moreover, we
must have had equality throughout, i.e., a “ 2A “ 2 and b “ 2B “ 2. We have thereby found
the solution pa, b, cq “ p2, 2, 2q.

Case 2. The numbers a, b, and c are odd.

If any two of these numbers are equal, say a “ b, then ac ´ b “ apc ´ 1q has a nontrivial odd
divisor and cannot be a power of 2. Hence a, b, and c are distinct. So we may assume without
loss of generality that a ă b ă c.

Let α and β denote the nonnegative integers for which bc ´ a “ 2α and ac ´ b “ 2β hold.
Clearly, we have α ą β, and thus 2β divides

a ¨ 2α ´ b ¨ 2β “ apbc ´ aq ´ bpac ´ bq “ b2 ´ a2 “ pb ` aqpb ´ aq .

Since a is odd, it is not possible that both factors b`a and b´a are divisible by 4. Consequently,
one of them has to be a multiple of 2β´1. Hence one of the numbers 2pb ` aq and 2pb ´ aq is
divisible by 2β and in either case we have

ac ´ b “ 2β ď 2pa` bq . (7)

This in turn yields pa ´ 1qb ă ac ´ b ă 4b and thus a “ 3 (recall that a is odd and larger
than 1). Substituting this back into (7) we learn c ď b` 2. But due to the parity b ă c entails
that b` 2 ď c holds as well. So we get c “ b` 2 and from bc´ a “ pb´ 1qpb` 3q being a power
of 2 it follows that b “ 5 and c “ 7.

Case 3. Among a, b, and c both parities occur.

Without loss of generality, we suppose that c is odd and that a ď b. We are to show that
pa, b, cq is either p2, 2, 3q or p2, 6, 11q. As at least one of a and b is even, the expression ab ´ c

is odd; since it is also a power of 2, we obtain

ab ´ c “ 1 . (8)
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If a “ b, then c “ a2 ´ 1, and from ac´ b “ apa2 ´ 2q being a power of 2 it follows that both a
and a2 ´ 2 are powers of 2, whence a “ 2. This gives rise to the solution p2, 2, 3q.

We may suppose a ă b from now on. As usual, we let α ą β denote the integers satisfying

2α “ bc ´ a and 2β “ ac ´ b . (9)

If β “ 0 it would follow that ac´ b “ ab´ c “ 1 and hence that b “ c “ 1, which is absurd. So
β and α are positive and consequently a and b are even. Substituting c “ ab ´ 1 into (9) we
obtain

2α “ ab2 ´ pa` bq , (10)

and 2β “ a2b ´ pa` bq . (11)

The addition of both equation yields 2α ` 2β “ pab ´ 2qpa ` bq. Now ab ´ 2 is even but not
divisible by 4, so the highest power of 2 dividing a ` b is 2β´1. For this reason, the equations
(10) and (11) show that the highest powers of 2 dividing either of the numbers ab2 and a2b is
likewise 2β´1. Thus there is an integer τ ě 1 together with odd integers A, B, and C such that
a “ 2τA, b “ 2τB, a` b “ 23τC, and β “ 1 ` 3τ .

Notice that A ` B “ 22τC ě 4C. Moreover, (11) entails A2B ´ C “ 2. Thus 8 “
4A2B ´ 4C ě 4A2B ´ A ´ B ě A2p3B ´ 1q. Since A and B are odd with A ă B, this is only
possible if A “ 1 and B “ 3. Finally, one may conclude C “ 1, τ “ 1, a “ 2, b “ 6, and
c “ 11. We have thereby found the triple p2, 6, 11q. This completes the discussion of the third
case, and hence the solution.

Comment. In both solutions, there are many alternative ways to proceed in each of its cases. Here
we present a different treatment of the part “a ă b” of Case 3 in Solution 2, assuming that (8) and (9)
have already been written down:

Put d “ gcdpa, bq and define the integers p and q by a “ dp and b “ dq; notice that p ă q and
gcdpp, qq “ 1. Now (8) implies c “ d2pq ´ 1 and thus we have

2α “ dpd2pq2 ´ p´ qq

and 2β “ dpd2p2q ´ p´ qq . (12)

Now 2β divides 2α ´ 2β “ d3pqpq ´ pq and, as p and q are easily seen to be coprime to d2p2q ´ p´ q,
it follows that

pd2p2q ´ p´ qq | d2pq ´ pq . (13)

In particular, we have d2p2q´ p´ q ď d2pq ´ pq, i.e., d2pp2q` p´ qq ď p` q. As p2q` p´ q ą 0, this
may be weakened to p2q ` p´ q ď p` q. Hence p2q ď 2q, which is only possible if p “ 1.

Going back to (13), we get
pd2q ´ q ´ 1q | d2pq ´ 1q . (14)

Now 2pd2q ´ q ´ 1q ď d2pq ´ 1q would entail d2pq ` 1q ď 2pq ` 1q and thus d “ 1. But this would
tell us that a “ dp “ 1, which is absurd. This argument proves 2pd2q ´ q ´ 1q ą d2pq ´ 1q and in the
light of (14) it follows that d2q´ q´ 1 “ d2pq´ 1q, i.e., q “ d2 ´ 1. Plugging this together with p “ 1
into (12) we infer 2β “ d3pd2 ´ 2q. Hence d and d2 ´ 2 are powers of 2. Consequently, d “ 2, q “ 3,
a “ 2, b “ 6, and c “ 11, as desired.
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N6. Let Zą0 denote the set of positive integers. Consider a function f : Zą0 Ñ Zą0. For
any m,n P Zą0 we write fnpmq “ fpfp. . . f

looomooon

n

pmq . . .qq. Suppose that f has the following two

properties:

piq If m,n P Zą0, then
fnpmq ´ m

n
P Zą0;

piiq The set Zą0 z tfpnq |n P Zą0u is finite.

Prove that the sequence fp1q ´ 1, fp2q ´ 2, fp3q ´ 3, . . . is periodic.

Solution. We split the solution into three steps. In the first of them, we show that the function
f is injective and explain how this leads to a useful visualization of f . Then comes the second
step, in which most of the work happens: its goal is to show that for any n P Zą0 the sequence
n, fpnq, f 2pnq, . . . is an arithmetic progression. Finally, in the third step we put everything
together, thus solving the problem.

Step 1. We commence by checking that f is injective. For this purpose, we consider any

m, k P Zą0 with fpmq “ fpkq. By piq, every positive integer n has the property that

k ´ m

n
“ fnpmq ´ m

n
´ fnpkq ´ k

n

is a difference of two integers and thus integral as well. But for n “ |k ´ m| ` 1 this is only
possible if k “ m. Thereby, the injectivity of f is established.

Now recall that due to condition piiq there are finitely many positive integers a1, . . . , ak
such that Zą0 is the disjoint union of ta1, . . . , aku and tfpnq |n P Zą0u. Notice that by plugging
n “ 1 into condition piq we get fpmq ą m for all m P Zą0.

We contend that every positive integer n may be expressed uniquely in the form n “ f jpaiq
for some j ě 0 and i P t1, . . . , ku. The uniqueness follows from the injectivity of f . The
existence can be proved by induction on n in the following way. If n P ta1, . . . , aku, then
we may take j “ 0; otherwise there is some n1 ă n with fpn1q “ n to which the induction
hypothesis may be applied.

The result of the previous paragraph means that every positive integer appears exactly once
in the following infinite picture, henceforth referred to as “the Table”:

a1 fpa1q f 2pa1q f 3pa1q . . .

a2 fpa2q f 2pa2q f 3pa2q . . .
...

...
...

...
ak fpakq f 2pakq f 3pakq . . .

The Table

Step 2. Our next goal is to prove that each row of the Table is an arithmetic progression.
Assume contrariwise that the number t of rows which are arithmetic progressions would satisfy
0 ď t ă k. By permuting the rows if necessary we may suppose that precisely the first t rows
are arithmetic progressions, say with steps T1, . . . , Tt. Our plan is to find a further row that
is “not too sparse” in an asymptotic sense, and then to prove that such a row has to be an
arithmetic progression as well.

Let us write T “ lcmpT1, T2, . . . , Ttq and A “ maxta1, a2, . . . , atu if t ą 0; and T “ 1 and
A “ 0 if t “ 0. For every integer n ě A, the interval ∆n “ rn` 1, n` T s contains exactly T {Ti
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elements of the ith row (1 ď i ď t). Therefore, the number of elements from the last pk ´ tq
rows of the Table contained in ∆n does not depend on n ě A. It is not possible that none
of these intervals ∆n contains an element from the k ´ t last rows, because infinitely many
numbers appear in these rows. It follows that for each n ě A the interval ∆n contains at least
one member from these rows.

This yields that for every positive integer d, the interval
“

A`1, A`pd`1qpk´ tqT s contains
at least pd` 1qpk´ tq elements from the last k ´ t rows; therefore, there exists an index x with
t` 1 ď x ď k, possibly depending on d, such that our interval contains at least d` 1 elements
from the xth row. In this situation we have

f dpaxq ď A` pd ` 1qpk ´ tqT .

Finally, since there are finitely many possibilities for x, there exists an index x ě t` 1 such
that the set

X “
 

d P Zą0

ˇ

ˇ f dpaxq ď A` pd ` 1qpk ´ tqT
(

is infinite. Thereby we have found the “dense row” promised above.

By assumption piq, for every d P X the number

βd “ f dpaxq ´ ax

d

is a positive integer not exceeding

A` pd ` 1qpk ´ tqT
d

ď Ad ` 2dpk ´ tqT
d

“ A` 2pk ´ tqT .

This leaves us with finitely many choices for βd, which means that there exists a number Tx
such that the set

Y “
 

d P X
ˇ

ˇ βd “ Tx
(

is infinite. Notice that we have f dpaxq “ ax ` d ¨ Tx for all d P Y .

Now we are prepared to prove that the numbers in the xth row form an arithmetic progres-
sion, thus coming to a contradiction with our assumption. Let us fix any positive integer j.
Since the set Y is infinite, we can choose a number y P Y such that y´j ą

ˇ

ˇf jpaxq´pax `jTxq
ˇ

ˇ.
Notice that both numbers

f ypaxq ´ f jpaxq “ f y´j
`

f jpaxq
˘

´ f jpaxq and f ypaxq ´ pax ` jTxq “ py ´ jqTx

are divisible by y ´ j. Thus, the difference between these numbers is also divisible by y ´ j.
Since the absolute value of this difference is less than y´ j, it has to vanish, so we get f jpaxq “
ax ` j ¨ Tx.

Hence, it is indeed true that all rows of the Table are arithmetic progressions.

Step 3. Keeping the above notation in force, we denote the step of the ith row of the table by Ti.
Now we claim that we have fpnq ´ n “ fpn` T q ´ pn ` T q for all n P Zą0, where

T “ lcmpT1, . . . , Tkq .

To see this, let any n P Zą0 be given and denote the index of the row in which it appears in
the Table by i. Then we have f jpnq “ n` j ¨ Ti for all j P Zą0, and thus indeed

fpn` T q ´ fpnq “ f 1`T {Tipnq ´ fpnq “ pn ` T ` Tiq ´ pn` Tiq “ T .

This concludes the solution.
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Comment 1. There are some alternative ways to complete the second part once the index x

corresponding to a “dense row” is found. For instance, one may show that for some integer T ˚
x the set

Y ˚ “
 

j P Zą0

ˇ

ˇ f j`1paxq ´ f jpaxq “ T ˚
x

(

is infinite, and then one may conclude with a similar divisibility argument.

Comment 2. It may be checked that, conversely, any way to fill out the Table with finitely many
arithmetic progressions so that each positive integer appears exactly once, gives rise to a function f
satisfying the two conditions mentioned in the problem. For example, we may arrange the positive
integers as follows:

2 4 6 8 10 . . .

1 5 9 13 17 . . .

3 7 11 15 19 . . .

This corresponds to the function

fpnq “

#

n` 2 if n is even;

n` 4 if n is odd.

As this example shows, it is not true that the function n ÞÑ fpnq ´ n has to be constant.
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N7. Let Zą0 denote the set of positive integers. For any positive integer k, a function
f : Zą0 Ñ Zą0 is called k-good if gcd

`

fpmq ` n, fpnq ` m
˘

ď k for all m ‰ n. Find all k such
that there exists a k-good function.

Answer. k ě 2.

Solution 1. For any function f : Zą0 Ñ Zą0, let Gfpm,nq “ gcd
`

fpmq ` n, fpnq ` m
˘

. Note
that a k-good function is also pk` 1q-good for any positive integer k. Hence, it suffices to show
that there does not exist a 1-good function and that there exists a 2-good function.

We first show that there is no 1-good function. Suppose that there exists a function f such
that Gf pm,nq “ 1 for all m ‰ n. Now, if there are two distinct even numbers m and n such
that fpmq and fpnq are both even, then 2 | Gfpm,nq, a contradiction. A similar argument
holds if there are two distinct odd numbers m and n such that fpmq and fpnq are both odd.
Hence we can choose an even m and an odd n such that fpmq is odd and fpnq is even. This
also implies that 2 | Gfpm,nq, a contradiction.

We now construct a 2-good function. Define fpnq “ 2gpnq`1 ´ n ´ 1, where g is defined
recursively by gp1q “ 1 and gpn` 1q “ p2gpnq`1q!.

For any positive integers m ą n, set

A “ fpmq ` n “ 2gpmq`1 ´ m` n´ 1, B “ fpnq ` m “ 2gpnq`1 ´ n` m´ 1.

We need to show that gcdpA,Bq ď 2. First, note that A ` B “ 2gpmq`1 ` 2gpnq`1 ´ 2 is not
divisible by 4, so that 4 ∤ gcdpA,Bq. Now we suppose that there is an odd prime p for which
p | gcdpA,Bq and derive a contradiction.

We first claim that 2gpm´1q`1 ě B. This is a rather weak bound; one way to prove it is as fol-
lows. Observe that gpk`1q ą gpkq and hence 2gpk`1q`1 ě 2gpkq`1`1 for every positive integer k.
By repeatedly applying this inequality, we obtain 2gpm´1q`1 ě 2gpnq`1 ` pm ´ 1q ´ n “ B.

Now, since p | B, we have p ´ 1 ă B ď 2gpm´1q`1, so that p ´ 1 | p2gpm´1q`1q! “ gpmq.
Hence 2gpmq ” 1 pmod pq, which yields A ` B ” 2gpnq`1 pmod pq. However, since p | A ` B,
this implies that p “ 2, a contradiction.

Solution 2. We provide an alternative construction of a 2-good function f .

Let P be the set consisting of 4 and all odd primes. For every p P P, we say that a number
a P t0, 1, . . . , p ´ 1u is p-useful if a ı ´a pmod pq. Note that a residue modulo p which is
neither 0 nor 2 is p-useful (the latter is needed only when p “ 4).

We will construct f recursively; in some steps, we will also define a p-useful number ap.
After the mth step, the construction will satisfy the following conditions:

(i) The values of fpnq have already been defined for all n ď m, and p-useful numbers ap have
already been defined for all p ď m ` 2;

(ii) If n ď m and p ď m` 2, then fpnq ` n ı ap pmod pq;

(iii) gcd
`

fpn1q ` n2, fpn2q ` n1

˘

ď 2 for all n1 ă n2 ď m.

If these conditions are satisfied, then f will be a 2-good function.

Step 1. Set fp1q “ 1 and a3 “ 1. Clearly, all the conditions are satisfied.

Step m, for m ě 2. We need to determine fpmq and, if m` 2 P P, the number am`2.

Defining fpmq. Let Xm “ tp P P : p | fpnq ` m for some n ă mu. We will determine
fpmq mod p for all p P Xm and then choose fpmq using the Chinese Remainder Theorem.
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Take any p P Xm. If p ď m ` 1, then we define fpmq ” ´ap ´ m pmod pq. Otherwise, if
p ě m` 2, then we define fpmq ” 0 pmod pq.
Defining am`2. Now let p “ m ` 2 and suppose that p P P. We choose ap to be a residue
modulo p that is not congruent to 0, 2, or fpnq ` n for any n ď m. Since fp1q ` 1 “ 2, there
are at most m ` 1 ă p residues to avoid, so we can always choose a remaining residue.

We first check that (ii) is satisfied. We only need to check it if p “ m` 2 or n “ m. In the
former case, we have fpnq ` n ı ap pmod pq by construction. In the latter case, if n “ m and
p ď m ` 1, then we have fpmq ` m ” ´ap ı ap pmod pq, where we make use of the fact that
ap is p-useful.

Now we check that (iii) holds. Suppose, to the contrary, that p | gcd
`

fpnq ` m, fpmq ` n
˘

for some n ă m. Then p P Xm and p | fpmq`n. If p ě m`2, then 0 ” fpmq`n ” n pmod pq,
which is impossible since n ă m ă p.

Otherwise, if p ď m` 1, then

0 ”
`

fpmq ` n
˘

`
`

fpnq ` m
˘

”
`

fpnq ` n
˘

`
`

fpmq ` m
˘

”
`

fpnq ` n
˘

´ ap pmod pq.

This implies that fpnq ` n ” ap pmod pq, a contradiction with (ii).

Comment 1. For any p P P, we may also define ap at step m for an arbitrary m ď p ´ 2. The
construction will work as long as we define a finite number of ap at each step.

Comment 2. When attempting to construct a 2-good function f recursively, the following way
seems natural. Start with setting fp1q “ 1. Next, for each integer m ą 1, introduce the set Xm like
in Solution 2 and define fpmq so as to satisfy

fpmq ” fpm´ pq pmod pq for all p P Xm with p ă m, and

fpmq ” 0 pmod pq for all p P Xm with p ě m.

This construction might seem to work. Indeed, consider a fixed p P P, and suppose that p
divides gcd

`

fpnq ` m, fpmq ` n
˘

for some n ă m. Choose such m and n so that maxpm,nq is
minimal. Then p P Xm. We can check that p ă m, so that the construction implies that p di-
vides gcd

`

fpnq ` pm ´ pq, fpm´ pq ` n
˘

. Since maxpn,m ´ pq ă maxpm,nq, this almost leads to a
contradiction—the only trouble is the possibility that n “ m´ p. However, this flaw may happen to
be not so easy to fix.

We will present one possible way to repair this argument in the next comment.

Comment 3. There are many recursive constructions for a 2-good function f . Here we sketch one
general approach which may be specified in different ways. For convenience, we denote by Zp the set
of residues modulo p; all operations on elements of Zp are also performed modulo p.

The general structure is the same as in Solution 2, i.e. using the Chinese Remainder Theorem to
successively determine fpmq. But instead of designating a common “safe” residue ap for future steps,
we act as follows.

For every p P P, in some step of the process we define p subsets B
p1q
p , B

p2q
p , . . . , B

ppq
p Ă Zp. The

meaning of these sets is that

fpmq `m should be congruent to some element in Bpiq
p whenever m ” i pmod pq for i P Zp. (1)

Moreover, in every such subset we specify a safe element b
piq
p P B

piq
p . The meaning now is that in

future steps, it is safe to set fpmq ` m ” b
piq
p pmod pq whenever m ” i pmod pq. In view of (1), this

safety will follow from the condition that p ∤ gcd
`

b
piq
p ` pj ´ iq, cpjq ´ pj ´ iq

˘

for all j P Zp and all

cpjq P B
pjq
p . In turn, this condition can be rewritten as

´bpiq
p R Bpjq

p , where j ” i ´ bpiq
p pmod pq. (2)
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The construction in Solution 2 is equivalent to setting b
piq
p “ ´ap and B

piq
p “ Zp z tapu for all i.

However, there are different, more technical specifications of our approach.

One may view the (incomplete) construction in Comment 2 as defining B
piq
p and b

piq
p at step p´ 1

by setting B
p0q
p “

 

b
p0q
p

(

“ t0u and B
piq
p “

 

b
piq
p

(

“ tfpiq ` i mod pu for every i “ 1, 2, . . . , p ´ 1.
However, this construction violates (2) as soon as some number of the form fpiq ` i is divisible by

some p with i ` 2 ď p P P, since then ´b
piq
p “ b

piq
p P B

piq
p .

Here is one possible way to repair this construction. For all p P P, we define the sets B
piq
p and the

elements b
piq
p at step pp´2q as follows. Set B

p1q
p “

 

b
p1q
p

(

“ t2u and B
p´1q
p “ B

p0q
p “

 

b
p´1q
p

(

“
 

b
p0q
p

(

“

t´1u. Next, for all i “ 2, . . . , p ´ 2, define B
piq
p “ ti, fpiq ` i mod pu and b

piq
p “ i. One may see that

these definitions agree with both (1) and (2).
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N8. For every positive integer n with prime factorization n “ śk

i“1 p
αi

i , define

℧pnq “
ÿ

i : pią10100

αi.

That is, ℧pnq is the number of prime factors of n greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

℧
`

fpaq ´ fpbq
˘

ď ℧pa ´ bq for all integers a and b with a ą b. (1)

Answer. fpxq “ ax ` b, where b is an arbitrary integer, and a is an arbitrary positive integer
with ℧paq “ 0.

Solution. A straightforward check shows that all the functions listed in the answer satisfy the
problem condition. It remains to show the converse.

Assume that f is a function satisfying the problem condition. Notice that the function
gpxq “ fpxq ´ fp0q also satisfies this condition. Replacing f by g, we assume from now on that
fp0q “ 0; then fpnq ą 0 for any positive integer n. Thus, we aim to prove that there exists a
positive integer a with ℧paq “ 0 such that fpnq “ an for all n P Z.

We start by introducing some notation. Set N “ 10100. We say that a prime p is large

if p ą N , and p is small otherwise; let S be the set of all small primes. Next, we say that
a positive integer is large or small if all its prime factors are such (thus, the number 1 is the
unique number which is both large and small). For a positive integer k, we denote the greatest
large divisor of k and the greatest small divisor of k by Lpkq and Spkq, respectively; thus,
k “ LpkqSpkq.

We split the proof into three steps.

Step 1. We prove that for every large k, we have k | fpaq ´ fpbq ðñ k | a ´ b. In other

words, L
`

fpaq ´ fpbq
˘

“ Lpa ´ bq for all integers a and b with a ą b.

We use induction on k. The base case k “ 1 is trivial. For the induction step, assume that
k0 is a large number, and that the statement holds for all large numbers k with k ă k0.

Claim 1. For any integers x and y with 0 ă x ´ y ă k0, the number k0 does not divide
fpxq ´ fpyq.
Proof. Assume, to the contrary, that k0 | fpxq ´ fpyq. Let ℓ “ Lpx ´ yq; then ℓ ď x ´ y ă k0.
By the induction hypothesis, ℓ | fpxq ´ fpyq, and thus lcmpk0, ℓq | fpxq ´ fpyq. Notice that
lcmpk0, ℓq is large, and lcmpk0, ℓq ě k0 ą ℓ. But then

℧
`

fpxq ´ fpyq
˘

ě ℧
`

lcmpk0, ℓq
˘

ą ℧pℓq “ ℧px ´ yq,

which is impossible. l

Now we complete the induction step. By Claim 1, for every integer a each of the sequences

fpaq, fpa` 1q, . . . , fpa` k0 ´ 1q and fpa` 1q, fpa` 2q, . . . , fpa` k0q

forms a complete residue system modulo k0. This yields fpaq ” fpa ` k0q pmod k0q. Thus,
fpaq ” fpbq pmod k0q whenever a ” b pmod k0q.

Finally, if a ı b pmod k0q then there exists an integer b1 such that b1 ” b pmod k0q and
|a ´ b1| ă k0. Then fpbq ” fpb1q ı fpaq pmod k0q. The induction step is proved.

Step 2. We prove that for some small integer a there exist infinitely many integers n such that

fpnq “ an. In other words, f is linear on some infinite set.

We start with the following general statement.
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Claim 2. There exists a constant c such that fptq ă ct for every positive integer t ą N .

Proof. Let d be the product of all small primes, and let α be a positive integer such that
2α ą fpNq. Then, for every p P S the numbers fp0q, fp1q, . . . , fpNq are distinct modulo pα.
Set P “ dα and c “ P ` fpNq.

Choose any integer t ą N . Due to the choice of α, for every p P S there exists at most one
nonnegative integer i ď N with pα | fptq ´ fpiq. Since |S| ă N , we can choose a nonnegative
integer j ď N such that pα ∤ fptq ´ fpjq for all p P S. Therefore, S

`

fptq ´ fpjq
˘

ă P .
On the other hand, Step 1 shows that L

`

fptq ´ fpjq
˘

“ Lpt´ jq ď t´ j. Since 0 ď j ď N ,
this yields

fptq “ fpjq ` L
`

fptq ´ fpjq
˘

¨ S
`

fptq ´ fpjq
˘

ă fpNq ` pt´ jqP ď
`

P ` fpNq
˘

t “ ct. l

Now let T be the set of large primes. For every t P T , Step 1 implies L
`

fptq
˘

“ t, so the
ratio fptq{t is an integer. Now Claim 2 leaves us with only finitely many choices for this ratio,
which means that there exists an infinite subset T 1 Ď T and a positive integer a such that
fptq “ at for all t P T 1, as required.

Since Lptq “ L
`

fptq
˘

“ LpaqLptq for all t P T 1, we get Lpaq “ 1, so the number a is small.

Step 3. We show that fpxq “ ax for all x P Z.

Let Ri “
 

x P Z : x ” i pmod N !q
(

denote the residue class of i modulo N !.

Claim 3. Assume that for some r, there are infinitely many n P Rr such that fpnq “ an. Then
fpxq “ ax for all x P Rr`1.

Proof. Choose any x P Rr`1. By our assumption, we can select n P Rr such that fpnq “ an

and |n ´ x| ą
ˇ

ˇfpxq ´ ax
ˇ

ˇ. Since n ´ x ” r ´ pr ` 1q “ ´1 pmod N !q, the number |n ´ x| is
large. Therefore, by Step 1 we have fpxq ” fpnq “ an ” ax pmod n´ xq, so n´ x | fpxq ´ ax.
Due to the choice of n, this yields fpxq “ ax. l

To complete Step 3, notice that the set T 1 found in Step 2 contains infinitely many elements
of some residue class Ri. Applying Claim 3, we successively obtain that fpxq “ ax for all
x P Ri`1, Ri`2, . . . , Ri`N ! “ Ri. This finishes the solution.

Comment 1. As the proposer also mentions, one may also consider the version of the problem where
the condition (1) is replaced by the condition that L

`

fpaq ´ fpbq
˘

“ Lpa ´ bq for all integers a and b
with a ą b. This allows to remove of Step 1 from the solution.

Comment 2. Step 2 is the main step of the solution. We sketch several different approaches allowing
to perform this step using statements which are weaker than Claim 2.

Approach 1. Let us again denote the product of all small primes by d. We focus on the values fpdiq,
i ě 0. In view of Step 1, we have L

`

fpdiq ´ fpdkq
˘

“ Lpdi ´ dkq “ di´k ´ 1 for all i ą k ě 0.
Acting similarly to the beginning of the proof of Claim 2, one may choose a number α ě 0 such

that the residues of the numbers fpdiq, i “ 0, 1, . . . , N , are distinct modulo pα for each p P S. Then,
for every i ą N , there exists an exponent k “ kpiq ď N such that S

`

fpdiq ´ fpdkq
˘

ă P “ dα.
Since there are only finitely many options for kpiq, as well as for the corresponding numbers

S
`

fpdiq ´ fpdkq
˘

, there exists an infinite set I of exponents i ą N such that kpiq attains the same
value k0 for all i P I, and such that, moreover, S

`

fpdiq ´ fpdk0q
˘

attains the same value s0 for all
i P I. Therefore, for all such i we have

fpdiq “ fpdk0q ` L
`

fpdiq ´ fpdk0q
˘

¨ S
`

fpdiq ´ fpdk0q
˘

“ fpdk0q `
`

di´k0 ´ 1
˘

s0,

which means that f is linear on the infinite set tdi : i P Iu (although with rational coefficients).
Finally, one may implement the relation fpdiq ” fp1q pmod di ´ 1q in order to establish that in

fact fpdiq{di is a (small and fixed) integer for all i P I.



Shortlisted problems – solutions 81

Approach 2. Alternatively, one may start with the following lemma.

Lemma. There exists a positive constant c such that

L

˜

3N
ź

i“1

`

fpkq ´ fpiq
˘

¸

“
3N
ź

i“1

L
`

fpkq ´ fpiq
˘

ě c
`

fpkq
˘2N

for all k ą 3N .

Proof. Let k be an integer with k ą 3N . Set Π “
ś3N

i“1

`

fpkq ´ fpiq
˘

.
Notice that for every prime p P S, at most one of the numbers in the set

H “
 

fpkq ´ fpiq : 1 ď i ď 3N
(

is divisible by a power of p which is greater than fp3Nq; we say that such elements of H are bad.
Now, for each element h P H which is not bad we have Sphq ď fp3NqN , while the bad elements do
not exceed fpkq. Moreover, there are less than N bad elements in H. Therefore,

SpΠq “
ź

hPH

S phq ď
`

fp3Nq
˘3N2

¨
`

fpkq
˘N
.

This easily yields the lemma statement in view of the fact that LpΠqSpΠq “ Π ě µ
`

fpkq
˘3N

for some
absolute constant µ. l

As a corollary of the lemma, one may get a weaker version of Claim 2 stating that there exists a
positive constant C such that fpkq ď Ck3{2 for all k ą 3N . Indeed, from Step 1 we have

k3N ě
3N
ź

i“1

Lpk ´ iq “
3N
ź

i“1

L
`

fpkq ´ fpiq
˘

ě c
`

fpkq
˘2N

,

so fpkq ď c´1{p2Nqk3{2.

To complete Step 2 now, set a “ fp1q. Due to the estimates above, we may choose a positive

integer n0 such that
ˇ

ˇfpnq ´ an
ˇ

ˇ ă npn´1q
2

for all n ě n0.
Take any n ě n0 with n ” 2 pmod N !q. Then L

`

fpnq ´fp0q
˘

“ Lpnq “ n{2 and L
`

fpnq ´fp1q
˘

“
Lpn ´ 1q “ n ´ 1; these relations yield fpnq ” fp0q “ 0 ” an pmod n{2q and fpnq ” fp1q “ a ” an

pmod n ´ 1q, respectively. Thus, npn´1q
2

ˇ

ˇ fpnq ´ an, which shows that fpnq “ an in view of the
estimate above.

Comment 3. In order to perform Step 3, it suffices to establish the equality fpnq “ an for any
infinite set of values of n. However, if this set has some good structure, then one may find easier ways
to complete this step.

For instance, after showing, as in Approach 2, that fpnq “ an for all n ě n0 with n ” 2 pmod N !q,
one may proceed as follows. Pick an arbitrary integer x and take any large prime p which is greater
than |fpxq ´ ax|. By the Chinese Remainder Theorem, there exists a positive integer n ą maxpx, n0q
such that n ” 2 pmod N !q and n ” x pmod pq. By Step 1, we have fpxq ” fpnq “ an ” ax pmod pq.
Due to the choice of p, this is possible only if fpxq “ ax.






